ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES

ILYAS ALI, HU YANG, ABDUL SHAKOOR

Abstract. Some singular value inequalities for matrices are given. Among other inequalities it is proved that if \(f \) and \(g \) be nonnegative functions on \([0, \infty)\) which are continuous and satisfying the relation \(f(t)g(t) = t \), for all \(t \in [0, \infty) \), then
\[
s_j(A^*_1XB_1 + A^*_2XB_2) \leq s_j(\|A^*_1f_2(\|X^*\|)A_1 + A^*_2f_2(\|X^*\|)A_2\| \oplus (B_1^*g_2(\|X\|)B_1 + B_2^*g_2(\|X\|)B_2)),
\]
for \(j = 1, 2, \ldots, n \), where \(A_1, A_2, B_1, B_2, X \) are square matrices. Our results in this article generalize some existing singular value inequalities of matrices.

1. Introduction

Let \(M_{m,n} \) be the space of \(m \times n \) complex matrices and \(M_n = M_{n,n} \). Let \(\| \cdot \| \) stand for any unitarily invariant norm on \(M_n \), i.e., a norm with the property that \(\| UAV \| = \| A \| \) for all \(A \in M_n \) and for all unitary matrices \(U, V \in M_n \). Any matrix \(A \in M_n \) is called positive semidefinite, denoted as \(A \geq 0 \) if for all \(x \in \mathbb{C}^n \), \(x^*Ax \geq 0 \) and it is called positive definite if for all nonzero \(x \in \mathbb{C}^n \), \(x^*Ax > 0 \) and it is denoted as \(A > 0 \). The singular values of matrix \(A \) are the eigenvalues of positive semidefinite matrix \(|A| = (AA^*)^{\frac{1}{2}} \), enumerated as \(s_1(A) \geq s_2(A) \geq \ldots \geq s_n(A) \) and repeated according to multiplicity. The direct sum \(A \oplus B \) represent the block diagonal matrix \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \).

The well-known classical arithmetic-geometric mean inequality for \(a, b \geq 0 \) defined as
\[
a \frac{1}{2}b \frac{1}{2} \leq \frac{a + b}{2}.
\]

Arithmetic-geometric mean inequality is important in matrix theory, functional analysis, electrical networks, etc. For \(A, B, X \in M_n \), such that \(A, B \geq 0 \), R. Bhatia and F. Kittaneh formulated some matrix versions of this inequality in [3,4] one of

2000 Mathematics Subject Classification. 47A30; 47B15; 15A60.

Key words and phrases. Singular values; Unitarily invariant norms; Positive semidefinite matrices; Positive definite matrices.

This work was supported by the National Natural Science Foundation of China (No. 11171361).
which is the following
\[\|A^{\frac{1}{2}}XB^{\frac{1}{2}}\| \leq \frac{1}{2}\|AX + XB\|. \]
From (1.2), for \(X = I \) we have the following inequality for positive semidefinite matrices.
\[\|A^{\frac{1}{2}}B^{\frac{1}{2}}\| \leq \frac{1}{2}\|A + B\|, \]
R. Bhatia and F. Kittaneh also have proved in [5] that if \(A, B \in M_n \) such that \(A, B \geq 0 \), then
\[\|A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}}\| \leq \frac{1}{2}\|(A + B)^2\| + \frac{1}{2}\|A + B\|. \]
From (1.3), (1.4) and also by triangle inequality, we obtain the following inequality
\[\|A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}}\| \leq \frac{1}{2}\|(A + B)^2\| + \frac{1}{2}\|A + B\|. \]
In [2] L. Zou and Y. Jiang proved that for positive semidefinite matrices \(A, B \in M_n \) and \(1 \leq j \leq n \), the following inequality also holds
\[2s_j(A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}}) \leq s_j((A + B)^2 + (A + B)), \]
and consequently,
\[\|A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}} + A^{\frac{1}{2}}B^{\frac{1}{2}}\| \leq \frac{1}{2}\|(A + B)^2\| + \frac{1}{2}\|A + B\|. \]
The inequality (1.7) is an improvement of the inequality (1.5).
One another interesting inequality for sum and direct sum of matrices proved by R. Bhatia and F. Kittaneh [6] is
\[s_j(A^*B + B^*A) \leq s_j((A^*A + B^*B) \oplus (A^*A + B^*B)), \]
where \(A, B \in M_n \) and \(1 \leq j \leq n \).
In Section 2, we give generalized form of the inequality (1.6) and also, we obtain the X-version of the inequality (1.8).

2. Singular values inequalities for matrices

In this section, we generalize the inequalities (1.6) and also, we obtain X-version of the inequality (1.8). Our results based on Several lemmas. First two lemmas have been given by F. Kittaneh in [1] and Lemma 2.3 can be found in [8, Theorem 1].

Lemma 2.1. Let \(T \in M_n \), then the block matrix \(\begin{pmatrix} |T| & T^* \\ T & |T^*| \end{pmatrix} \geq 0 \).

Lemma 2.2. Let \(A, B, C \in M_n \), such that \(A \) and \(B \) are positive semidefinite, \(BC = CA \) and let \(f \) and \(g \) be nonnegative functions on \([0, \infty)\) which are continuous and satisfying the relation \(f(t)g(t) = t \), for all \(t \in [0, \infty) \). If the block matrix \(\begin{pmatrix} A & C^* \\ C & B \end{pmatrix} \geq 0 \), then so \(\begin{pmatrix} f^2(A) & C^* \\ C & g^2(B) \end{pmatrix} \geq 0 \).

Lemma 2.3. Let \(A, B, C \in M_n \) such that \(\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \geq 0 \), then
\[2s_j(B) \leq s_j \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}, \quad j = 1, 2, \ldots, n. \]
The following Lemma was proved in [7].

Lemma 2.4. Let $A, B, C \in M_n$, such that $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \succeq 0$, then

\[(2.2) \quad s_j(B) \leq s_j(A \oplus C), \quad j = 1, 2, \ldots, n.\]

To give the general form of (1.6), first we prove the following result.

Theorem 2.5. Let $A, B \in M_n$ be any two matrices and r be a positive integer, then

\[2s_j(A(\|A\|^2 + \|B\|^2)^{r-1}B^* + AB^*) \leq s_j((\|A\|^2 + \|B\|^2)^r + (\|A\|^2 + \|B\|^2)), \]

for $j = 1, 2, \ldots, n$.

Proof. Let $X = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}$. Then,

\[X^*X = \begin{pmatrix} A^*A + B^*B & 0 \\ 0 & 0 \end{pmatrix}, \quad XX^* = \begin{pmatrix} AA^* & AB^* \\ BA^* & BB^* \end{pmatrix}.\]

So, we have

\[(X^*X)^r = \begin{pmatrix} (A^*A + B^*B)^r & 0 \\ 0 & 0 \end{pmatrix},\]

and

\[(XX^*)^r = X(X^*X)^{(r-1)}X^* = \begin{pmatrix} A(A^*A + B^*B)^{(r-1)}A^* & A(A^*A + B^*B)^{(r-1)}B^* \\ B(A^*A + B^*B)^{(r-1)}A^* & B(A^*A + B^*B)^{(r-1)}B^* \end{pmatrix}.\]

Therefore, we obtain

\[(X^*X)^r + X^*X = \begin{pmatrix} (A^*A + B^*B)^r + A^*A + B^*B & 0 \\ 0 & 0 \end{pmatrix},\]

and

\[(XX^*)^r + XX^* = \begin{pmatrix} A(A^*A + B^*B)^{(r-1)}A^* + AA^* & A(A^*A + B^*B)^{(r-1)}B^* + AB^* \\ B(A^*A + B^*B)^{(r-1)}A^* + BA^* & B(A^*A + B^*B)^{(r-1)}B^* + BB^* \end{pmatrix}.\]

So, by Lemma 2.3, from the positive semidefinite block matrix $(XX^*)^r + XX^*$, we have

\[2s_j(A(A^*A + B^*B)^{(r-1)}B^* + AB^*) \leq s_j((XX^*)^r + XX^*) \leq s_j((X^*X)^r + X^*X) = s_j((A^*A + B^*B)^r + (A^*A + B^*B)),\]

for $j = 1, 2, \ldots, n$.

The proof is completed. □

When $A, B \in M_n$ be positive semidefinite in Theorem 2.5 and A is replaced by A^2 and B is replaced by B^2, then we obtain the following promised generalization of the inequality (1.6).
Corollary 2.6. Let $A, B \in M_n$ be positive semidefinite and r be a positive integer. Then,
\[2s_j(A^\frac{r}{2}(A + B)^{(r-1)}B^\frac{r}{2} + A^\frac{r}{2}B^\frac{r}{2}) \leq s_j((A + B)^r + (A + B)), \]
for $j = 1, 2, \ldots, n$.

Remark 2.7. When we take $r = 2$ in Corollary 2.6, then we obtain the inequality (1.6).

To give the X-version of the inequality (1.8), first we obtain the following result.

Theorem 2.8. Let $A_1, A_2, B_1, B_2, X \in M_n$. If f and g be nonnegative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t)g(t) = t$, for all $t \in [0, \infty)$, then
\[
s_j(A_1^*XB_1 + A_2^*XB_2) \leq s_j((A_1^*f^2(\|X^*\|)A_1 + A_2^*f^2(\|X^*\|)A_2) \oplus (B_1^*g^2(\|X\|)B_1 + B_2^*g^2(\|X\|)B_2)), \]
for $j = 1, 2, \ldots, n$.

Proof. Let $T_1 = \begin{pmatrix} A_1 & 0 \\ 0 & B_1 \end{pmatrix}$, $T_2 = \begin{pmatrix} A_2 & 0 \\ 0 & B_2 \end{pmatrix}$.

Since the block matrix $\begin{pmatrix} \|X^*\| & X \\ X^* & |X| \end{pmatrix}$ is positive semidefinite (by Lemma 2.1) and the block matrix $Y = \begin{pmatrix} f^2(\|X^*\|) & X \\ X^* & g^2(\|X\|) \end{pmatrix}$ is positive semidefinite (by Lemma 2.2), so, $T_1^*YT_1 = \begin{pmatrix} A_1^*f^2(\|X^*\|)A_1 & A_1^*XB_1 \\ B_1^*X^*A_1 & B_1^*g^2(\|X\|)B_1 \end{pmatrix} \geq 0$ and also,

$T_2^*YT_2 = \begin{pmatrix} A_2^*f^2(\|X^*\|)A_2 & A_2^*XB_2 \\ B_2^*X^*A_2 & B_2^*g^2(\|X\|)B_2 \end{pmatrix} \geq 0$.
That is, we have
\[
T_1^*YT_1 + T_2^*YT_2 = \begin{pmatrix} A_1^*f^2(\|X^*\|)A_1 + A_2^*f^2(\|X^*\|)A_2 & A_1^*XB_1 + A_2^*XB_2 \\ B_1^*X^*A_1 + B_2^*X^*A_2 & B_1^*g^2(\|X\|)B_1 + B_2^*g^2(\|X\|)B_2 \end{pmatrix} \geq 0.
\]
So, our desired result now follows by invoking inequality (2.2). The proof is completed.

Following is our desired X-version of the inequality (1.8).

Corollary 2.9. Let $A, B, X \in M_n$, then
\[
s_j(A^*XB + B^*XA) \leq s_j((A^* | X^* | A + B^* | X^* | B) \oplus (A^* | X | A + B^* | X | B)), \]
for $j = 1, 2, \ldots, n$.

Proof. By taking $f(t) = g(t) = t^\frac{r}{2}$, $A_1 = B_2 = A$ and $A_2 = B_1 = B$ in Theorem 2.8, we get the desired result.
The proof is completed.

One another important case follows from Corollary 2.9 for normal matrices.
Corollary 2.10. Let $A, B, X \in M_n$ such that X is normal matrix, then
\[
s_j(A^*XB + B^*XA)
\leq s_j(A^*|X|A + B^*|X|B) \oplus (A^*|X|A + B^*|X|B),
\]
for $j = 1, 2, ..., n$.
In particular, when X is positive semidefinite matrix, then
\[
s_j(A^*XB + B^*XA)
\leq s_j((A^*XA + B^*XB) \oplus (A^*XA + B^*XB)),
\]
for $j = 1, 2, ..., n$.

References

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, P. R. China
E-mail address: ilyasali10@yahoo.com