

117

Araştırma Makalesi https://doi.org/10.46810/tdfd.1201248 Research Article

Optimization of Software Vulnerability with the Meta-Heuristic Algorithms

Canan BATUR ŞAHİN1*

1 Malatya Turgut Özal University, Faculty of Engineering and Natural Sciences, Software Engineering Department,

Malatya, Türkiye
 Canan BATUR ŞAHİN ORCID No: 0000-0002-2131-6368

*Corresponding author: canan.batur@ozal.edu.tr

(Received: 08.11.2022, Accepted: 13.12.2022, Online Publication: 28.12.2022)

Keywords

Meta-

heuristic

algorithm,

Optimization,

Clock-work

mechanism,

Software

vulnerability

Abstract: In order to ensure the development of secure software, it is essential to predict software

vulnerabilities. Nevertheless, there can be considerable losses in case of an attack on an

information system. Detecting a dangerous code, which can lead to severe unknown

consequences, requires great effort. There is a strong need to devise meta-heuristic-based

approaches to provide effective security and prevent vulnerabilities or mitigate them. The primary

focus of studies on software vulnerability prediction models is to specify the best set of predictors

that are related to the presence of vulnerabilities. However, the existing vulnerability detection

methods suffer from coarse detection granularity and a bias toward global features or local

features. The framework proposed in the present work improves optimization algorithms for the

best set of optimized vulnerability patterns correlated for software vulnerabilities based on a clock-

work memory mechanism. Using the proposed framework, we found vulnerable optimized

patterns based on clock-work memory mechanism feature representation learning that directly.

The effectiveness of the developed algorithm was further improved with the clock-work memory

mechanism based on 6 open-source projects, such as LibTIFF, Pidgin, FFmpeg, LibPNG,

Asteriks, and VLC media player datasets.

Meta-Sezgisel Algoritmalar ile Yazılım Güvenlik Açıklarının Optimize Edilmesi

Anahtar

Kelimeler

Meta-sezgisel

algoritmalar,

Optimizasyon

, Saat-hafıza

mekanizması,

Yazılım

güvenlik açığı

Öz: Yazılım güvenlik açığının tahmini, güvenli yazılım geliştirmek için önemli bir husustur.

Ancak, bir bilgi sistemine saldırı yapıldığında büyük kayıplara neden olabilir. Tehlikeli kodun

tespiti büyük çaba gerektirir ve bu da bilinmeyen ciddi sonuçlara yol açabilir. Etkili güvenlik

sağlamak ve güvenlik açıklarının oluşmasını önlemek veya güvenlik açıklarını azaltmak için

meta-sezgisel tabanlı yaklaşımlar geliştirmeye güçlü bir ihtiyaç vardır. Yazılım güvenlik açığı

tahmin modelleri üzerine yapılan araştırmalar, temel olarak, güvenlik açıklarının varlığı ile ilişkili

en iyi tahmin ediciler kümesini belirlemeye odaklanmıştır. Buna rağmen, mevcut güvenlik açığı

algılama yöntemleri, genel özelliklere veya yerel özelliklere yönelik önyargı ve kaba algılama

ayrıntı düzeyine sahiptir. Bu yazıda, önerilen çerçeve, bir saat-çalışma belleği mekanizmasına

dayalı yazılım güvenlik açıkları ile ilişkili en iyi optimize edilmiş güvenlik açığı kalıpları kümesi

için optimizasyon algoritmalarını geliştirmektedir. Geliştirilen algoritmanın etkinliği, LibTIFF,

Pidgin, FFmpeg, LibPNG, Asteriks ve VLC medya oynatıcı veri kümeleri gibi 6 açık kaynak

projesine dayanan saatli çalışan bellek mekanizması ile daha da artırılmıştır.

1. INTRODUCTION

Exploitable vulnerabilities in software considerably

weaken computer systems’ security and pose a threat to

the information technology infrastructure of numerous

government organizations and sectors. Software

vulnerabilities represent exploitable weak points in a

source code with the objective of causing harm or loss.

Software vulnerabilities are also the root cause of

cyberattacks. Detecting vulnerabilities means revealing

code snippets that induce errors in particular cases in large

code chunks. It is still difficult and requires a lot of time

to detect vulnerabilities to date.

A number of techniques are available for detecting

software vulnerabilities. It is possible to identify them at

Volume 11, Issue 4, Page 117-125, 2022 Cilt 11, Sayı 4, Sayfa 117-125, 2022

www.dergipark.gov.tr/tdfd

http://www.dergipark.gov.tr/tdfd

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

118

design time (without executing the source code) or at run

time (while executing the software). Static code analysis

(SCA) takes place among the most common design-time

techniques and involves code analysis without executing

the program for the purpose of identifying possible

problems (alerts). It is possible that a part of the above-

mentioned alerts are software vulnerabilities. The said

process is realized using static analysis tools (SATs),

which are either open-source or commercial.

The major branch of detection approaches is the discovery

of possible vulnerabilities in the source code.

Nevertheless, they have weaknesses, such as high false-

positive rates and low efficiency. Whereas the

vulnerability detection method that employs machine

learning technology has advanced considerably in

accuracy and automation, the problems specified below

create obstacles to its performance: (1) Long-term

dependency between code elements. There is valuable

information for detecting vulnerabilities in the

dependencies between elements. Nevertheless, elements

that are related in semantic terms can be located far from

each other. Hence, we suggest an automated software

vulnerability framework based on clock-work memory

mechanism recurrent neural networks for a representation

method. We believe that deep learning algorithms have

the capability to capture complex vulnerability patterns.

The need for optimization techniques with higher

reliability, particularly meta-heuristic optimization

algorithms, has recently arisen because of the constantly

increasing complex nature and difficulty of real-world

problems. The said techniques are mainly stochastic and

perform the estimation of optimal solutions for various

optimization problems. Reasoning about processes at

multiple time scales is facilitated by Clock-Work RNN

(CW-RNN) models. The hidden layer in a CW-RNN is

separated into various modules. Each of these modules

processes inputs at its temporal granularity, making

calculations solely at the prescribed clock rate. Forward

connections are present in the CW-RNN, from the input

to the hidden layer and from the hidden to the output layer.

CWRNN models primarily contribute to discussing long-

term dependencies. The architecture of the CW-RNN is

similar to that of a simple RNN with an input, output, and

hidden layer. There are g modules in the hidden layer, and

each of these modules has its clock rate. The neurons

within each module are completely interconnected,

meaning that the connectivity among neurons of various

modules is set on the basis of the modules’ clock periods.

The current work makes the following main

contributions:

1. The study creates the metaheuristic algorithm-based

vulnerability detection system with metaheuristic

optimization algorithms,

2. A framework is proposed, improving the detection

capability of heuristic approaches based on a clock-

work memory for learning optimized patterns to

extract the optimized features for detecting software

vulnerable codes.

3. Our framework’s design is validated by conducting

experiments, and the usage of clock-work memory

is shown as optimized-feature representations.

The rest of the paper is organized as follows: Section 2

describes the Material and Method Section 3 describes

the the proposed Model used in the study. Section 4

describes the Results and Discussion. Section 5 describes

the conclusion.

2. MATERIAL AND METHOD

The current part contains the background of the most

frequently employed techniques in the literature. .

2.1. Meta-Heuristic Algorithms

In this part, the bio-inspired metaheuristic algorithms used

are given as follows.

2.1.1. Whale optimization algorithm (WOA)

The Whale Optimization Algorithm (WOA) has been

newly developed, and its basis is whales’ hunting

behavior. The mentioned algorithm includes the

following three stages: circling hunting, bubble-net

attacking, and prey hunting.

In circling hunting, whales first circle the prey and thus

set the trap. Afterward, a search agent is selected

according to the distance of an individual whale from the

prey. After identifying the search agent, the positions of

all whales in the group are updated according to the search

agent’s position, which can be expressed in mathematical

terms, as shown below:

D⃗⃗ = [C .⃗⃗⃗⃗ X⃗⃗ ∗ (t) − X⃗⃗ (t)] (1)

Where C = 2 ∗r , r denotes a random number in the range

of 0-1; X⃗⃗ refers to the local optimal position; X⃗⃗ (t) current

denotes the current position; refers to the iteration

number; and represents the distance between every whale

and the search agent.

Afterward, whales perform bubble-net attacking by

utilizing the spiral around and spiral update methods [15].

They move in the prey’s direction spirally according to

the search agent. It is possible to determine the updated

position of other search agents moving toward the best

agent by Equations 2-3 :

𝑋 (𝑡 + 1) = 𝑋 ∗ (𝑡) − 𝐴 . �⃗⃗� (2)

𝐴 = 2. 𝑎 ⃗⃗⃗⃗ 𝑟 - 𝑎 ⃗⃗⃗⃗ (3)

 Eqs. (4) and (5) are used to find the search agent’s

random position:

�⃗⃗� = [𝐶 .⃗⃗⃗⃗ 𝑋 𝑟𝑎𝑛𝑑 − 𝑋] (4)

 X⃗⃗ (t + 1) = X⃗⃗ rand-A .⃗⃗⃗⃗ D⃗⃗ (5)

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

119

The shrink position in the movement with a helix shape

toward the prey is updated by the whale, as shown in

Equation 6:

𝑋 (𝑡 + 1) = �⃗⃗� . 𝑒𝑏𝐿 . 𝑐𝑜𝑠(2 𝜋 𝐿) + 𝑋 ∗ 𝑡 (6)

Where X⃗⃗ (t+1) Updated denotes the whales’ updated

position; b refers to a constant representing the

logarithmic spiral’s shape; l represents the distance

between the whale and the food. L = −1 denotes the

minimum distance to the food, and L = +1 refers to the

maximum distance to the food. It was assumed that the

possibility of selecting a method for a certain case was

50%, and Equation 7 expresses the chance of choosing the

path:

 =

{
 𝑋 ∗ (𝑡) − 𝐴 . �⃗⃗� 𝑝 < 0.5

 �⃗⃗� . 𝑒𝑏𝐿 . 𝑐𝑜𝑠(2 𝜋 𝐿) + 𝑋 ∗ 𝑡 𝑝 > 0. 5

(7)

Here, p refers to a number chosen in a random way

between 0 and 1.

2.1.2. Multi-verse optimizer (MVO) algorithm

The Multi-Verse Optimizer (MVO) takes place among the

new swarm intelligence algorithms. Its source of

inspiration is the multiverse theory discussing how the big

bangs generate multiple universes and the interaction of

the said universes with each other via various hole types.

In the MVO algorithm, the “white hole” and “black hole”

concepts with the objective of exploring the wormholes to

utilize the search spaces for formulating a population-

based algorithm and considered that every solution was a

universe and every variable/attribute in the solution

denoted an object in the said universe. Furthermore, there

is a fitness value (inflation rate) in every solution,

reflecting the solution quality, which is computed by the

corresponding objective function.

A solution receives a good objective value in case white

holes appear, whereas the solution receives a worse

objective value in case black holes appear. With a higher

number of interactions between white holes and black

holes, the movement of the variable values of the good

solutions to poor solutions occurs.

2.1.3. Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) represents a meta-

heuristic optimization algorithm. Grey wolves’ hunting

strategy and leadership hierarchy are mimicked in the

GWO. The leadership hierarchy comprises four wolf

types, including alpha (the fittest solution), beta (the

second-best solution), delta (the third-best solution), and

omega (the remaining part of the candidate solutions). In

practice, the prey is encircled by grey wolves, who march

during the hunt, which is expressed with the equations

below:

D⃗⃗ = |C .⃗⃗⃗⃗ X⃗⃗ p (t) − X⃗⃗ (t)| (8)

 X⃗⃗ |(t + 1) = X⃗⃗ p (t) − A .⃗⃗⃗⃗ D⃗⃗ (9)

Here, t represents the current iteration, D displays the

movement vector, X⃗⃗ p denotes the prey’s position vector,

A and C refer to the coefficient vectors, and X⃗⃗ displays a

grey wolf’s position vector. The calculation of the

coefficient vectors (A and C) is performed by means of

the equations below:

 A⃗⃗ = 2. a ⃗⃗ ⃗ 𝑟 1 - a ⃗⃗ ⃗ (10)

 C⃗ = 2. 𝑟 2 (11)

where r1 and r2 are selected in a random manner in the

normal range from zero to unity. During iterations, the

components of a decrease in a linear way from 2 to 0. By

utilizing Equations (10-11), a grey wolf is capable of

getting closer to the prey by altering its position around

the prey in a random manner.

3. THE PROPOSED METHOD

3.1. Methodology

The objective of the current work is to enhance the

effectiveness of meta-heuristic algorithms with the clock-

work memory mechanism for predicting software

vulnerabilities. The optimized software patterns that were

the most appropriate for vulnerability prediction in

software systems were obtained. Reasoning about

processes at multiple time scales is facilitated by Clock-

Work RNN (CW-RNN) models, making calculations

solely at the prescribed clock rate. Neurons of various

modules are connected on the basis of the modules’clock

periods [14].

In the CW-RNN, the speed of the clocks is the same all

the time, but sometimes they run at a slower speed and

sometimes at a faster one. At each CW-RNN time step t,

just the outputs of module i, satisfying(t MOD Ti) = 0, are

active. It is arbitrary to choose the set of periods {T1, . . .

, Tg}. In the present work, the exponential series of

periods is utilized; the ith module has a clock period of Ti

= 2i−1. In the proposed framework, each metaheuristic

algorithm’s metadynamics uses the clock-work memory

mechanism as a logging function for the optimized best

candidate patterns. For each heuristic algorithm, the

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

120

information is aggregated from generations using a clock-

work memory logged mechanism based on time scales.

CW-RNN separates the hidden recurrent units into 10 g

modules, each runs their own computation at specific,

hidden layer units as 32, 64 and 128 rates.The explanation

of the general experimental methodology is presented in

Algorithm 1, designed based on the each baseline

metaheuristic algorithms.

Binary encoding is employed for the purpose of

representing feature selection or exclusion in the solution

set. Every candidate solution is expressed as a bit string

having a length n, where n refers to the total feature

number. Feature j was retained in case of the jth bit being

equal to 1, whereas it was removed in case of the jthbit

being equal to 0.

The fitness function is employed with the objective of

showing the quality of each candidate optimized pattern.

The fitness of a candidate solution of each nature-inspired

algorithm is proportional to the classification error rate of

the model.

4. DISCUSSION AND CONCLUSION

The data source includes vulnerable and non-vulnerable

functions from the six open-source projects, such as

LibTIFF, Pidgin, FFmpeg, LibPNG, VLC media player,

and Asterisk. The vulnerability labels were acquired from

the National Vulnerability Database (NVD) [11] and the

Common Vulnerability and Exposures (CVE) [12]

websites. The algorithms are designed for the collective

extraction of beneficial information from real-world

vulnerability datasets in order to enhance vulnerability

detection performance. The Word2vec [1] model is

employed in the embedding layer of the Clock-Work

Recurrent Neural network in order to convert an input

sequence to meaningful embeddings.

Table 1. Dataset

Data

source

Datasource/Coll

ection

#of functions

used/Collected

Real-world Open
Sources

FFmpeg
Vulnera

ble

Non-

Vulnerable

LibTIFF 213 5701

LibPNG 96 731

Pidgin 43 577

VLC Media

Player
29 8,050

Asteriks 42 3,636

4.1. Results

In Tables 2-7, we compared the performances of the

improved heuristic algorithms for detecting

vulnerabilities based on the FFmpeg, LibTIFF, LibPNG,

Pidgin, Asterisk, and VLC media Player datasets.

EvoloPy toolbox contains twenty three benchmarks (F1-

F23). In the optimizer.py you can setup your experiment

by selecting the test sets. In this study on five test modules

(F1-F5). The results demonstrate that the Asterisk dataset

displayed the best performance with a 0.029643 error rate

for hidden layer unit 128 and test F4, based on the CW-

MVO algorithm, compared to the other vulnerability

datasets. Nevertheless, according to the results, the worst

error rate was found in the LibTIFF dataset with a

0.063467 error rate for hidden layer units 32 and test F5

based on the WOA algorithm. Generally, the FFpmeg,

LibTIFF and Pidgin datasets exhibited close error rate

performances, except for MVO algorithm. Concerning the

other datasets, it was observed that the improved

algorithm achieved the highest performance results in the

Asteriks, VLC media player, Pidgin, LibPNG, LibTIFF,

and FFpmeg datasets, respectively.

Algorithm 1. Pseudo-code of the proposed Clock-Work

Memory Mechanism

Input : Set of vectors of vulnerable code : X= [X1, X2, . . . , XN]

Output : Set of optimized best patterns: Sbest={S1, S2,, SN};

BEGIN

Step 1: {Initialize Metaheuristic Algorithms’ parameters}

Step 2: [1,2,...N] Initialize the solutions’ positions randomly.

Step 3: Calculate the fitness of each search agent

Step 4: For each iteration, do:

Step 4.1: [Train Clock-Work Network]

Step 4.1.1: For each search agent do:

Step 4.1.2: update the position of each current search

agent

Step 4.1.3: Hidden dimensions are updated in groups at

time period clock rates.

Step 4.1.4: create the clock-work memory based on

time scales {T1, . . . ,Tg} for each optimized search agents

(candidate solutions)

Step 4.1.5:Calculate the fitness of each search agents

Step 4.1.6:END For

Step 4.1.7: [END Train Clock-Work Network]

Step 5: END For

Step 6: Add List optimized best search agents stored in clock-

work memory

Step 7: END For

Step 8:END

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

121

Table 2. Error Rate of compared Algorithms for FFpmeg Dataset

Table 3. Error Rate of compared Algorithms for LibTIFF Dataset

Test

Benchmark

Hidden Layer

units

Algorithms

WOA CW-WOA GWO CW-GWO MVO CW-MVO

Test F1

 32 0.054853 0.052401 0.0575321 0.04920 0.050653 0.05096

 64 0.053425 0.04912 0.0445252 0.04612 0.049034 0.04742

 128 0.047965 0.041231 0.0453258 0.041875 0.047532 0.040094

Test F2

 32 0.046744 0.045536 0.0564363 0.050919 0.0553286 0.057168

 64 0.0478532 0.044321 0.0516742 0.047903 0.057754 0.054721

 128 0.0435731 0.04132 0.050584 0.04566 0.053522 0.053663

Test F3

 32 0.0606471 0.056726 0.0534211 0.050791 0.0543457 0.049463

64 0.057854 0.0541267 0.0543245 0.048925 0.056732 0.045412

 128 0.050765 0.052288 0.0513856 0.047164 0.0483878 0.0432609

Test F4

 32 0.0564325 0.0517321 0.0564356 0.052452 0.056057 0.056463

 64 0.055736 0.0498425 0.05345673 0.049756 0.055743 0.052557

 128 0.049732 0.045733 0.0494565 0.047654 0.0564537 0.0534435

Test F5

 32 0.0614543 0.057841 0.055843 0.054876 0.052345 0.05086

 64 0.0553561 0.059625 0.055372 0.05321 0.049872 0.04773

 128 0.0542423 0.051097 0.0508490 0.047535 0.0415678 0.042195

Test

Benchmark

Hidden Layer units Algorithms

WOA CW-

WOA

GWO CW-GWO MVO CW-MVO

Test F1

 32 0.0576353 0.050203 0.054352 0.04964 0.0575353 0.050649

 64 0.0512432 0.04734 0.050543 0.04682 0.055356 0.052134

 128 0.048676 0.043651 0.045684 0.043636 0.0523907 0.050036

Test F2

 32 0.049756 0.044792 0.053453 0.048659 0.0598543 0.055804

 64 0.046532 0.042143 0.0504221 0.0440867 0.0558641 0.052178

 128 0.041344 0.040974 0.0478942 0.039435 0.052578 0.050932

Test F3

 32 0.055632 0.052367 0.05673221 0.049543 0.0578975 0.050754

 64 0.057437 0.0521358 0.0523624 0.0485867 0.0545789 0.052468

 128 0.054633 0.051579 0.0485784 0.0443234 0.0534218 0.050732

Test F4

 32 0.052459 0.050952 0.0597428 0.0546573 0.0575432 0.053494

 64 0.0513493 0.0470328 0.0534647 0.050535 0.0538098 0.049053

 128 0.049064 0.044573 0.050432 0.045867 0.0498752 0.046256

Test F5

 32 0.063467 0.0597538 0.0545789 0.0519754 0.0508124 0.04572

64 0.060342 0.0557321 0.05458445 0.05296365 0.048753 0.043723

 128 0.056313 0.0501735 0.0513461 0.04642805 0.0445809 0.0414695

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

122

Table 4. Error Rate of compared Algorithms for LibPNG Dataset

Table 5. Error Rate of compared Algorithms for Pidgin Dataset

Test

Benchmark

Hidden Layer

units

Algorithms

WOA CW-WOA GWO CW-GWO MVO CW-

MVO

Test F1

 32 0.044853 0.03772 0.0475732 0.0366264 0.0456772 0.039963

 64 0.037833 0.034085 0.0413855 0.0347854 0.0406432 0.0383445

128 0.035356 0.0327045 0.0408253 0.0335466 0.03784214 0.0368952

Test F2

 32 0.0495321 0.040558 0.0512345 0.0456779 0.0586328 0.0536874

 64 0.045364 0.041589 0.0509427 0.0437643 0.05743462 0.0527895

 128 0.039752 0.039753 0.0424525 0.039034 0.0528474 0.050643

Test F3

 32 0.0543527 0.052356 0.0583252 0.0518514 0.0464632 0.0436784

64 0.054523 0.0507543 0.0534653 0.0507432 0.0445639 0.0427895

 128 0.049792 0.047059 0.0519478 0.0457322 0.0413563 0.0403468

Test F4

32 0.0567943 0.049743 0.060642 0.049732 0.0584636 0.0516733

 64 0.0512428 0.0469325 0.0574736 0.046457 0.0556473 0.050634

 128 0.0465374 0.043582 0.0508321 0.0413468 0.053452 0.0498368

Test F5

32 0.056975 0.053623 0.054996 0.0506435 0.0595736 0.0458537

 64 0.054245 0.0525672 0.051847 0.0524632 0.0524573 0.0432466

 128 0.049802 0.039953 0.048735 0.0376784 0.0486352 0.035653

Test

Benchmark

Hidden Layer

units

Algorithms

WOA CW-WOA GWO CW-GWO MVO CW-MVO

Test F1

 32 0.0598224 0.0526843 0.0535784 0.047535 0.0574531 0.054566

 64 0.05465893 0.051246 0.0524462 0.043567 0.0534625 0.051457

 128 0.0513750 0.05074 0.0467848 0.0424653 0.0507436 0.048965

Test F2

 32 0.0512463 0.046445 0.0575743 0.053546 0.0619357 0.055684

 64 0.0508396 0.0434562 0.0547362 0.050434 0.0587485 0.052356

 128 0.0447497 0.042567 0.0534639 0.051467 0.0553568 0.050754

Test F3

 32 0.0587942 0.052435 0.0567387 0.0497543 0.0596492 0.0445663

 64 0.0553683 0.050476 0.05432842 0.046543 0.0535783 0.0421455

 128 0.0507354 0.051389 0.0532424 0.0434656 0.04784281 0.040754

Test F4

 32 0.0587639 0.050643 0.0565743 0.0507546 0.0556437 0.053784

 64 0.0528436 0.045345 0.0534564 0.045726 0.05547326 0.0507643

 128 0.04576932 0.042566 0.0475832 0.0416434 0.0497432 0.045878

Test F5

 32 0.0609643 0.055743 0.058473 0.052455 0.0565493 0.053561

 64 0.0612485 0.053465 0.0513452 0.0506754 0.05178458 0.0496433

 128 0.0508467 0.048954 0.0487638 0.0464667 0.0478353 0.044527

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

123

Table 6. Error Rate of compared Algorithms for VLC Media PlayerDataset

Table 7. Error Rate of compared Algorithms for Asteriks Dataset

Test

Benchmark

Hidden

Layer units

Improved Algorithms

WOA CW-WOA GWO CW-GWO MVO CW-MVO

Test F1

32 0.0456352 0.395433 0.0498532 0.042456 0.0479425 0.041673

 64 0.0425739 0.040754 0.0453694 0.040643 0.043689 0.0398573

128 0.0389431 0.037955 0.04052783 0.038954 0.0375392 0.03589

Test F2

 32 0.0475378 0.0408753 0.0475489 0.042453 0.0497875 0.045643

 64 0.0439625 0.039855 0.0432563 0.0408674 0.0476542 0.0425824

 128 0.0356382 0.0348457 0.0387426 0.035353 0.0343637 0.0398756

Test F3

 32 0.0538032 0.0499484 0.0568324 0.048873 0.0537509 0.043673

 64 0.0514587 0.047745 0.0553572 0.045635 0.0446982 0.041566

 128 0.0468743 0.040937 0.0445638 0.042546 0.0408532 0.040753

Test F4

32 0.0538721 0.0468476 0.0486379 0.040742 0.0546848 0.0464095

 64 0.0517939 0.0473456 0.0465395 0.04287567 0.0534743 0.0459372

 128 0.0459372 0.0428457 0.0443761 0.0413456 0.05075298 0.043524

Test F5

 32 0.0578463 0.0513674 0.0597463 0.051456 0.0489573 0.044355

 64 0.0548790 0.0478473 0.0565302 0.0508474 0.04574712 0.042466

 128 0.0516840 0.048763 0.0535726 0.045245 0.0423524 0.040837

Test

Benchmark

Hidden Layer

units

Algorithms

WOA CW-WOA GWO CW-GWO MVO CW-MVO

Test F1

 32 0.0457943 0.040536 0.04336456 0.0356466 0.04795821 0.040633

 64 0.0424672 0.037899 0.04074351 0.0367847 0.0445793 0.039745

 128 0.0409201 0.035854 0.03854974 0.0335366 0.0409536 0.0346783

Test F2

 32 0.0425565 0.0316783 0.0409732 0.038646 0.04357893 0.0368476

 64 0.0389532 0.0390624 0.0397327 0.0375673 0.0416897 0.03357221

 128 0.0307432 0.031735 0.0335912 0.032573 0.0479434 0.0314742

Test F3

 32 0.0407245 0.0375467 0.03356362 0.0324567 0.0485892 0.030635

 64 0.0375372 0.031455 0.0306361 0.0308422 0.043680 0.039654

 128 0.0386847 0.0396325 0.0237975 0.039644 0.04168361 0.035689

Test F4

 32 0.0376893 0.0324578 0.0398526 0.03254673 0.04876483 0.033567

 64 0,03482562 0.313657 0.0346938 0.0397455 0.0436789 0.036642

 128 0.03047314 0.306773 0.0297476 0.0345632 0.0456834 0.029643

Test F5

 32 0.0384630 0.0346746 0.0386953 0.0339572 0.0435893 0.0377593

 64 0.0335693 0.0345664

3

0.0326891 0.0397455 0.4075256 0.0324567

 128 0.0313574 0.0335736 0.02975327 0.0300484 0.0426894 0.031546

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

124

The improved CW-WOA model achieved the best results

as a 0.306773 error rate based on test F4 and a 0.0327045

error rate based on test F1 for the Asteriks and LibPNG

datasets, respectively, using 128 hidden layer units.

Moreover, it was observed that the CW-GWO model

achieved the best performance results, such as a

0.0300484 error rate based on test F5 and a 0.0335466

error rate based on test F1 for the Asteriks and LibPNG

datasets, respectively, using 128 hidden layer units. The

improved CW-MVO model obtained a 0.029643 error

rate in test F4 and a 0.035653 error rate in test F5 for the

Asteriks and LibPNG datasets, respectively, using 128

hidden layer units. The obtained results indicate that the

Asteriks and Pidgin datasets achieved the highest

performance for Test-F3 benchmark. However, the

findings demonstrate that the best classification error rate

performance exhibited for FFmpeg and VLC Media

Player datasets based on the Test-F2 benchmark.

Furthermore, the best results showed for LibPng and

LibTIFF datasets based on Test-F1 benchmark.

All experimental results show that low hidden layers

process, retain, and output high error rates. Meanwhile,

high hidden layers generally concentrate on the local,

high-frequency information with low error-rate

performances.

5. CONCLUSION

The application of nature-inspired metaheuristic

optimization algorithms for vulnerability detection is an

immature area of research having numerous problems

waiting for a solution. The representation learning

capability of nature-inspired algorithms to optimize

patterns of software vulnerabilities and their customizable

structure are promising for the automated learning of

complex vulnerable patterns, which will motivate and

attract a higher number of researchers to ensure a

contribution to the said field with high potential.

According to the findings acquired, the proposed

framework leverages the detection rate of the optimized

patterns well, which ensures that vulnerable programming

patterns learned from software source projects facilitate

the representation generation on a target project to predict

vulnerabilities better.

Future studies may include effectively optimized

representations with the updated vulnerability dataset to

achieve recently improved vulnerability detection

performance.

Acknowledgement

The present paper does not include any research with

human participants conducted by any of the authors.

REFERENCES

[1] Mikolov, T., Chen, K., Corrado, G., & Dean, J.

Efficient Estimation of Word Representations in

Vector Space.doi.org/10.48550/arXiv.1301.3781,

2013.

[2] Shi, Y., Wang, Y., & Zheng, H. Wind Speed

Prediction for Offshore Sites Using a Clockwork

Recurrent Network. Energies, 2022, 15(3), 751.

[3] Koutník, J., Greff, K., Gomez, F., & Schmidhuber,

J. A Clock-Work RNN,

doi.org/10.48550/arXiv.1402.3511. 2014.

[4] Khurma, R.A., Aljarah, I., Sharieh, A., Mirjalili, S.

EvoloPy-FS: An Open-Source Nature-Inspired

Optimization Framework in Python for Feature

Selection. In: Mirjalili, S., Faris, H., Aljarah, I. (eds)

Evolutionary Machine Learning Techniques.

Algorithms for Intelligent Systems. Springer,

Singapore.https://doi.org/10.1007/978-981-32-

9990-0_8, 2020.

[5] Özlem B. D., Canan B. Ş., Prediction of phishing

websites with deep learning using WEKA

environment, Avrupa Bilim ve Teknoloji Dergisi,

vol. 24, pp. 35-41, doi:10.31590/ejosat.901465,

2021.

[6] Guha, R., Chatterjee, B., Khalid Hassan, S.K.,

Ahmed, S., Bhattacharyya, T., Sarkar, R. Py_FS: A

Python Package for Feature Selection Using Meta-

Heuristic Optimization Algorithms. In: Das, A.K.,

Nayak, J., Naik, B., Dutta, S., Pelusi, D. (eds)

Computational Intelligence in Pattern Recognition .

Advances in Intelligent Systems and Computing, vol

1349. Springer, Singapore.

https://doi.org/10.1007/978-981-16-2543-5_42,

2022.

[7] Riyahi, M, Rafsanjani, MK, Gupta, BB, Alhalabi,

W. Multiobjective whale optimization algorithm

based feature selection for intelligent systems. Int J

Intell Syst. 37: 9037- 9054. doi:10.1002/int.22979,

2022.

[8] Abu Khurma, R.; Aljarah, I.; Sharieh, A.; Abd

Elaziz, M.; Damaševičius, R.; Krilavičius, T. A

Review of the Modification Strategies of the Nature

Inspired Algorithms for Feature Selection Problem.

Mathematics,10,464.https://doi.org/10.3390/math1

0030464. 2022.

[9] Rohlfs, C. Generalization in Neural Networks: A

Broad Survey. 2022, arXiv.

https://doi.org/10.48550/arXiv.2209.01610.

[10] Zhang, G, Ding, Z, Xu, J, Zhong, G, Jiang, N,

Zhang, Y. Reasoning and tracing of information

security events in the expressway networking

system based on deep learning. Int J Intell Syst., 37:

8988- 9012. 2022, doi:10.1002/int.22977.

[11] [Internet]. [cited 2022 November 27]. Available

from: https://nvd.nist.gov/
[12] [Internet]. [cited 2022 October 13]. Available from:

https://cve.mitre.org/
[13] Batur Şahin, C., Learning Optimized Patterns of

Software Vulnerabilities with the Clock-Work

Memory Mechanism. Avrupa Bilim ve Teknoloji

Dergisi,156-165.2022,

https://doi.org/10.31590/ejosat.1159875.

[14] C. B. Şahin, DCW-RNN: Improving Class Level

Metrics for Software Vulnerability Detection Using

Artificial Immune System with Clock-Work

Recurrent Neural Network, 2021 International

Conference on INnovations in Intelligent SysTems

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 4, Sayfa 117-125, 2022 Tr. J. Nature Sci. Volume 11, Issue 4, Page 117-125, 2022

125

and Applications (INISTA), pp. 1-8, 2021, doi:

10.1109/INISTA52262.2021.9548609.

[15] Tansel D., Ayça D. and Hakan K. A Comprehensive

Survey on Recent Metaheuristics for Feature

Selection. , Neurocomputing, 494, 269-296, 2022.

[16] Abd Elaziz, M., Dahou, A., Abualigah, L. et al.

Advanced metaheuristic optimization techniques in

applications of deep neural networks: a review.

Neural Comput & Applic 33, 14079–14099, 2021,

https://doi.org/10.1007/s00521-021-05960-5.

[17] Şahin, C.B., Dinler, Ö.B. & Abualigah, L. Prediction

of software vulnerability based deep symbiotic

genetic algorithms: Phenotyping of dominant-

features. Appl Intell 51, 8271–8287.

https://doi.org/10.1007/s10489-021-02324-3. 2021.

[18] Singh, S.K., Chaturvedi, A. Applying Deep

Learning for Discovery and Analysis of Software

Vulnerabilities: A Brief Survey. In: Pant, M., Kumar

Sharma, T., Arya, R., Sahana, B., Zolfagharinia, H.

(eds) Soft Computing: Theories and Applications.

Advances in Intelligent Systems and Computing, vol

1154. Springer, Singapore. 2020,

https://doi.org/10.1007/978-981-15-4032-5_59.

[19] Dinler, Ö.B., Nizamettin A. An Optimal Feature

Parameter Set Based on Gated Recurrent Unit

Recurrent Neural Networks for Speech Segment

Detection. Appl. Sci., 10, 1273. 2020,

https://doi.org/10.3390/app10041273.

[20] Ullah, A., Aznaoui, H., Sahin, C. B, Sadie, M.,

Ozlem Dinler, Ö.B, Imane, L, Cloud computing and

5G challenges and open issues,11-3, 2022,

http://doi.org/10.11591/ijaas.v11.i3.pp187193.

[21] Batur Şahin C. , Batur Dinler Ö. , Abualigah L.

Analysis of Risk Factors in the Scope of Distributed

Software Team Structure. EJOSAT. (28): 417-424,

2021.

[22] Batur Şahin, C., Abualigah, L. A novel deep

learning-based feature selection model for

improving the static analysis of vulnerability

detection. Neural Comput & Applic 33, 14049–

14067, 2021. https://doi.org/10.1007/s00521-021-

06047-x.

[23] Batur Dinler Ö. , Batur Şahin C. Prediction of

Phishing Web Sites with Deep Learning Using

WEKA Environment. EJOSAT. 2021; (24): 35-41.

[24] Batur Şahin C. , Diri B. Sequential Feature Maps

with LSTM Recurrent Neural Networks for Robust

Tumor Classification. Balkan Journal of Electrical

and Computer Engineering. 2021; 9(1): 23-32.

[25] Ullah A. , Batur Dinler Ö. , Batur Şahin C. The

Effect of Technology and Service on Learning

Systems During the COVID-19 Pandemic.

EJOSAT. 2021; (28): 106-114.

[26] Ullah A. , Aznaoui H., Batur Şahin C. , Batur,

Daanoune I., Dinler Ö. ,CloudIoT paradigm

acceptance for e-learning: analysis and future

challenges. Jurnal Informatika. 2022; 16(3): 154-

168.ISSN 1978-0524.

