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Abstract: In order to ensure the development of secure software, it is essential to predict software 

vulnerabilities. Nevertheless, there can be considerable losses in case of an attack on an 

information system. Detecting a dangerous code, which can lead to severe unknown 

consequences, requires great effort. There is a strong need to devise meta-heuristic-based 

approaches to provide effective security and prevent vulnerabilities or mitigate them. The primary 

focus of studies on software vulnerability prediction models is to specify the best set of predictors 

that are related to the presence of vulnerabilities. However, the existing vulnerability detection 

methods suffer from coarse detection granularity and a bias toward global features or local 

features. The framework proposed in the present work improves optimization algorithms for the 

best set of optimized vulnerability patterns correlated for software vulnerabilities based on a clock-

work memory mechanism. Using the proposed framework, we found vulnerable optimized 

patterns based on clock-work memory mechanism feature representation learning that directly. 

The effectiveness of the developed algorithm was further improved with the clock-work memory 

mechanism based on 6 open-source projects, such as LibTIFF, Pidgin, FFmpeg, LibPNG, 

Asteriks, and VLC media player datasets.  

 

 

Meta-Sezgisel Algoritmalar ile Yazılım Güvenlik Açıklarının Optimize Edilmesi 
 

 

Anahtar 

Kelimeler 
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Optimizasyon

, Saat-hafıza 

mekanizması, 

Yazılım 

güvenlik açığı  

Öz: Yazılım güvenlik açığının tahmini, güvenli yazılım geliştirmek için önemli bir husustur. 

Ancak, bir bilgi sistemine saldırı yapıldığında büyük kayıplara neden olabilir. Tehlikeli kodun 

tespiti büyük çaba gerektirir ve bu da bilinmeyen ciddi sonuçlara yol açabilir. Etkili güvenlik 

sağlamak ve güvenlik açıklarının oluşmasını önlemek veya güvenlik açıklarını azaltmak için 

meta-sezgisel tabanlı yaklaşımlar geliştirmeye güçlü bir ihtiyaç vardır. Yazılım güvenlik açığı 

tahmin  modelleri üzerine yapılan araştırmalar, temel olarak, güvenlik açıklarının varlığı ile ilişkili 

en iyi tahmin ediciler kümesini belirlemeye odaklanmıştır. Buna rağmen, mevcut güvenlik açığı 

algılama yöntemleri, genel özelliklere veya yerel özelliklere yönelik önyargı ve kaba algılama 

ayrıntı düzeyine sahiptir. Bu yazıda, önerilen çerçeve, bir saat-çalışma belleği mekanizmasına 

dayalı yazılım güvenlik açıkları ile ilişkili en iyi optimize edilmiş güvenlik açığı kalıpları kümesi 

için optimizasyon algoritmalarını geliştirmektedir. Geliştirilen algoritmanın etkinliği, LibTIFF, 

Pidgin, FFmpeg, LibPNG, Asteriks ve VLC medya oynatıcı veri kümeleri gibi 6 açık kaynak 

projesine dayanan saatli çalışan bellek mekanizması ile daha da artırılmıştır. 

 

1. INTRODUCTION 

 

Exploitable vulnerabilities in software considerably 

weaken computer systems’ security and pose a threat to 

the information technology infrastructure of numerous 

government organizations and sectors. Software 

vulnerabilities represent exploitable weak points in a 

source code with the objective of causing harm or loss. 

Software vulnerabilities are also the root cause of 

cyberattacks. Detecting vulnerabilities means revealing 

code snippets that induce errors in particular cases in large 

code chunks. It is still difficult and requires a lot of time 

to detect vulnerabilities to date. 

 

A number of techniques are available for detecting 

software vulnerabilities. It is possible to identify them at 
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design time (without executing the source code) or at run 

time (while executing the software). Static code analysis 

(SCA) takes place among the most common design-time 

techniques and involves code analysis without executing 

the program for the purpose of identifying possible 

problems (alerts). It is possible that a part of the above-

mentioned alerts are software vulnerabilities. The said 

process is realized using static analysis tools (SATs), 

which are either open-source or commercial. 

 

The major branch of detection approaches is the discovery 

of possible vulnerabilities in the source code. 

Nevertheless, they have weaknesses, such as high false-

positive rates and low efficiency. Whereas the 

vulnerability detection method that employs machine 

learning technology has advanced considerably in 

accuracy and automation, the problems specified below 

create obstacles to its performance: (1) Long-term 

dependency between code elements. There is valuable 

information for detecting vulnerabilities in the 

dependencies between elements. Nevertheless, elements 

that are related in semantic terms can be located far from 

each other. Hence, we suggest an automated software 

vulnerability framework based on clock-work memory 

mechanism recurrent neural networks for a representation 

method. We believe that deep learning algorithms have 

the capability to capture complex vulnerability patterns.  

 

The need for optimization techniques with higher 

reliability, particularly meta-heuristic optimization 

algorithms, has recently arisen because of the constantly 

increasing complex nature and difficulty of real-world 

problems. The said techniques are mainly stochastic and 

perform the estimation of optimal solutions for various 

optimization problems. Reasoning about processes at 

multiple time scales is facilitated by Clock-Work RNN 

(CW-RNN) models. The hidden layer in a CW-RNN is 

separated into various modules. Each of these modules 

processes inputs at its temporal granularity, making 

calculations solely at the prescribed clock rate. Forward 

connections are present in the CW-RNN, from the input 

to the hidden layer and from the hidden to the output layer. 

CWRNN models primarily contribute to discussing long-

term dependencies. The architecture of the CW-RNN is 

similar to that of a simple RNN with an input, output, and 

hidden layer. There are g modules in the hidden layer, and 

each of these modules has its clock rate. The neurons 

within each module are completely interconnected, 

meaning that the connectivity among neurons of various 

modules is set on the basis of the modules’ clock periods.  

 

The current work makes the following main 

contributions:  

1. The study creates the metaheuristic algorithm-based 

vulnerability detection system with metaheuristic 

optimization algorithms, 

2. A framework is proposed, improving the detection 

capability of heuristic approaches based on a clock-

work memory for learning optimized patterns to 

extract the optimized features for detecting software 

vulnerable codes.  

3. Our framework’s design is validated by conducting 

experiments, and the usage of clock-work memory 

is shown as optimized-feature representations.  

 

The rest of the paper is organized as follows: Section 2 

describes the Material and Method  Section 3 describes 

the the proposed Model used in the study. Section 4 

describes the Results and Discussion. Section 5 describes 

the conclusion.    

 

2. MATERIAL AND METHOD 

  

The current part contains the background of the most 

frequently employed techniques in the literature.    . 

 

2.1. Meta-Heuristic Algorithms  

 

In this part, the bio-inspired metaheuristic algorithms used 

are given as follows.   

 

2.1.1. Whale optimization algorithm (WOA)  

 

The Whale Optimization Algorithm (WOA) has been 

newly developed, and its basis is whales’ hunting 

behavior. The mentioned algorithm includes the 

following three stages: circling hunting, bubble-net 

attacking, and prey hunting.  

 

In circling hunting, whales first circle the prey and thus 

set the trap. Afterward, a search agent is selected 

according to the distance of an individual whale from the 

prey. After identifying the search agent, the positions of 

all whales in the group are updated according to the search 

agent’s position, which can be expressed in mathematical 

terms, as shown below:  

 

D⃗⃗  = [C .⃗⃗⃗⃗   X⃗⃗   ∗  (t)  − X⃗⃗  (t) ]  (1) 

 

Where  C = 2 ∗r ,  r denotes a random number in the range 

of  0-1;  X⃗⃗   refers to the local optimal position;  X⃗⃗ (t) current 

denotes the current position; refers to the iteration 

number; and represents the distance between every whale 

and the search agent. 

 

Afterward, whales perform bubble-net attacking by 

utilizing the spiral around and spiral update methods [15]. 

They move in the prey’s direction spirally according to 

the search agent. It is possible to determine the updated 

position of other search agents moving toward the best 

agent by Equations 2-3 :  

 

𝑋 (𝑡 + 1) = 𝑋   ∗  (𝑡)  − 𝐴  . �⃗⃗�    (2) 

 

𝐴  = 2. 𝑎  ⃗⃗⃗⃗   𝑟   - 𝑎  ⃗⃗⃗⃗     (3) 

 

 Eqs. (4) and (5) are used to find the search agent’s 

random position:     

 

�⃗⃗�  = [𝐶 .⃗⃗⃗⃗   𝑋 𝑟𝑎𝑛𝑑 − 𝑋   ]       (4) 

 

 X⃗⃗  (t + 1) = X⃗⃗ rand-A .⃗⃗⃗⃗  D⃗⃗     (5) 
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The shrink position in the movement with a helix shape 

toward the prey is updated by the whale, as shown in 

Equation 6:   

 

𝑋  (𝑡 + 1) =  �⃗⃗�  . 𝑒𝑏𝐿   . 𝑐𝑜𝑠(2 𝜋 𝐿)  + 𝑋   ∗  𝑡       (6) 

 

Where  X⃗⃗ (t+1)  Updated denotes the whales’ updated 

position; b refers to a constant representing the 

logarithmic spiral’s shape; l represents the distance 

between the whale and the food. L = −1 denotes the 

minimum distance to the food, and L = +1 refers to the 

maximum distance to the food. It was assumed that the 

possibility of selecting a method for a certain case was 

50%, and Equation 7 expresses the chance of choosing the 

path:  

 

 =

{
 𝑋 ∗  (𝑡)  −  𝐴  . �⃗⃗�                               𝑝 < 0.5

 �⃗⃗�  . 𝑒𝑏𝐿    . 𝑐𝑜𝑠(2 𝜋 𝐿)  + 𝑋   ∗  𝑡       𝑝 > 0. 5
       

(7) 

 

Here, p refers to a number chosen in a random way 

between 0 and 1.  

 

2.1.2. Multi-verse optimizer (MVO) algorithm   

 

The Multi-Verse Optimizer (MVO) takes place among the 

new swarm intelligence algorithms. Its source of 

inspiration is the multiverse theory discussing how the big 

bangs generate multiple universes and the interaction of 

the said universes with each other via various hole types. 

In the MVO algorithm,  the “white hole” and “black hole” 

concepts with the objective of exploring the wormholes to 

utilize the search spaces for formulating a population-

based algorithm and considered that every solution was a 

universe and every variable/attribute in the solution 

denoted an object in the said universe. Furthermore, there 

is a fitness value (inflation rate) in every solution, 

reflecting the solution quality, which is computed by the 

corresponding objective function. 

 

A solution receives a good objective value in case white 

holes appear, whereas the solution receives a worse 

objective value in case black holes appear. With a higher 

number of interactions between white holes and black 

holes, the movement of the variable values of the good 

solutions to poor solutions occurs.     

 

2.1.3. Grey Wolf Optimizer (GWO) 

 

The Grey Wolf  Optimizer (GWO) represents a meta-

heuristic optimization algorithm. Grey wolves’ hunting 

strategy and leadership hierarchy are mimicked in the 

GWO. The leadership hierarchy comprises four wolf 

types, including alpha (the fittest solution), beta (the 

second-best solution), delta (the third-best solution), and 

omega (the remaining part of the candidate solutions). In 

practice, the prey is encircled by grey wolves, who  march 

during the hunt, which is expressed with the equations 

below:   

D⃗⃗  = |C .⃗⃗⃗⃗   X⃗⃗ p  (t) − X⃗⃗  (t)|        (8) 

 

       X⃗⃗  |(t + 1) = X⃗⃗ p  (t)  − A .⃗⃗⃗⃗  D⃗⃗           (9) 

 

Here, t represents the current iteration, D displays the 

movement vector, X⃗⃗ p  denotes the prey’s position vector, 

A and C refer to the coefficient vectors, and  X⃗⃗  displays a 

grey wolf’s position vector. The calculation of the 

coefficient vectors (A and C) is performed by means of 

the equations below: 

 

      A⃗⃗  = 2. a  ⃗⃗  ⃗  𝑟 1  - a  ⃗⃗  ⃗         (10) 

 

      C⃗  = 2.  𝑟 2         (11) 

 

where r1 and r2 are selected in a random manner in the 

normal range from zero to unity. During iterations, the 

components of a decrease in a linear way from 2 to 0. By 

utilizing Equations  (10-11), a grey wolf is capable of 

getting closer to the prey by altering its position around 

the prey in a random manner.  

 

3. THE PROPOSED METHOD 

 

3.1. Methodology 

 

The objective of the current work is to enhance the 

effectiveness of meta-heuristic algorithms with the clock-

work memory mechanism for predicting software 

vulnerabilities. The optimized software patterns that were 

the most appropriate for vulnerability prediction in 

software systems were obtained.  Reasoning about 

processes at multiple time scales is facilitated by Clock-

Work RNN (CW-RNN) models, making calculations 

solely at the prescribed clock rate. Neurons of various 

modules are connected on the basis of the modules’clock 

periods [14]. 

 

 
 

In the CW-RNN, the speed of the clocks is the same all 

the time, but sometimes they run at a slower speed and 

sometimes at a faster one. At each CW-RNN time step t, 

just the outputs of module i, satisfying(t MOD Ti) = 0, are 

active. It is arbitrary to choose the set of periods {T1, . . . 

, Tg}. In the present work, the exponential series of 

periods is utilized; the ith module has a clock period of Ti 

= 2i−1. In the proposed framework, each metaheuristic 

algorithm’s metadynamics uses the clock-work memory 

mechanism as a logging function for the optimized best 

candidate patterns. For each heuristic algorithm, the 
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information is aggregated from generations using a clock-

work memory logged mechanism based on time scales. 

 

CW-RNN separates the hidden recurrent units into 10 g 

modules, each runs their own computation at specific, 

hidden layer units as 32, 64 and 128 rates.The explanation 

of the general experimental methodology is presented in 

Algorithm 1, designed based on the each baseline 

metaheuristic algorithms. 

 

Binary encoding is employed for the purpose of 

representing feature selection or exclusion in the solution 

set. Every candidate solution is expressed as a bit string 

having a length n, where n refers to the total feature 

number. Feature j was retained in case of the jth bit being 

equal to 1, whereas it was removed in case of the jthbit 

being equal to 0.  

The fitness function is employed with the objective of 

showing the quality of each candidate optimized pattern. 

The fitness of a candidate solution of each nature-inspired 

algorithm is proportional to the classification error rate of 

the model. 

 

4. DISCUSSION AND CONCLUSION 

 

The data source includes vulnerable and non-vulnerable 

functions from the six open-source projects, such as 

LibTIFF, Pidgin, FFmpeg, LibPNG, VLC media player, 

and Asterisk. The vulnerability labels were acquired from 

the National Vulnerability Database (NVD) [11] and the 

Common Vulnerability and Exposures (CVE) [12] 

websites. The algorithms are designed for the collective 

extraction of beneficial information from real-world 

vulnerability datasets in order to enhance vulnerability 

detection performance. The Word2vec [1] model is 

employed in the embedding layer of the Clock-Work 

Recurrent Neural network in order to convert an input 

sequence to meaningful embeddings. 

 
Table 1. Dataset 

Data 

source 

Datasource/Coll

ection 

#of functions 

used/Collected 

 
 

 

Real-world Open 
Sources  

FFmpeg 
Vulnera

ble 

Non-

Vulnerable 

LibTIFF 213 5701 

LibPNG 96 731 

Pidgin 43 577 

VLC Media 

Player 
29 8,050 

Asteriks 42 3,636 

 

4.1. Results 

 

In Tables 2-7, we compared the performances of the 

improved heuristic algorithms for detecting 

vulnerabilities based on the  FFmpeg, LibTIFF, LibPNG, 

Pidgin, Asterisk, and VLC media Player datasets. 

EvoloPy toolbox contains twenty three benchmarks (F1-

F23). In the optimizer.py you can setup your experiment 

by selecting the test sets. In this study on five test modules 

(F1-F5). The results demonstrate that the Asterisk dataset 

displayed the best performance with a 0.029643 error rate 

for hidden layer unit 128 and test F4, based on the CW-

MVO algorithm, compared to the other vulnerability 

datasets. Nevertheless, according to the results, the worst 

error rate was found in the LibTIFF dataset with a 

0.063467 error rate for hidden layer units 32 and test F5 

based on the WOA algorithm. Generally, the FFpmeg, 

LibTIFF and Pidgin datasets exhibited close error rate 

performances, except for MVO algorithm. Concerning the 

other datasets, it was observed that the improved 

algorithm achieved the highest performance results in the 

Asteriks, VLC media player, Pidgin, LibPNG, LibTIFF, 

and FFpmeg datasets, respectively.   

 

 

 

 
 

 

Algorithm 1.  Pseudo-code of the proposed Clock-Work 

Memory Mechanism 

Input : Set of vectors of vulnerable code : X= [X1, X2, . . . , XN] 

Output : Set of  optimized best patterns: Sbest={S1, S2, ......, SN}; 

BEGIN 

Step 1: {Initialize  Metaheuristic Algorithms’  parameters} 

Step 2:  [1,2,...N]  Initialize the solutions’ positions randomly.  

Step 3: Calculate the fitness of each search agent 

Step 4: For each iteration, do: 

Step 4.1: [Train Clock-Work Network]  

Step 4.1.1:  For each search agent do: 

Step 4.1.2: update the position of each current search 

agent  

Step 4.1.3: Hidden dimensions are updated in groups at 

time period clock rates.  

Step 4.1.4:  create the  clock-work memory  based on  

time scales {T1, . . . ,Tg} for each optimized  search agents 

(candidate solutions) 

Step 4.1.5:Calculate the fitness of each search agents  

Step 4.1.6:END For 

Step 4.1.7:  [ END Train Clock-Work Network]  

Step 5: END For 

Step 6: Add List optimized best search agents stored in clock-

work memory  

Step 7: END For  

Step 8:END 
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Table 2. Error Rate of   compared   Algorithms  for FFpmeg Dataset 

 
Table 3. Error Rate of compared Algorithms  for LibTIFF Dataset 

 

Test 

Benchmark 

Hidden Layer 

units 

Algorithms  

WOA CW-WOA GWO CW-GWO MVO CW-MVO 

 

Test F1 

 32 0.054853 0.052401 0.0575321 0.04920 0.050653 0.05096 

  64 0.053425 0.04912 0.0445252 0.04612 0.049034 0.04742 

  128 0.047965 0.041231 0.0453258 0.041875 0.047532 0.040094 

 

Test F2 

  32 0.046744  0.045536 0.0564363 0.050919 0.0553286 0.057168 

 64 0.0478532 0.044321 0.0516742 0.047903 0.057754 0.054721 

 128 0.0435731 0.04132 0.050584 0.04566 0.053522 0.053663 

 

Test F3 

 32 0.0606471 0.056726 0.0534211 0.050791 0.0543457 0.049463 

64 0.057854 0.0541267 0.0543245 0.048925 0.056732 0.045412 

  128 0.050765 0.052288 0.0513856 0.047164 0.0483878 0.0432609 

 

Test F4 

 32 0.0564325 0.0517321 0.0564356 0.052452 0.056057 0.056463 

  64 0.055736 0.0498425 0.05345673 0.049756 0.055743 0.052557 

 128 0.049732 0.045733 0.0494565 0.047654 0.0564537 0.0534435 

 

Test F5 

 32 0.0614543 0.057841 0.055843 0.054876 0.052345 0.05086 

  64 0.0553561  0.059625 0.055372 0.05321 0.049872 0.04773 

 128 0.0542423 0.051097 0.0508490  0.047535 0.0415678 0.042195 

Test 

Benchmark 

Hidden Layer units Algorithms  

WOA CW-

WOA 

GWO CW-GWO MVO CW-MVO 

 

Test F1 

  32 0.0576353  0.050203 0.054352 0.04964  0.0575353 0.050649  

 64  0.0512432 0.04734 0.050543 0.04682 0.055356 0.052134  

 128 0.048676 0.043651 0.045684 0.043636 0.0523907  0.050036  

 

Test F2 

 32 0.049756 0.044792 0.053453 0.048659  0.0598543 0.055804 

   64 0.046532 0.042143 0.0504221 0.0440867 0.0558641 0.052178 

  128 0.041344 0.040974  0.0478942 0.039435 0.052578 0.050932 

 

Test F3 

 32 0.055632 0.052367 0.05673221 0.049543 0.0578975 0.050754 

   64 0.057437 0.0521358 0.0523624 0.0485867 0.0545789 0.052468  

  128 0.054633 0.051579 0.0485784 0.0443234 0.0534218 0.050732 

 

Test F4 

  32 0.052459 0.050952 0.0597428 0.0546573 0.0575432 0.053494  

  64 0.0513493 0.0470328  0.0534647  0.050535  0.0538098 0.049053 

   128 0.049064  0.044573  0.050432 0.045867 0.0498752 0.046256 

 

Test F5 

  32 0.063467 0.0597538  0.0545789 0.0519754 0.0508124 0.04572 

64 0.060342 0.0557321 0.05458445 0.05296365 0.048753 0.043723 

  128 0.056313 0.0501735 0.0513461 0.04642805 0.0445809 0.0414695 
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Table 4. Error Rate of   compared   Algorithms  for LibPNG Dataset 

 

Table 5. Error Rate of   compared   Algorithms  for Pidgin Dataset 

Test 

Benchmark 

Hidden Layer 

units 

Algorithms  

WOA CW-WOA GWO CW-GWO MVO CW-

MVO 

 

Test F1 

  32 0.044853 0.03772 0.0475732 0.0366264 0.0456772 0.039963 

 64 0.037833 0.034085 0.0413855 0.0347854 0.0406432 0.0383445 

128 0.035356 0.0327045 0.0408253 0.0335466 0.03784214 0.0368952 

 

Test F2 

  32 0.0495321 0.040558 0.0512345  0.0456779  0.0586328 0.0536874 

  64 0.045364 0.041589 0.0509427 0.0437643 0.05743462 0.0527895 

  128 0.039752 0.039753 0.0424525 0.039034  0.0528474  0.050643 

 

Test F3 

 32 0.0543527 0.052356  0.0583252 0.0518514 0.0464632 0.0436784  

64 0.054523  0.0507543 0.0534653 0.0507432 0.0445639 0.0427895 

   128 0.049792 0.047059 0.0519478 0.0457322 0.0413563 0.0403468 

 

Test F4 

32 0.0567943 0.049743 0.060642 0.049732 0.0584636 0.0516733 

 64 0.0512428 0.0469325 0.0574736 0.046457 0.0556473 0.050634 

 128 0.0465374 0.043582 0.0508321  0.0413468 0.053452 0.0498368 

 

Test F5 

32 0.056975 0.053623 0.054996  0.0506435 0.0595736 0.0458537 

   64 0.054245 0.0525672 0.051847 0.0524632 0.0524573 0.0432466 

   128 0.049802 0.039953 0.048735 0.0376784 0.0486352 0.035653 

Test 

Benchmark 

Hidden Layer 

units 

Algorithms  

WOA CW-WOA GWO CW-GWO MVO CW-MVO 

 

Test F1 

   32 0.0598224 0.0526843 0.0535784 0.047535  0.0574531 0.054566  

   64 0.05465893 0.051246 0.0524462 0.043567  0.0534625 0.051457   

 128 0.0513750 0.05074  0.0467848  0.0424653 0.0507436 0.048965 

 

Test F2 

   32 0.0512463 0.046445 0.0575743 0.053546 0.0619357 0.055684 

   64 0.0508396 0.0434562 0.0547362 0.050434 0.0587485  0.052356 

  128 0.0447497 0.042567 0.0534639 0.051467 0.0553568 0.050754 

 

Test F3 

   32 0.0587942 0.052435  0.0567387 0.0497543 0.0596492 0.0445663 

    64 0.0553683 0.050476 0.05432842  0.046543  0.0535783 0.0421455 

   128 0.0507354 0.051389  0.0532424 0.0434656 0.04784281 0.040754  

 

Test F4 

 32 0.0587639 0.050643 0.0565743 0.0507546 0.0556437  0.053784 

 64 0.0528436  0.045345 0.0534564 0.045726 0.05547326 0.0507643 

   128 0.04576932 0.042566 0.0475832 0.0416434 0.0497432 0.045878 

 

Test F5 

  32 0.0609643 0.055743 0.058473  0.052455 0.0565493  0.053561 

  64 0.0612485 0.053465 0.0513452 0.0506754 0.05178458 0.0496433 

    128 0.0508467 0.048954 0.0487638 0.0464667 0.0478353 0.044527 
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Table 6. Error Rate of   compared   Algorithms  for VLC Media PlayerDataset 

 
Table 7. Error Rate of   compared   Algorithms  for Asteriks Dataset 

Test 

Benchmark 

Hidden 

Layer units  

Improved Algorithms  

WOA CW-WOA GWO CW-GWO MVO CW-MVO 

 

Test F1 

32 0.0456352 0.395433 0.0498532 0.042456 0.0479425 0.041673  

 64 0.0425739 0.040754 0.0453694 0.040643 0.043689 0.0398573 

128 0.0389431 0.037955 0.04052783 0.038954 0.0375392 0.03589  

 

Test F2 

 32 0.0475378 0.0408753 0.0475489 0.042453 0.0497875 0.045643 

 64 0.0439625 0.039855 0.0432563 0.0408674 0.0476542 0.0425824 

 128 0.0356382 0.0348457 0.0387426 0.035353 0.0343637 0.0398756 

 

Test F3 

 32 0.0538032 0.0499484 0.0568324 0.048873 0.0537509 0.043673 

   64 0.0514587 0.047745 0.0553572 0.045635 0.0446982 0.041566 

  128 0.0468743 0.040937 0.0445638 0.042546 0.0408532 0.040753 

 

Test F4 

32 0.0538721 0.0468476 0.0486379 0.040742 0.0546848 0.0464095 

  64 0.0517939 0.0473456 0.0465395 0.04287567 0.0534743 0.0459372 

 128 0.0459372 0.0428457 0.0443761 0.0413456 0.05075298 0.043524  

 

Test F5 

  32 0.0578463 0.0513674 0.0597463 0.051456 0.0489573 0.044355 

  64 0.0548790 0.0478473 0.0565302 0.0508474 0.04574712 0.042466 

 128 0.0516840 0.048763 0.0535726 0.045245 0.0423524 0.040837 

Test 

Benchmark 

Hidden Layer 

units 

Algorithms  

WOA CW-WOA GWO CW-GWO MVO CW-MVO 

 

Test F1 

 32 0.0457943 0.040536 0.04336456 0.0356466 0.04795821 0.040633 

  64 0.0424672 0.037899  0.04074351 0.0367847 0.0445793 0.039745 

  128 0.0409201 0.035854 0.03854974 0.0335366 0.0409536 0.0346783 

 

Test F2 

  32 0.0425565 0.0316783 0.0409732  0.038646  0.04357893 0.0368476 

 64 0.0389532 0.0390624 0.0397327 0.0375673 0.0416897 0.03357221 

   128 0.0307432 0.031735  0.0335912  0.032573 0.0479434 0.0314742 

 

Test F3 

  32 0.0407245 0.0375467 0.03356362 0.0324567 0.0485892 0.030635 

  64 0.0375372  0.031455  0.0306361  0.0308422 0.043680 0.039654 

  128 0.0386847 0.0396325 0.0237975 0.039644 0.04168361 0.035689 

 

Test F4 

   32 0.0376893 0.0324578 0.0398526 0.03254673 0.04876483 0.033567 

 64 0,03482562 0.313657 0.0346938 0.0397455 0.0436789 0.036642 

  128 0.03047314 0.306773 0.0297476  0.0345632 0.0456834 0.029643 

 

Test F5 

  32 0.0384630 0.0346746 0.0386953 0.0339572 0.0435893 0.0377593 

   64 0.0335693 0.0345664

3 

0.0326891 0.0397455 0.4075256 0.0324567 

  128 0.0313574 0.0335736 0.02975327 0.0300484 0.0426894 0.031546 
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The improved CW-WOA model achieved the best results 

as a  0.306773  error rate based on test F4 and a 0.0327045 

error rate based on test  F1 for the Asteriks and LibPNG 

datasets, respectively, using 128 hidden layer units. 

Moreover, it was observed that the CW-GWO model 

achieved the best performance results, such as a  

0.0300484  error rate based on test F5 and a  0.0335466  

error rate based on test F1 for the Asteriks and LibPNG 

datasets, respectively, using 128 hidden layer units. The 

improved CW-MVO model obtained a  0.029643  error 

rate in test F4 and a  0.035653  error rate in test F5 for the 

Asteriks and LibPNG datasets, respectively, using 128 

hidden layer units.  The obtained results indicate that the  

Asteriks and Pidgin datasets  achieved the highest 

performance for Test-F3 benchmark. However, the 

findings demonstrate that the best classification error rate 

performance exhibited  for FFmpeg and VLC Media 

Player datasets based on the Test-F2 benchmark. 

Furthermore, the best results showed for LibPng and 

LibTIFF datasets based on Test-F1 benchmark.  

 

All experimental results show that low hidden layers 

process, retain, and output high error rates. Meanwhile, 

high hidden layers generally concentrate on the local, 

high-frequency information with low error-rate 

performances.   

 

5. CONCLUSION 

 

The application of nature-inspired metaheuristic 

optimization algorithms for vulnerability detection is an 

immature area of research having numerous problems 

waiting for a solution. The representation learning 

capability of nature-inspired algorithms to optimize 

patterns of software vulnerabilities and their customizable 

structure are promising for the automated learning of 

complex vulnerable patterns, which will motivate and 

attract a higher number of researchers to ensure a 

contribution to the said field with high potential. 

According to the findings acquired, the proposed  

 

framework leverages the detection rate of the optimized 

patterns well, which ensures that vulnerable programming 

patterns learned from software source projects facilitate 

the representation generation on a target project to predict 

vulnerabilities better. 

Future studies may include effectively optimized 

representations with the updated vulnerability dataset to 

achieve recently improved vulnerability detection 

performance.  
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