Konuralp Journal of Mathematics
Volume 1 No. 2 Pp. 33-40 (2013) ©KJM

ON THE HADAMARD'S TYPE INEQUALITIES FOR L-LIPSCHITZIAN MAPPING

MEHMET ZEKI SARIKAYA AND HATICE YALDIZ

Abstract

In this paper, we establish some new inequalities of Hadamard's type for L-Lipschitzian mapping in two variables.

1. Introduction

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$, with $a<b$. the following double inequality is well known in the literature as the Hermite-Hadamard inequality:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} .
$$

Let us now consider a bidemensional interval $\Delta=:[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. A mapping $f: \Delta \rightarrow \mathbb{R}$ is said to be convex on Δ if the following inequality:

$$
f(t x+(1-t) z, t y+(1-t) w) \leq t f(x, y)+(1-t) f(z, w)
$$

holds, for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1]$.A function $f: \Delta \rightarrow \mathbb{R}$ is said to be on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=f(x, v)$ are convex where defined for all $x \in[a, b]$ and $y \in[c, d]$ (see [3]).

A formal definition for co-ordinated convex function may be stated as follows:
Definition 1.1. A function $f: \Delta \rightarrow \mathbb{R}$ will be called co-ordinated canvex on Δ, for all $t, s \in[0,1]$ and $(x, y),(u, w) \in \Delta$, if the following inequality holds:

$$
f(t x+(1-t) y, s u+(1-s) w)
$$

$$
\begin{equation*}
\leq t s f(x, u)+s(1-t) f(y, u)+t(1-s) f(x, w)+(1-t)(1-s) f(y, w) \tag{1.1}
\end{equation*}
$$

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated convex function which is not convex, (see, [3]). For several recent results concerning Hermite-Hadamard's inequality for some convex function on the

[^0]co-ordinates on a rectangle from the plane \mathbb{R}^{2}, we refer the reader to ([1]-[3], [5], [6], [8], [9] and [11]).

In [3], Dragomir establish the following similar inequality of Hadamard's type for co-ordinated convex mapping on a rectangle from the plane \mathbb{R}^{2}.

Theorem 1.1. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is co-ordinated convex on Δ. Then one has the inequalities:

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
\leq & \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} .
\end{aligned}
$$

The above inequalities are sharp.
Definition 1.2. Consider a function $f: V \rightarrow \mathbb{R}$ defined on a subset V of $\mathbb{R}^{n}, n \in \mathbb{N}$. Let $L=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ where $L_{i} \geq 0, i=1,2, \ldots, n$. We say that f is L-Lipschitzian function if

$$
|f(x)-f(y)| \leq \sum_{i=1}^{n} L\left|x_{i}-y_{i}\right|
$$

for all $x, y \in V$.
For several recent results concerning Hadamard's type inequality for some L Lipschitzian function, we refer the reader to ([4], [7], [10]).

The main purpose of this paper is to establish some Hadamard's type ineqaulities for L-Lipschitzian mapping in two variables.

2. Hadamard's Type Inequalities

Firstly, we will start the proof of the Theorem 1.1 by using the definition of the co-ordinated convex functions as follows:

Theorem 2.1. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is co-ordinated convex on Δ. Then one has the inequalities:

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} \tag{2.1}
\end{align*}
$$

Proof. According to (1.1) with $x=t_{1} a+\left(1-t_{1}\right) b, y=\left(1-t_{1}\right) a+t_{1} b, u=$ $s_{1} c+\left(1-s_{1}\right) d, w=\left(1-s_{1}\right) c+s_{1} d$ and $t=s=\frac{1}{2}$, we find that

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{4}\left[f\left(t_{1} a+\left(1-t_{1}\right) b, s_{1} c+\left(1-s_{1}\right) d\right)+f\left(\left(1-t_{1}\right) a+t_{1} b, s_{1} c+\left(1-s_{1}\right) d\right)\right. \\
& \left.+f\left(t_{1} a+\left(1-t_{1}\right) b,\left(1-s_{1}\right) c+s_{1} d\right)+f\left(\left(1-t_{1}\right) a+t_{1} b,\left(1-s_{1}\right) c+s_{1} d\right)\right] .
\end{aligned}
$$

Thus, by integrating with respect to t_{1}, s_{1} on $[0,1] \times[0,1]$, we obtain

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{4}\left[\int_{0}^{1} \int_{0}^{1}\left[f\left(t_{1} a+\left(1-t_{1}\right) b, s_{1} c+\left(1-s_{1}\right) d\right)+f\left(\left(1-t_{1}\right) a+t_{1} b, s_{1} c+\left(1-s_{1}\right) d\right)\right] d s_{1} d t_{1}\right. \\
& \left.+\int_{0}^{1} \int_{0}^{1}\left[f\left(t_{1} a+\left(1-t_{1}\right) b,\left(1-s_{1}\right) c+s_{1} d\right)+f\left(\left(1-t_{1}\right) a+t_{1} b,\left(1-s_{1}\right) c+s_{1} d\right)\right] d s_{1} d t_{1}\right] .
\end{aligned}
$$

Using the change of the variable, we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{2.2}
\end{equation*}
$$

which the first inequality is proved. The proof of the second inequality follows by using (1.1) with $x=a, y=b, u=c$ and $w=d$, and integrating with respect to t, s over $[0,1] \times[0,1]$,

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f(t a+(1-t) b, s c+(1-s) d) d s d t \\
\leq & \int_{0}^{1} \int_{0}^{1}[t s f(a, c)+s(1-t) f(b, c)+t(1-s) f(a, d)+(1-t)(1-s) f(b, d)] d s d t \\
= & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} .
\end{aligned}
$$

Here, using the change of the variable $x=t a+(1-t) b$ and $y=s c+(1-s) d$ for $s, t \in[0,1]$, we have
(2.3) $\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}$.

We get the inequality (2.1) from (2.2) and (2.3). The proof is complete.
Theorem 2.2. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy L-Lipschitzian conditions. That is, for $\left(t_{1}, s_{1}\right)$ and $\left(t_{2}, s_{2}\right)$ belong to $\Delta:=[a, b] \times[c, d]$, then we have

$$
\left|f\left(t_{1}, s_{1}\right)-f\left(t_{2}, s_{2}\right)\right| \leq L_{1}\left|t_{1}-t_{2}\right|+L_{2}\left|s_{1}-s_{2}\right|
$$

where L_{1} and L_{2} are positive constants. Then, we have the following inequalities: (2.4)

$$
\left|f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right| \leq \frac{1}{16}\left(M_{1}|b-a|+M_{2}|d-c|\right)
$$

$\left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right|$
$\left(2.5 \Varangle \frac{1}{12}\left(M_{1}|b-a|+M_{2}|d-c|\right)\right.$
where $M_{1}=\left[L_{1}+L_{3}+L_{5}+L_{7}\right]$ and $M_{2}=\left[L_{2}+L_{4}+L_{6}+L_{8}\right]$.

Proof. Let $t, s \in[0,1]$. Since $t s+s(1-t)+t(1-s)+(1-t)(1-s)=1$, then we have

$$
\begin{aligned}
& \mid t s f(a, c)+s(1-t) f(b, c)+t(1-s) f(a, d)+(1-t)(1-s) f(b, d) \\
& -f(t a+(1-t) b, s c+(1-s) d) \mid \\
= & \mid t s[f(a, c)-f(t a+(1-t) b, s c+(1-s) d)] \\
& +s(1-t)[f(b, c)-f(t a+(1-t) b, s c+(1-s) d)] \\
& +t(1-s)[f(a, d)-f(t a+(1-t) b, s c+(1-s) d)] \\
& +(1-t)(1-s)[f(b, d)-f(t a+(1-t) b, s c+(1-s) d)] \mid \\
\leq & t s\left[(1-t) L_{1}|b-a|+(1-s) L_{2}|d-c|\right]+s(1-t)\left[t L_{3}|b-a|+(1-s) L_{4}|d-c|\right] \\
& +t(1-s)\left[(1-t) L_{5}|b-a|+s L_{6}|d-c|\right]+(1-t)(1-s)\left[t L_{7}|b-a|+s L_{8}|d-c|\right] \\
= & \left(t s(1-t)\left[L_{1}+L_{3}\right]+t(1-s)(1-t)\left[L_{5}+L_{7}\right]\right)|b-a| \\
& +\left(t s(1-s)\left[L_{2}+L_{6}\right]+s(1-s)(1-t)\left[L_{4}+L_{8}\right]\right)|d-c| .
\end{aligned}
$$

If we choose $t=s=\frac{1}{2}$ in (2.6), we get

$$
\begin{equation*}
\left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right| \tag{2.7}
\end{equation*}
$$

$$
\leq \frac{1}{8}\left(\left[L_{1}+L_{3}+L_{5}+L_{7}\right]|b-a|+\left[L_{2}+L_{6}+L_{4}+L_{8}\right]|d-c|\right)
$$

Thus, if we put $t a+(1-t) b$ instead of $a,(1-t) a+t b$ instead of $b, s c+(1-s) d$ instead of c and $(1-s) c+s d$ instead of d in (2.7), respectively, then it follows that

$$
\begin{align*}
& \left\lvert\, \frac{f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b,(1-s) c+s d)}{4}\right. \\
& +\frac{f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d)}{4} \tag{2.8}
\end{align*}
$$

$$
\begin{aligned}
& \left.-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \right\rvert\, \\
\leq & \frac{1}{8}\left(\left[L_{1}+L_{3}+L_{5}+L_{7}\right]|1-2 t||b-a|+\left[L_{2}+L_{6}+L_{4}+L_{8}\right]|1-2 s||d-c|\right)
\end{aligned}
$$

for all $t, s \in[0,1]$. If we integrate the inequality (2.8) with respect to s, t on $[0,1] \times[0,1]$

$$
\begin{aligned}
& \quad \left\lvert\, \frac{1}{4} \int_{0}^{1} \int_{0}^{1}[f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b,(1-s) c+s d)] d s d t\right. \\
& \quad+\frac{1}{4} \int_{0}^{1} \int_{0}^{1}[f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d)] d s d t \\
& \left.\quad-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \right\rvert\, \\
& \leq \frac{1}{8}\left\{\left[L_{1}+L_{3}+L_{5}+L_{7}\right]|b-a| \int_{0}^{1} \int_{0}^{1}|1-2 t| d s d t\right. \\
& \left.\quad+\left[L_{2}+L_{6}+L_{4}+L_{8}\right]|d-c| \int_{0}^{1} \int_{0}^{1}|1-2 s| d s d t\right\}
\end{aligned}
$$

Thus, using the change of the variable $x=t a+(1-t) b, y=(1-t) a+t b, u=$ $s c+(1-s) d$ and $w=(1-s) c+s d$ for $t, s \in[0,1]$, and

$$
\int_{0}^{1} \int_{0}^{1}|1-2 t| d s d t=\int_{0}^{1} \int_{0}^{1}|1-2 s| d s d t=\frac{1}{2}
$$

we obtain the inequality (2.4).
Note that, by the inequality (2.6), we write

$$
\begin{aligned}
& \mid t s f(a, c)+s(1-t) f(b, c)+t(1-s) f(a, d)+(1-t)(1-s) f(b, d) \\
& \quad-f(t a+(1-t) b, s c+(1-s) d) \mid
\end{aligned}
$$

$$
\begin{align*}
\leq & \left(t s(1-t)\left[L_{1}+L_{3}\right]+t(1-s)(1-t)\left[L_{5}+L_{7}\right]\right)|b-a| \tag{2.9}\\
& +\left(t s(1-s)\left[L_{2}+L_{6}\right]+s(1-s)(1-t)\left[L_{4}+L_{8}\right]\right)|d-c|
\end{align*}
$$

for all $t, s \in[0,1]$. If we integrate the inequality (2.9) with respect to s, t on $[0,1] \times[0,1]$, we have

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right| \\
\leq & \frac{1}{12}\left(\left[L_{1}+L_{3}+L_{5}+L_{7}\right]|b-a|+\left[L_{2}+L_{6}+L_{4}+L_{8}\right]|d-c|\right)
\end{aligned}
$$

and so we have the inequality (2.5), where we use the fact that

$$
\int_{0}^{1} \int_{0}^{1} s t(1-t) d s d t=\int_{0}^{1} \int_{0}^{1} s(1-s)(1-t) d s d t=\frac{1}{12}
$$

This completes the proof.

3. The Mapping H

For a L-Lipschitzian function $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, we can define a mapping $H:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
H(t, s):=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, s y+(1-s) \frac{c+d}{2}\right) d y d x
$$

Now, we give some properties of this mapping as follows:
Theorem 3.1. Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be L-Lipschitzian on $\Delta:=[a, b] \times$ $[c, d]$. Then:
(i) The mapping H is L-Lipschitzian on $[0,1] \times[0,1]$.
(ii) We have the following inequalities

$$
\begin{equation*}
\left|H(t, s)-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right| \leq \frac{L_{1} t}{4}(b-a)+\frac{L_{2} s}{4}(d-c) \tag{3.1}
\end{equation*}
$$

$\left|H(t, s)-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right| \leq \frac{L_{1}(1-t)}{4}(b-a)+\frac{L_{2}(1-s)}{4}(d-c)$.

Proof. (i) Let $t_{1}, t_{2}, s_{1}, s_{2} \in[0,1]$. Then, we have

$$
\begin{aligned}
& \left|H\left(t_{2}, s_{2}\right)-H\left(t_{1}, s_{1}\right)\right| \\
= & \frac{1}{(b-a)(d-c)} \left\lvert\, \int_{a}^{b} \int_{c}^{d} f\left(t_{2} x+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} y+\left(1-s_{2}\right) \frac{c+d}{2}\right) d y d x\right. \\
& \left.-\int_{a}^{b} \int_{c}^{d} f\left(t_{1} x+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} y+\left(1-s_{1}\right) \frac{c+d}{2}\right) d y d x \right\rvert\, \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \left\lvert\, f\left(t_{2} x+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} y+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
& \left.-f\left(t_{1} x+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} y+\left(1-s_{1}\right) \frac{c+d}{2}\right) d y d x \right\rvert\, \\
= & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left[L_{1}\left|t_{2}-t_{1}\right|\left|x-\frac{a+b}{2}\right|+L_{2}\left|s_{2}-s_{1}\right|\left|y-\frac{c+d}{2}\right|\right] d y d x \\
= & \frac{L_{1}(b-a)}{4}\left|t_{2}-t_{1}\right|+\frac{L_{2}(d-c)}{4}\left|s_{2}-s_{1}\right|,
\end{aligned}
$$

i.e., for all $t_{1}, t_{2}, s_{1}, s_{2} \in[0,1]$,

$$
\begin{equation*}
\left|H\left(t_{2}, s_{2}\right)-H\left(t_{1}, s_{1}\right)\right| \leq \frac{L_{1}(b-a)}{4}\left|t_{2}-t_{1}\right|+\frac{L_{2}(d-c)}{4}\left|s_{2}-s_{1}\right| \tag{3.3}
\end{equation*}
$$

which yields that the mapping H is L-Lipschitzian on $[0,1] \times[0,1]$.
(ii) The inequalities (3.1) and (3.2) follow from (3.3) by choosing $t_{1}=0, t_{2}=$ $t, s_{1}=0, s_{2}=s$ and $t_{1}=1, t_{2}=t, s_{1}=1, s_{2}=s$, respectively.

Another result which is connected in a sense with the inequality (2.5) is also given in the following:

Theorem 3.2. Under the assumptions Theorem 3.1, then we get the following inequality

$$
\begin{align*}
& \left\lvert\, \frac{f\left(a t+(1-t) \frac{a+b}{2}, c s+(1-s) \frac{c+d}{2}\right)+f\left(a t+(1-t) \frac{a+b}{2}, d s+(1-s) \frac{c+d}{2}\right)}{4}\right. \\
& +\frac{f\left(b t+(1-t) \frac{a+b}{2}, c s+(1-s) \frac{c+d}{2}\right)+f\left(b t+(1-t) \frac{a+b}{2}, d s+(1-s) \frac{c+d}{2}\right)}{4} \tag{3.4}
\end{align*}
$$

$$
\begin{aligned}
& \left.-\frac{1}{\left(n_{2}-n_{1}\right)\left(m_{2}-m_{1}\right)} \int_{n_{1}}^{n_{2}} \int_{m_{1}}^{m_{2}} f(u, w) d w d u \right\rvert\, \\
\leq & \frac{1}{12}\left(M_{1}\left|n_{2}-n_{1}\right| t+M_{2}\left|m_{2}-m_{1}\right| s\right)
\end{aligned}
$$

where $M_{1}=\left[L_{1}+L_{3}+L_{5}+L_{7}\right]$ and $M_{2}=\left[L_{2}+L_{4}+L_{6}+L_{8}\right]$.

Proof. If we denote $n_{1}=a t+(1-t) \frac{a+b}{2}, n_{2}=b t+(1-t) \frac{a+b}{2}, m_{1}=c s+(1-s) \frac{c+d}{2}$ and $m_{2}=d s+(1-s) \frac{c+d}{2}$, then, we have

$$
H(t, s)=\frac{1}{\left(n_{2}-n_{1}\right)\left(m_{2}-m_{1}\right)} \int_{n_{1}}^{n_{2}} \int_{m_{1}}^{m_{2}} f(u, w) d w d u
$$

Now, using the inequality (2.5) applied for n_{1}, n_{2}, m_{1} and m_{2}, we have

$$
\begin{aligned}
& \left\lvert\, \frac{f\left(n_{1}, m_{1}\right)+f\left(n_{1}, m_{2}\right)+f\left(n_{2}, m_{1}\right)+f\left(n_{2}, m_{2}\right)}{4}\right. \\
& \left.-\frac{1}{\left(n_{2}-n_{1}\right)\left(m_{2}-m_{1}\right)} \int_{n_{1}}^{n_{2}} \int_{m_{1}}^{m_{2}} f(u, w) d w d u \right\rvert\, \\
\leq & \frac{1}{12}\left(M_{1}\left|n_{2}-n_{1}\right|+M_{2}\left|m_{2}-m_{1}\right|\right)
\end{aligned}
$$

from which we have the inequality (3.4). This completes the proof.

References

[1] M. Alomari and M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sciences, 3 (32) (2008), 1557-1567.
[2] M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. of Inequal. and Appl, Article ID 283147, (2009), 13 pages.
[3] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 4 (2001), 775-788.
[4] S.S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
[5] M. A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4(47), 2009, 2327-2338.
[6] M. A. Latif and M. Alomari, On the Hadamard-type inequalities for h-convex functions on the co-ordinetes, Int. J. of Math. Analysis, 3(33), 2009, 1645-1656.
[7] M. Matic and J. Pecaric, On inequalities of Hadamard's type for Lipschizian mappings, Tamkang J. Math. 32, 2 (2001), 127-130.
[8] M.E. Özdemir, E. Set and M.Z. Sarikaya, New some Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Hacettepe Journal of Mathematics and Statistics, 40(2), 2011, 219-229.
[9] F. Qi, Z.-L. Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, Rocky Mountain J. Math. 35 (2005), pp. 235-251.
[10] G. S. Yang and K. L. Tseng, Inequalities of Hadamard's Type for Lipschizian Mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
[11] S.-H. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, The Rocky Mountain J. of Math., vol. 39, no. 5, pp. 1741-1749, 2009.

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

E-mail address: sarikayamz@gmail.com
E-mail address: yaldizhatice@gmail.com

[^0]: 2000 Mathematics Subject Classification. 26D15.
 Key words and phrases. Convex function, co-ordinated convex mapping, Hermite-Hadamard inequality and L-Lipschitzian.

