# ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES 

ILYAS ALI, HU YANG, ABDUL SHAKOOR

$$
\begin{aligned}
& \text { AbSTRACT. Some singular value inequalities for matrices are given. Among } \\
& \text { other inequalities it is proved that if } f \text { and } g \text { be nonnegative functions on } \\
& {[0, \infty) \text { which are continuous and satisfying the relation } f(t) g(t)=t \text {, for all }} \\
& t \in[0, \infty) \text {, then } \\
& \qquad s_{j}\left(A_{1}^{*} X B_{1}+A_{2}^{*} X B_{2}\right) \\
& \quad \leq s_{j}\left(\left(A_{1}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{1}+A_{2}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{2}\right) \oplus\left(B_{1}^{*} g^{2}(|X|) B_{1}+B_{2}^{*} g^{2}(|X|) B_{2}\right)\right),
\end{aligned}
$$

for $j=1,2, \ldots, n$, where $A_{1}, A_{2}, B_{1}, B_{2}, X$ are square matrices. Our results in this article generalize some existing singular value inequalities of matrices.

## 1. Introduction

Let $M_{m, n}$ be the space of $m \times n$ complex matrices and $M_{n}=M_{n, n}$. Let $\|\cdot\|$ stand for any unitarily invariant norm on $M_{n}$, i.e., a norm with the property that $\|U A V\|=\|A\|$ for all $A \in M_{n}$ and for all unitary matrices $U, V \in M_{n}$. Any matrix $A \in M_{n}$ is called positive semidefinite, denoted as $A \geq 0$ if for all $x \in C^{n}$, $x^{*} A x \geq 0$ and it is called positive definite if for all nonzero $x \in C^{n}, x^{*} A x>0$ and it is denoted as $A>0$. The singular values of matrix $A$ are the eigenvalues of positive semidefinite matrix $|A|=\left(A A^{*}\right)^{\frac{1}{2}}$, enumerated as $s_{1}(A) \geq s_{2}(A) \geq \ldots \geq s_{n}(A)$ and repeated according to multiplicity. The direct sum $A \oplus B$ represent the block diagonal matrix $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$.

The well-known classical arithmetic-geometric mean inequality for $a, b \geq 0$ defined as

$$
\begin{equation*}
a^{\frac{1}{2}} b^{\frac{1}{2}} \leq \frac{a+b}{2} \tag{1.1}
\end{equation*}
$$

Arithmetic-geometric mean inequality is important in matrix theory, functional analysis, electrical networks, etc. For $A, B, X \in M_{n}$, such that $A, B \geq 0, \mathrm{R}$. Bhatia and F. Kittaneh formulated some matrix versions of this inequality in $[3,4]$ one of

[^0]which is the following
\[

$$
\begin{equation*}
\left\|A^{\frac{1}{2}} X B^{\frac{1}{2}}\right\| \leq \frac{1}{2}\|A X+X B\| \tag{1.2}
\end{equation*}
$$

\]

From (1.2), for $X=I$ we have the following inequality for positive semidefinite matrices.

$$
\begin{equation*}
\left\|A^{\frac{1}{2}} B^{\frac{1}{2}}\right\| \leq \frac{1}{2}\|A+B\| \tag{1.3}
\end{equation*}
$$

R. Bhatia and F. Kittaneh also have proved in [5] that if $A, B \in M_{n}$ such that $A, B \geq 0$, then

$$
\begin{equation*}
\left\|A^{\frac{3}{2}} B^{\frac{1}{2}}+A^{\frac{1}{2}} B^{\frac{3}{2}}\right\| \leq \frac{1}{2}\left\|(A+B)^{2}\right\| \tag{1.4}
\end{equation*}
$$

From (1.3), (1.4) and also by triangle inequality, we obtain the following inequality

$$
\begin{equation*}
\left\|A^{\frac{3}{2}} B^{\frac{1}{2}}+A^{\frac{1}{2}} B^{\frac{3}{2}}+A^{\frac{1}{2}} B^{\frac{1}{2}}\right\| \leq \frac{1}{2}\left\|(A+B)^{2}\right\|+\frac{1}{2}\|A+B\| \tag{1.5}
\end{equation*}
$$

In [2] L. Zou and Y. Jiang proved that for positive semidefinite matrices $A, B \in$ $M_{n}$ and $1 \leq j \leq n$, the following inequality also holds

$$
\begin{equation*}
2 s_{j}\left(A^{\frac{3}{2}} B^{\frac{1}{2}}+A^{\frac{1}{2}} B^{\frac{3}{2}}+A^{\frac{1}{2}} B^{\frac{1}{2}}\right) \leq s_{j}\left((A+B)^{2}+(A+B)\right), \tag{1.6}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
\left\|A^{\frac{3}{2}} B^{\frac{1}{2}}+A^{\frac{1}{2}} B^{\frac{3}{2}}+A^{\frac{1}{2}} B^{\frac{1}{2}}\right\| \leq \frac{1}{2}\left\|(A+B)^{2}+(A+B)\right\| . \tag{1.7}
\end{equation*}
$$

The inequality (1.7) is an improvement of the inequality (1.5).
One another interesting inequality for sum and direct sum of matrices proved by R. Bhatia and F. Kittaneh [6] is

$$
\begin{equation*}
s_{j}\left(A^{*} B+B^{*} A\right) \leq s_{j}\left(\left(A^{*} A+B^{*} B\right) \oplus\left(A^{*} A+B^{*} B\right)\right), \tag{1.8}
\end{equation*}
$$

where $A, B \in M_{n}$ and $1 \leq j \leq n$.
In Section 2, we give generalized form of the inequality (1.6) and also, we obtain the X -version of the inequality (1.8).

## 2. Singular values inequalities for matrices

In this section, we generalize the inequalities (1.6) and also, we obtain X-version of the inequality (1.8). Our results based on Several lemmas. First two lemmas have been given by F. Kittaneh in [1] and Lemma 2.3 can be found in [8, Theorem $1]$.
Lemma 2.1. Let $T \in M_{n}$, then the block matrix $\left(\begin{array}{cc}|T| & T^{*} \\ T & \left|T^{*}\right|\end{array}\right) \geq 0$.
Lemma 2.2. Let $A, B, C \in M_{n}$, such that $A$ and $B$ are positive semidefinite, $B C=C A$ and let $f$ and $g$ be nonnegative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$, for all $t \in[0, \infty)$. If the block matrix $\left(\begin{array}{cc}A & C^{*} \\ C & B\end{array}\right) \geq 0$, then so $\left(\begin{array}{cc}f^{2}(A) & C^{*} \\ C & g^{2}(B)\end{array}\right) \geq 0$.
Lemma 2.3. Let $A, B, C \in M_{n}$ such that $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) \geq 0$, then

$$
2 s_{j}(B) \leq s_{j}\left(\begin{array}{cc}
A & B  \tag{2.1}\\
B^{*} & C
\end{array}\right), j=1,2, \ldots, n .
$$

The following Lemma was proved in [7].
Lemma 2.4. Let $A, B, C \in M_{n}$, such that $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) \geq 0$, then

$$
\begin{equation*}
s_{j}(B) \leq s_{j}(A \oplus C), j=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

To give the general form of (1.6), first we prove the following result.
Theorem 2.5. Let $A, B \in M_{n}$ be any two matrices and $r$ be a positive integer, then
$2 s_{j}\left(A\left(|A|^{2}+|B|^{2}\right)^{r-1} B^{*}+A B^{*}\right) \leq s_{j}\left(\left(|A|^{2}+|B|^{2}\right)^{r}+\left(|A|^{2}+|B|^{2}\right)\right)$,
for $j=1,2, \ldots, n$.
Proof. Let $X=\left(\begin{array}{cc}A & 0 \\ B & 0\end{array}\right)$. Then,

$$
X^{*} X=\left(\begin{array}{cc}
A^{*} A+B^{*} B & 0 \\
0 & 0
\end{array}\right), X X^{*}=\left(\begin{array}{cc}
A A^{*} & A B^{*} \\
B A^{*} & B B^{*}
\end{array}\right) .
$$

So, we have

$$
\left(X^{*} X\right)^{r}=\left(\begin{array}{cc}
\left(A^{*} A+B^{*} B\right)^{r} & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
\left(X X^{*}\right)^{r} & =X\left(X^{*} X\right)^{(r-1)} X^{*} \\
& =\left(\begin{array}{cl}
A\left(A^{*} A+B^{*} B\right)^{(r-1)} A^{*} & A\left(A^{*} A+B^{*} B\right)^{(r-1)} B^{*} \\
B\left(A^{*} A+B^{*} B\right)^{(r-1)} A^{*} & B\left(A^{*} A+B^{*} B\right)^{(r-1)} B^{*}
\end{array}\right) .
\end{aligned}
$$

Therefore, we obtain
$\left(X^{*} X\right)^{r}+X^{*} X=\left(\begin{array}{cc}\left(A^{*} A+B^{*} B\right)^{r}+A^{*} A+B^{*} B & 0 \\ 0 & 0\end{array}\right)$,
and

$$
\begin{aligned}
& \left(X X^{*}\right)^{r}+X X^{*} \\
= & \left(\begin{array}{ll}
A\left(A^{*} A+B^{*} B\right)^{(r-1)} A^{*}+A A^{*} & A\left(A^{*} A+B^{*} B\right)^{(r-1)} B^{*}+A B^{*} \\
B\left(A^{*} A+B^{*} B\right)^{(r-1)} A^{*}+B A^{*} & B\left(A^{*} A+B^{*} B\right)^{(r-1)} B^{*}+B B^{*}
\end{array}\right) .
\end{aligned}
$$

So, by Lemma 2.3, from the positive semidefinite block matrix $\left(X X^{*}\right)^{r}+X X^{*}$, we have

$$
\begin{aligned}
2 s_{j}\left(A\left(A^{*} A+B^{*} B\right)^{(r-1)} B^{*}+A B^{*}\right) & \leq s_{j}\left(\left(X X^{*}\right)^{r}+X X^{*}\right) \\
& =s_{j}\left(\left(X^{*} X\right)^{r}+X^{*} X\right) \\
& =s_{j}\left(\left(A^{*} A+B^{*} B\right)^{r}+\left(A^{*} A+B^{*} B\right)\right),
\end{aligned}
$$

for $j=1,2, \ldots, n$.
The proof is completed.

When $A, B \in M_{n}$ be positive semidefinite in Theorem 2.5 and $A$ is replaced by $A^{\frac{1}{2}}$ and $B$ is replaced by $B^{\frac{1}{2}}$, then we obtain the following promised generalization of the inequality (1.6).

Corollary 2.6. Let $A, B \in M_{n}$ be positive semidefinite and $r$ be a positive integer. Then,

$$
2 s_{j}\left(A^{\frac{1}{2}}(A+B)^{(r-1)} B^{\frac{1}{2}}+A^{\frac{1}{2}} B^{\frac{1}{2}}\right) \leq s_{j}\left((A+B)^{r}+(A+B)\right)
$$

for $j=1,2, \ldots, n$.
Remark 2.7. When we take $r=2$ in Corollary 2.6 , then we obtain the inequality (1.6).

To give the X-version of the inequality (1.8), first we obtain the following result.
Theorem 2.8. Let $A_{1}, A_{2}, B_{1}, B_{2}, X \in M_{n}$. If $f$ and $g$ be nonnegative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$, for all $t \in[0, \infty)$, then

$$
\begin{aligned}
& s_{j}\left(A_{1}^{*} X B_{1}+A_{2}^{*} X B_{2}\right) \\
\leq & s_{j}\left(\left(A_{1}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{1}+A_{2}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{2}\right) \oplus\left(B_{1}^{*} g^{2}(|X|) B_{1}+B_{2}^{*} g^{2}(|X|) B_{2}\right)\right),
\end{aligned}
$$

for $j=1,2, \ldots, n$.
Proof. Let $T_{1}=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & B_{1}\end{array}\right), T_{2}=\left(\begin{array}{cc}A_{2} & 0 \\ 0 & B_{2}\end{array}\right)$.
Since the block matrix $\left(\begin{array}{cc}\left|X^{*}\right| & X \\ X^{*} & |X|\end{array}\right)$ is positive semidefinite (by Lemma 2.1) and the block matrix $Y=\left(\begin{array}{cc}f^{2}\left(\left|X^{*}\right|\right) & X \\ X^{*} & g^{2}(|X|)\end{array}\right)$ is positive semidefinite (by Lemma 2.2), so, $T_{1}^{*} Y T_{1}=\left(\begin{array}{cc}A_{1}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{1} & A_{1}^{*} X B_{1} \\ B_{1}^{*} X^{*} A_{1} & B_{1}^{*} g^{2}(|X|) B_{1}\end{array}\right) \geq 0$ and also, $T_{2}^{*} Y T_{2}=\left(\begin{array}{cc}A_{2}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{2} & A_{2}^{*} X B_{2} \\ B_{2}^{*} X^{*} A_{2} & B_{2}^{*} g^{2}(|X|) B_{2}\end{array}\right) \geq 0$. That is, we have

$$
\begin{aligned}
& T_{1}^{*} Y T_{1}+T_{2}^{*} Y T_{2} \\
= & \left(\begin{array}{cc}
A_{1}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{1}+A_{2}^{*} f^{2}\left(\left|X^{*}\right|\right) A_{2} & A_{1}^{*} X B_{1}+A_{2}^{*} X B_{2} \\
B_{1}^{*} X^{*} A_{1}+B_{2}^{*} X^{*} A_{2} & B_{1}^{*} g^{2}(|X|) B_{1}+B_{2}^{*} g^{2}(|X|) B_{2}
\end{array}\right) \geq 0
\end{aligned}
$$

So, our desired result now follows by invoking inequality (2.2).
The proof is completed.
Following is our desired X -version of the inequality (1.8).
Corollary 2.9. Let $A, B, X \in M_{n}$, then

$$
\begin{aligned}
& s_{j}\left(A^{*} X B+B^{*} X A\right) \\
\leq & s_{j}\left(\left(A^{*}\left|X^{*}\right| A+B^{*}\left|X^{*}\right| B\right) \oplus\left(A^{*}|X| A+B^{*}|X| B\right)\right)
\end{aligned}
$$

for $j=1,2, \ldots, n$.
Proof. By taking $f(t)=g(t)=t^{\frac{1}{2}}, A_{1}=B_{2}=A$ and $A_{2}=B_{1}=B$ in Theorem 2.8, we get the desired result. The proof is completed.

One another important case follows from Corollary 2.9 for normal matrices.

Corollary 2.10. Let $A, B, X \in M_{n}$ such that $X$ is normal matrix, then

$$
\begin{aligned}
& s_{j}\left(A^{*} X B+B^{*} X A\right) \\
\leq & s_{j}\left(\left(A^{*}|X| A+B^{*}|X| B\right) \oplus\left(A^{*}|X| A+B^{*}|X| B\right)\right)
\end{aligned}
$$

for $j=1,2, \ldots, n$.
In particular, when $X$ is positive semidefinite matrix, then

$$
\begin{aligned}
& s_{j}\left(A^{*} X B+B^{*} X A\right) \\
\leq & s_{j}\left(\left(A^{*} X A+B^{*} X B\right) \oplus\left(A^{*} X A+B^{*} X B\right)\right)
\end{aligned}
$$

for $j=1,2, \ldots, n$.

## References

[1] Kittaneh, F., Notes on some inequalities for Hilbert space operators, Res. Inst. Math. Sci. 24 (1988), 283-293.
[2] Zou, L. and Jiang, Y., Inequalities for unitarily invariant norms, J. Math. Inequal. 6 (2012), 279-287.
[3] Bhatia, R. and Kittaneh, F., On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990), 272-277.
[4] Bhatia, R., Davis, C., More matrix forms of arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14 (1993), 132-136.
[5] Bhatia, R., Kittaneh, F., Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308(2000) 203-211.
[6] Bhatia, R. and Kittaneh, F., The matrix arithmetic-geometric mean inequality revisited, Linear Algebra Appl. 428 (2008), 2177-2191.
[7] Audeh, W. and Kittaneh, F., Singular values inequalities for compact operators, Linear Algebra Appl. 437 (2012), 2516-2522.
[8] Tao, Y., More results on singular value inequalities of matrices, Linear Algebra Appl. 416 (2006), 724-729.

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, P.
R. China

E-mail address: ilyasali10@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 47A30; 47B15; 15A60.
    Key words and phrases. Singular values; Unitarily invariant norms; Positive semidefinite matrices; Positive definite matrices.

    This work was supported by the National Natural Science Foundation of China (No. 11171361).

