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ON THE HADAMARD’S TYPE INEQUALITIES FOR
L-LIPSCHITZIAN MAPPING

MEHMET ZEKI SARIKAYA AND HATICE YALDIZ

Abstract. In this paper, we establish some new inequalities of Hadamard’s
type for L-Lipschitzian mapping in two variables.

1. Introduction

Let f : I ⊆ R→ R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I, with a < b. the following double inequality is well known in
the literature as the Hermite-Hadamard inequality:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

.

Let us now consider a bidemensional interval ∆ =: [a, b]× [c, d] in R2 with a < b
and c < d. A mapping f : ∆ → R is said to be convex on ∆ if the following
inequality:

f(tx + (1− t) z, ty + (1− t) w) ≤ tf (x, y) + (1− t) f (z, w)

holds, for all (x, y) , (z, w) ∈ ∆ and t ∈ [0, 1] .A function f : ∆ → R is said to be
on the co-ordinates on ∆ if the partial mappings fy : [a, b] → R, fy (u) = f (u, y)
and fx : [c, d] → R, fx (v) = f (x, v) are convex where defined for all x ∈ [a, b] and
y ∈ [c, d] (see [3]).

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1.1. A function f : ∆ → R will be called co-ordinated canvex on ∆,
for all t, s ∈ [0, 1] and (x, y), (u,w) ∈ ∆,if the following inequality holds:

f(tx + (1− t) y, su + (1− s)w)

≤ tsf(x, u) + s(1− t)f(y, u) + t(1− s)f(x,w) + (1− t)(1− s)f(y, w).(1.1)

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex function which is not convex, (see, [3]). For several recent
results concerning Hermite-Hadamard’s inequality for some convex function on the
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co-ordinates on a rectangle from the plane R2, we refer the reader to ([1]-[3], [5],
[6], [8], [9] and [11]).

In [3], Dragomir establish the following similar inequality of Hadamard’s type
for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 1.1. Suppose that f : ∆ → R is co-ordinated convex on ∆. Then one
has the inequalities:

f

(
a + b

2
,
c + d

2

)

≤ 1
2

[
1

b− a

∫ b

a

f

(
x,

c + d

2

)
dx +

1
d− c

∫ d

c

f

(
a + b

2
, y

)
dy

]

≤ 1
(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1
4

[
1

b− a

∫ b

a

f (x, c) dx +
1

b− a

∫ b

a

f (x, d) dx

+
1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

The above inequalities are sharp.

Definition 1.2. Consider a function f : V → R defined on a subset V of Rn, n ∈ N.
Let L = (L1, L2, ..., Ln) where Li ≥ 0, i = 1, 2, ..., n. We say that f is L-Lipschitzian
function if

|f(x)− f(y)| ≤
n∑

i=1

L |xi − yi|

for all x, y ∈ V.

For several recent results concerning Hadamard’s type inequality for some L-
Lipschitzian function, we refer the reader to ([4], [7], [10]).

The main purpose of this paper is to establish some Hadamard’s type ineqaulities
for L-Lipschitzian mapping in two variables.

2. Hadamard’s Type Inequalities

Firstly, we will start the proof of the Theorem 1.1 by using the definition of the
co-ordinated convex functions as follows:

Theorem 2.1. Suppose that f : ∆ → R is co-ordinated convex on ∆. Then one
has the inequalities:

f

(
a + b

2
,
c + d

2

)
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

(2.1)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.
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Proof. According to (1.1) with x = t1a + (1 − t1)b, y = (1 − t1)a + t1b, u =
s1c + (1− s1)d, w = (1− s1)c + s1d and t = s = 1

2 , we find that

f

(
a + b

2
,
c + d

2

)

≤ 1
4

[f(t1a + (1− t1)b, s1c + (1− s1)d) + f((1− t1)a + t1b, s1c + (1− s1)d)

+f(t1a + (1− t1)b, (1− s1)c + s1d) + f((1− t1)a + t1b, (1− s1)c + s1d)] .

Thus, by integrating with respect to t1, s1 on [0, 1]× [0, 1], we obtain

f

(
a + b

2
,
c + d

2

)

≤ 1
4

[∫ 1

0

∫ 1

0

[f(t1a + (1− t1)b, s1c + (1− s1)d) + f((1− t1)a + t1b, s1c + (1− s1)d)] ds1dt1

+
∫ 1

0

∫ 1

0

[f(t1a + (1− t1)b, (1− s1)c + s1d) + f((1− t1)a + t1b, (1− s1)c + s1d)] ds1dt1

]
.

Using the change of the variable, we get

(2.2) f

(
a + b

2
,
c + d

2

)
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx,

which the first inequality is proved. The proof of the second inequality follows by
using (1.1) with x = a, y = b, u = c and w = d, and integrating with respect to
t, s over [0, 1]× [0, 1],

∫ 1

0

∫ 1

0

f (ta + (1− t)b, sc + (1− s)d) dsdt

≤
∫ 1

0

∫ 1

0

[tsf(a, c) + s(1− t)f(b, c) + t(1− s)f(a, d) + (1− t)(1− s)f(b, d)] dsdt

=
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Here, using the change of the variable x = ta + (1 − t)b and y = sc + (1 − s)d for
s, t ∈ [0, 1], we have

(2.3)
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

We get the inequality (2.1) from (2.2) and (2.3). The proof is complete. ¤

Theorem 2.2. Let f : ∆ ⊂ R2 → R satisfy L-Lipschitzian conditions. That is, for
(t1, s1) and (t2, s2) belong to ∆ := [a, b]× [c, d] , then we have

|f(t1, s1)− f(t2, s2)| ≤ L1 |t1 − t2|+ L2 |s1 − s2|
where L1 and L2 are positive constants. Then, we have the following inequalities:
(2.4)∣∣∣∣∣f

(
a + b

2
,
c + d

2

)
− 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

∣∣∣∣∣ ≤
1
16

(M1 |b− a|+ M2 |d− c|)
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∣∣∣∣∣
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
− 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

∣∣∣∣∣

≤ 1
12

(M1 |b− a|+ M2 |d− c|)(2.5)

where M1 = [L1 + L3 + L5 + L7] and M2 = [L2 + L4 + L6 + L8] .

Proof. Let t, s ∈ [0, 1] . Since ts + s(1− t) + t(1− s) + (1 − t)(1− s) = 1, then we
have

|tsf(a, c) + s(1− t)f(b, c) + t(1− s)f(a, d) + (1− t)(1− s)f(b, d)

−f (ta + (1− t)b, sc + (1− s)d)|

= |ts [f(a, c)− f (ta + (1− t)b, sc + (1− s)d)]
(2.6)
+s(1− t) [f(b, c)− f (ta + (1− t)b, sc + (1− s)d)]

+t(1− s) [f(a, d)− f (ta + (1− t)b, sc + (1− s)d)]

+(1− t)(1− s) [f(b, d)− f (ta + (1− t)b, sc + (1− s)d)]|

≤ ts [(1− t)L1 |b− a|+ (1− s)L2 |d− c|] + s(1− t) [tL3 |b− a|+ (1− s)L4 |d− c|]

+t(1− s) [(1− t)L5 |b− a|+ sL6 |d− c|] + (1− t)(1− s) [tL7 |b− a|+ sL8 |d− c|]

= (ts(1− t) [L1 + L3] + t(1− s)(1− t) [L5 + L7]) |b− a|

+ (ts(1− s) [L2 + L6] + s(1− s)(1− t) [L4 + L8]) |d− c| .

If we choose t = s = 1
2 in (2.6), we get

∣∣∣∣
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
− f

(
a + b

2
,
c + d

2

)∣∣∣∣
(2.7)

≤ 1
8

([L1 + L3 + L5 + L7] |b− a|+ [L2 + L6 + L4 + L8] |d− c|) .
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Thus, if we put ta + (1− t)b instead of a, (1− t)a + tb instead of b, sc + (1− s)d
instead of c and (1− s)c + sd instead of d in (2.7), respectively, then it follows that

∣∣∣∣
f (ta + (1− t)b, sc + (1− s)d) + f (ta + (1− t)b, (1− s)c + sd)

4

+
f ((1− t)a + tb, sc + (1− s)d) + f ((1− t)a + tb, (1− s)c + sd)

4
(2.8)

−f

(
a + b

2
,
c + d

2

)∣∣∣∣

≤ 1
8

([L1 + L3 + L5 + L7] |1− 2t| |b− a|+ [L2 + L6 + L4 + L8] |1− 2s| |d− c|)

for all t, s ∈ [0, 1]. If we integrate the inequality (2.8) with respect to s, t on
[0, 1]× [0, 1]

∣∣∣∣
1
4

∫ 1

0

∫ 1

0

[f (ta + (1− t)b, sc + (1− s)d) + f (ta + (1− t)b, (1− s)c + sd)] dsdt

+
1
4

∫ 1

0

∫ 1

0

[f ((1− t)a + tb, sc + (1− s)d) + f ((1− t)a + tb, (1− s)c + sd)] dsdt

−f

(
a + b

2
,
c + d

2

)∣∣∣∣

≤ 1
8

{
[L1 + L3 + L5 + L7] |b− a|

∫ 1

0

∫ 1

0

|1− 2t| dsdt

+ [L2 + L6 + L4 + L8] |d− c|
∫ 1

0

∫ 1

0

|1− 2s| dsdt

}
.

Thus, using the change of the variable x = ta + (1 − t)b, y = (1 − t)a + tb, u =
sc + (1− s)d and w = (1− s)c + sd for t, s ∈ [0, 1], and

∫ 1

0

∫ 1

0

|1− 2t| dsdt =
∫ 1

0

∫ 1

0

|1− 2s| dsdt =
1
2

we obtain the inequality (2.4).
Note that, by the inequality (2.6), we write

|tsf(a, c) + s(1− t)f(b, c) + t(1− s)f(a, d) + (1− t)(1− s)f(b, d)

−f (ta + (1− t)b, sc + (1− s)d)|
(2.9)

≤ (ts(1− t) [L1 + L3] + t(1− s)(1− t) [L5 + L7]) |b− a|

+(ts(1− s) [L2 + L6] + s(1− s)(1− t) [L4 + L8]) |d− c| .
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for all t, s ∈ [0, 1]. If we integrate the inequality (2.9) with respect to s, t on
[0, 1]× [0, 1] , we have

∣∣∣∣∣
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
− 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

∣∣∣∣∣

≤ 1
12

([L1 + L3 + L5 + L7] |b− a|+ [L2 + L6 + L4 + L8] |d− c|)

and so we have the inequality (2.5), where we use the fact that

1∫

0

1∫

0

st(1− t)dsdt =

1∫

0

1∫

0

s(1− s)(1− t)dsdt =
1
12

.

This completes the proof. ¤

3. The Mapping H

For a L-Lipschitzian function f : ∆ ⊂ R2 → R, we can define a mapping
H : [0, 1]× [0, 1] → R by

H(t, s) :=
1

(b− a) (d− c)

∫ b

a

∫ d

c

f

(
tx + (1− t)

a + b

2
, sy + (1− s)

c + d

2

)
dydx.

Now, we give some properties of this mapping as follows:

Theorem 3.1. Suppose that f : ∆ ⊂ R2 → R be L-Lipschitzian on ∆ := [a, b] ×
[c, d]. Then:

(i) The mapping H is L-Lipschitzian on [0, 1]× [0, 1] .
(ii) We have the following inequalities

(3.1)
∣∣∣∣H(t, s)− f

(
a + b

2
,
c + d

2

)∣∣∣∣ ≤
L1t

4
(b− a) +

L2s

4
(d− c)

(3.2)∣∣∣∣∣H(t, s)− 1
(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

∣∣∣∣∣ ≤
L1(1− t)

4
(b− a)+

L2(1− s)
4

(d− c) .
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Proof. (i) Let t1, t2, s1, s2 ∈ [0, 1] . Then, we have

|H(t2, s2)−H(t1, s1)|

=
1

(b− a) (d− c)

∣∣∣∣∣
∫ b

a

∫ d

c

f

(
t2x + (1− t2)

a + b

2
, s2y + (1− s2)

c + d

2

)
dydx

−
∫ b

a

∫ d

c

f

(
t1x + (1− t1)

a + b

2
, s1y + (1− s1)

c + d

2

)
dydx

∣∣∣∣∣

≤ 1
(b− a) (d− c)

∫ b

a

∫ d

c

∣∣∣∣f
(

t2x + (1− t2)
a + b

2
, s2y + (1− s2)

c + d

2

)

−f

(
t1x + (1− t1)

a + b

2
, s1y + (1− s1)

c + d

2

)
dydx

∣∣∣∣

=
1

(b− a) (d− c)

∫ b

a

∫ d

c

[
L1 |t2 − t1|

∣∣∣∣x−
a + b

2

∣∣∣∣ + L2 |s2 − s1|
∣∣∣∣y −

c + d

2

∣∣∣∣
]

dydx

=
L1 (b− a)

4
|t2 − t1|+ L2 (d− c)

4
|s2 − s1| ,

i.e., for all t1, t2, s1, s2 ∈ [0, 1] ,

(3.3) |H(t2, s2)−H(t1, s1)| ≤ L1 (b− a)
4

|t2 − t1|+ L2 (d− c)
4

|s2 − s1| ,

which yields that the mapping H is L-Lipschitzian on [0, 1]× [0, 1] .
(ii) The inequalities (3.1) and (3.2) follow from (3.3) by choosing t1 = 0, t2 =

t, s1 = 0, s2 = s and t1 = 1, t2 = t, s1 = 1, s2 = s, respectively. ¤

Another result which is connected in a sense with the inequality (2.5) is also
given in the following:

Theorem 3.2. Under the assumptions Theorem 3.1, then we get the following
inequality

∣∣∣∣∣
f

(
at + (1− t)a+b

2 , cs + (1− s) c+d
2

)
+ f

(
at + (1− t)a+b

2 , ds + (1− s) c+d
2

)

4

+
f

(
bt + (1− t)a+b

2 , cs + (1− s) c+d
2

)
+ f

(
bt + (1− t)a+b

2 , ds + (1− s) c+d
2

)

4
(3.4)

− 1
(n2 − n1)(m2 −m1)

∫ n2

n1

∫ m2

m1

f(u,w)dwdu

∣∣∣∣

≤ 1
12

(M1 |n2 − n1| t + M2 |m2 −m1| s)

where M1 = [L1 + L3 + L5 + L7] and M2 = [L2 + L4 + L6 + L8] .
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Proof. If we denote n1 = at+(1−t)a+b
2 , n2 = bt+(1−t)a+b

2 , m1 = cs+(1−s) c+d
2

and m2 = ds + (1− s) c+d
2 , then, we have

H(t, s) =
1

(n2 − n1)(m2 −m1)

∫ n2

n1

∫ m2

m1

f(u,w)dwdu.

Now, using the inequality (2.5) applied for n1, n2, m1 and m2, we have∣∣∣∣
f (n1,m1) + f (n1,m2) + f (n2,m1) + f (n2,m2)

4

− 1
(n2 − n1)(m2 −m1)

∫ n2

n1

∫ m2

m1

f(u,w)dwdu

∣∣∣∣

≤ 1
12

(M1 |n2 − n1|+ M2 |m2 −m1|)
from which we have the inequality (3.4). This completes the proof. ¤
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