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Abstract 
The approved restrictive rules on the containment of Lead element in the chemical composition of the brass alloys which are 
utilized in drinking water and pumping systems have resulted in developing of new material generations. Neglection or 
limitation of this element has faced the industry with some serious problems such as lower machinability as compared to the 
conventional ones. Furthermore, since the most application of the manufactured components from these alloys corresponds to 
the fluids transfer, the permeability property between the parts and their surface becomes prominent. In other words, any 
burrs or extra material which are left on the surfaces of manufactured components will make assembly troublesome, causing 
seals to tear, and permeability problems in the user's hands. In this study, the quality of the machined blind holes with flat 
bottom drills with various geometries including radial, axial rake angle as well as the cutting edge-radius have been 
investigated for machining of low-lead brass alloy. Moreover, it has attempted to develop fuzzy logic and regression models 
in order to predict the machined holes burr height and surface quality. The model predictions have been compared with the 
experimental data. The obtained results have demonstrated that the developed models are able in predicting of the product 
quality.  
Keywords: Flat bottom drilling, Brass, Machinability, Fuzzy logic 
 
I. INTRODUCTION 
Brass materials with the main element of Zinc are categorized in the family of the copper-based alloys. Due to 
the excellent properties such as strength, formability, recyclability and corrosion resistance, brass alloys are 
widely used in the sterile, water and pumping components [1]. In order to intensify the forming and machining 
process efficiency of these alloys several elements one of which is Lead are being added to the chemical 
composition [2]. On the grounds of the toxic and harmful nature of this element, the use of Lead is 
prohibited/limited in most European countries and USA by accepted and published rules [3-6]. This restriction 
has led to the decrease in the brass formability and machinability. As a result, new challenges have emerged that 
must be resolved in order to expand this material change globally. In this scope, few authors have researched the 
machinability of these alloys. [7]. 
 
The friction behavior of leaded and lead-free brasses was studied by Gane et al. [8] with cutting and sliding tests. 
According to his results, the friction stress for lead-free brass was measured two times of the leaded one. In a 
performed investigation by Trent et al. [9, 10], it was concluded that the adding Lead element in the brass 
composition results in the reduction in the cutting forces, shortens the chips and the tool wear. They explained 
the reason behind this occurrence as adhering of Lead to the tool contact area and acting as an “internal 
lubricant” [10]. Bushlya et al. [11] studied the wear mechanisms of uncoated and coated cemented carbide tools 
for machining lead-free silicon brass. They found that the main reason for the tool failure is the crater formation 
on the rake face. Schultheiss et al. [12] focused on the machinability of CuZn39Pb3 and CuZn21Si3P brasses. 
Their work presented a profound level of differences in machinability in terms of tool coating types and their 
wear during machining of these two materials according to the properties and behavior. Nobel et al. [13] 
analysed the effect of microstructure on the chip formation, cutting forces, tool temperatures and tool wear is 
during external turning. Toulfatzis et al. [14] studied the machinability of three lead-free brass alloys, CW510L, 
CW511L and C27450 in a comparison with leaded brass CW614N with turning experiments. Zoghipour et al. 
[15] studied the effect of drilling process on surface integrity characteristics of lead-free brass alloy by focusing 
on the dimensional accuracy and the surface quality of the holes, subsurface characteristics including 
microhardness and microstructure. Hua et al. [16] studied the influences of the cutting-edge geometry, cutting 
conditions, and workpiece hardness in micro drilling of lead-free brass alloy. According to their results,
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sharpen edge with chamfer cutting edge leads to 
higher compressive residual stress, and hardness. In a 
similar study Hua et al. [16], Kato et al. [17] studied 
the effects of web thinning, the helix angle, and the 
nick geometry on chip evacuation in micro drilling on 
lead-free brass alloy. Timata et al. [18] carried out an 
experimental study in drilling forging brass using a 
special tungsten carbide drilling tool and measured the 
exit burr height and workpiece diameter. They found 
that the most influencing parameters on the exit burr 
height and workpiece diameter are spindle speed and 
feed rate. Zoghipour et al. [19] considered the effects 
of the tools geometries, feed rates and rotational 
speeds in drilling of hot forged lead-free brass alloys 
with various copper content.  They used artificial 
neural networks modelling, and genetic algorithm-
based optimization methods to predict and minimize 
the cutting forces, dimensional accuracy error, and 
surface quality of the holes. 
 
All the performed studies in the literature confirm the 
existence of Lead benefits in the machining process, 
and report lower and problematic machining 
properties for the low-lead and lead-free brass alloys. 
Furthermore, considering that most of the studies are 
associated with standard machining operations, it is 
seen that the industry requirements need high 
performance and efficient processes, one of which 
passes through the correct cutting tool design and its 
application. Therefore, in this study different flat 
bottom drills with various geometries including radial, 
axial rake angle as well as the cutting edge-radius 
have been utilized in order to form blind holes in low-
lead brass alloy. The quality of the generated holes has 
been considered according to industrial component 

requirements. For this purpose, fuzzy logic and 
regression models have been developed in order to 
predict the machined holes burr height and surface 
quality. The model predictions have been compared 
with the experimental data.  
 
 
II. MATERIAL AND METHODS 
2.1. Experimental Tests 
The workpieces used in this study was hot extruded 
round bars of 60 mm diameter and 28 mm length low-
lead type of brass alloys CuZn38As (CW511L). The 
mechanical properties and chemical composition of 
the test materials is presented in Table 1. Ø8 mm 
diameter carbide flat bottom drill with given 
geometric specifications in Table 2 were utilized 
during the experiments. The designed flat bottom drill 
is demonstrated in Fig. 1. The cutting speed and the 
feed rate were kept constant at 100 m/min and 0.125 
mm/rev during through hole drilling using 25 Bar of 
internal cooling flood. The machining experiments 
were conducted on a four axis Fanuc Robodrill –
D21LiB5 CNC milling center having maximum 
spindle speed of 10000 rpm and 14.2 kW. In order to 
study the formed burrs height at entry of the machined 
holes Keyence digital optic microscope was used. The 
measurements for every drilled hole were executed 
from four different points. The surface quality of the 
holes bottom was evaluated with Mitutoyo Contracer 
CV-2100M4. All experiments have been carried out 
three times and the average result is reported. Fig. 2 
shows the experimental setup and the machined 
product requirements in this study. 
 

 
Table 1. The chemical composition of the studied brass alloys [20] 

 E, 
GPa 

Machinab-
ility, % Composition Cu Zn Pb Sn Fe Ni Al As 

CuZn38As 
(CW511L) 100 40 %Min. 61.5 Rem. - - - - - 0.02 

%Max. 63.5 Rem. 0.2 0.1 0.1 0.3 0.05 0.15 
 

Table 2. The geometric specification of the utilized cutting tools 

Parameter Diameter 
(mm) 

Helix angle 
(deg) 

Radial rake 
angle (deg) 

Axial rake 
angle (deg) 

Cutting edge-
radius (μm) 

Flat Bottom 
Drill 8 30 

6 -2 10 
8 0 15 

10 2 20 
 

 
2.2. Fuzzy Logic Modeling 
The ability of behaving similar to mankind’s 
decisions, fuzzy logic has gained a broad application 
with different purposes. A fuzzy logic system is 
consisted of the following steps as illustrated in Fig. 3; 
- Fuzzification, in which the crisp data converts into 
fuzzy data or Membership Functions (MFs) 

- Fuzzy Inference, in which the control rules to derive 
the fuzzy output combines with the membership 
functions. By using these membership functions the 
output of a fuzzy controller is derived from 
fuzzifications of both inputs and outputs 
- Defuzzification, in which the output converts to crisp 
variable using different methods. 
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Fig 1. The designed flat bottom drill cutting tool 
 

 

 

Fig. 2. The test setup in this study and the machined product requirement 
 

 
Fig. 3. The schematic of a fuzzy logic system 

 
2.3. Regression modeling 
The regression analysis was introduced in order to 
inspect the statistical relationship between one or more 
independent variables and dependent variables by 
Galton [21]. The parabolic regression is one the 
widespread used models for the purpose of inspections 
due to its simplicity and applicability. This model can 
be expressed as in below: 
 
𝒚𝒚𝒊𝒊 = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝒙𝒙𝒊𝒊 + 𝒃𝒃𝟐𝟐𝒙𝒙𝒊𝒊𝟐𝟐 +⋯+ 𝒃𝒃𝒏𝒏𝒙𝒙𝒊𝒊𝒏𝒏 + 𝜺𝜺                                  (1) 
 
𝜺𝜺 = 𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊�                                                                                     (2) 
 
where 𝒚𝒚𝒊𝒊  is dependent variable, 𝒙𝒙𝒊𝒊  stands for the 
independent variable, 𝒃𝒃𝟎𝟎 , 𝒃𝒃𝟏𝟏 , 𝒃𝒃𝟐𝟐 , 𝒃𝒃𝒏𝒏  are the parameter 
coefficients and ε is the model error [22]. The 
regression coefficients can be obtained by the Eq. 3: 

𝒃𝒃 = (�́�𝒙𝒙𝒙)−𝟏𝟏�́�𝒙𝒚𝒚                                                                               (3) 
 
Furthermore, multiple regressions are a collection of 
numerical and factual strategies useful for modeling 
and analyzing issues in which the reaction of intrigued 
is influenced by a several variables [22,23]. 
 
III. RESULTS AND DISCUSSIONS 
3.1. Fuzzy Logic Modeling 
Mamdani FIS type was used and Gaussian 
membership function (gauss2mf) was deployed to 
return the fuzzy membership computed values using a 
combination of two Gaussian membership functions in 
the model. Subsequently, the linguistic coding was 
used as illustrated in Table 3. The generated inputs in 
the model are displayed in Fig. 4. 
 

Fuzzification
Interface Intelligence Defuzzification

Interface

Fuzzy
Rules

Input Output

Radial rake 

Axial rake 

Cutting-edge radius 

Fanuc Robodrill α–D21LiB5 
CNC milling center 

Spindle 

Tool Holder 

Workpiece 

Rz6.3

Permeability surfaces 
Seal will be assembled

Dyanamometer 

Cutting Tool 
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Table 3. The utilized linguistic coding for the developed model 
Radial rake 
angle (deg) 

Axial rake 
angle (deg) 

Cutting edge 
radius (μm) 

Burr height 
(μm) Rz (μm) 

6=L 
8=M 
10=H 

-2=L 
0=M 
2=H 

10=L 
15=M 
20=H 

L<350 
350≤M≤425 
425<H≤500 

VH>500 

L<5 
5≤M≤5.8 

5.8<H≤6.3 
VH>6.3 

 
where, L, M, H, VH represent low, medium, high and 
very high, respectively. The model was performed by 
27 rules in total. The schematic developed rules based 
fuzzy logic model in this study is demonstrated in Fig. 
5. Mean of Maximum (MoM) method was used for 
defuzzification. Therefore, the fuzzy output is a result 
of minimum and maximum compositional operations 
tracking. 
 
The variation of the average entry burr height and 
surface roughness in a combined mode of the 
influencing cutting tool geometries is demonstrated in 
Fig. 6. The developed fuzzy model for the machining 
responses is given in Fig. 7. The lowest predicted 
average burr height and surface roughness values in 
the fuzzy logic model were 294.320 and 5.74 μm, 
respectively. It is seen that as compared with 
experimental results; the developed model has 
predicted the same cutting tool geometry for the 
minimum burr height. Furthermore, it has recognized 
two of three geometric parameters of the tool 
correctly. Along with the fuzzy logic system, in order 
to model the quality of the drilled hole, quadratic 
polynomial functions were used to predict the 
responses. The generated functions are illustrated in 
Table 3. The confidence coefficients for the burr 
height and surface roughness functions were %.80.04 
and %96.31, respectively. The lowest predicted 
average burr height and surface roughness values in  
 
the fuzzy logic model were 331.946 and 5.03 μm, 
respectively. The regression model has only 
determined the same cutting tool geometry for burr 
height in a comparison with experimental results. The 
fuzzy logic average entry burr height and surface 
quality prediction error are %11.01 and %2.98, 
respectively. On the other hand, these percentages 
were %12.26 and %7.15 in the regression model. 
Table 5 illustrates the measured and predicted results 
for the process with their calculated error. The 
model’s average entry burr height and surface 
roughness graphs are demonstrated in Fig. 8. Beyond 
the predicted and measured result values, it is seen 
that the model predictions have demonstrated a good 
trend with the variation of the radial, axial rake angles 

and cutting-edge radius. Consequently, both models 
can be used in the industrial and academic 
applications since they can give an acceptable range of 
confidence in their prediction results. 
 

 

 
Fig. 4. The generated inputs FIS model 

  
 

  
 



Int. J. Adv. Eng. Pure Sci. 2023, 35(1): 72-80           Quality prediction during flat bottom drilling by fuzzy logic 

76 
 

 
Fig. 5. The schematic of the developed fuzzy logic model
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Fig. 6. The variation of the average entry burr height and surface roughness in a combined mode of the 

influencing cutting tool geometries 
 

 
Fig. 7. The developed fuzzy logic model in this study 

 
Table 4. The developed regression models 

  A B C AB AC BC A2 B2 C2 ABC A2B A2C AB2 AC2 B2C BC2 

Burr 479.03 66.91 -19.28 96.04 8.59 -59.75 3.34 -50.2 -72.01 33.76 12.85 -28.98 -66.88 -87.98 5.32 -57.89 4.68 

Rz 6.35 0.29 -0.11 -0.24 -0.04 0.05 0.006 0.09 -0.14 0.09 -0.11 0.01 -0.25 -0.23 -0.41 -0.11 0.05 
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Table 5. The obtained results in this study 

 
Experimental 

Results Regression Model Results Fuzzy Logic Model Results 

Run 

Radial 
rake 

angle, 
(°) 

Axial 
rake 

angle, 
(°) 

Cuttin
g edge 
radius, 
(μm) 

Entry 
burr 

height, 
(μm) 

Rz 
Botto

m, 
(μm) 

Entry 
burr 

height, 
(μm) 

Rz 
Botto

m, 
(μm) 

% 
Burr 
Error 

% Rz 
Error 

Entry 
burr 

height, 
(μm) 

Rz 
Botto

m, 
(μm) 

% 
Burr 
Error 

% Rz 
Error 

1 6 -2 10 395.33 7.57 353.57 8.01 10.563 5.81 452.18 7.21 14.38 4.76 

2 6 0 10 355.46 7.25 378.16 7.56 6.386 4.28 427.96 7.24 20.40 0.14 

3 6 2 10 296.02 7.25 258.74 7.87 12.593 8.55 373.24 6.97 26.09 3.86 

4 8 -2 10 428.68 6.9 466.73 6.32 8.876 8.41 472.59 6.86 10.24 0.58 

5 8 0 10 404.88 6.68 499.92 6.99 23.475 4.64 413.98 6.94 2.25 3.89 

6 8 2 10 398.87 6.47 389.09 6.76 2.451 4.48 384.03 6.94 3.72 7.26 

7 10 -2 10 534.11 6.43 479.50 5.87 10.225 8.71 508.55 6.71 4.79 4.35 

8 10 0 10 513.02 6.74 521.27 6.23 1.610 7.57 555.31 6.83 8.24 1.34 

9 10 2 10 439.66 6.84 419.03 6.47 4.691 5.41 424.97 6.83 3.34 0.15 

10 6 -2 15 407.59 6.37 389.08 5.97 4.541 6.28 465.94 6.66 14.32 4.55 

11 6 0 15 409.77 6.27 417.02 6.69 1.769 6.70 403.94 6.59 1.42 5.10 

12 6 2 15 310.77 6.05 300.95 6.32 3.160 4.46 389.29 6.32 25.27 4.46 

13 8 -2 15 441.19 6.25 442.50 6.74 0.297 7.84 471.58 6.27 6.89 0.32 

14 8 0 15 418.37 6.21 479.03 6.86 14.500 10.47 427.56 6.35 2.20 2.25 

15 8 2 15 412.64 6.19 371.54 6.45 9.960 4.20 385.72 6.13 6.52 0.97 

16 10 -2 15 377.44 6.38 395.51 6.95 4.788 8.93 376.76 6.17 0.18 3.29 

17 10 0 15 529.00 6.97 440.63 6.37 16.705 8.61 583.23 6.3 10.25 9.61 

18 10 2 15 271.23 6.14 341.73 6.55 25.995 6.68 328.89 6.13 21.26 0.16 

19 6 -2 20 508.28 6.09 492.11 6.41 3.180 5.25 568.72 6.1 11.89 0.16 

20 6 0 20 458.45 6.09 523.40 6.66 14.168 9.36 504.66 6.14 10.08 0.82 

21 6 2 20 382.04 6.07 410.67 5.03 7.494 17.13 458.99 5.84 20.14 3.79 

22 8 -2 20 548.23 6.01 485.78 5.03 11.392 16.31 585.01 5.88 6.71 2.16 

23 8 0 20 519.24 6.11 525.65 6.30 1.235 3.11 522.72 5.95 0.67 2.62 

24 8 2 20 509.65 6 421.51 5.50 17.295 8.33 549.75 5.87 7.87 2.17 

25 10 -2 20 242.96 5.59 331.95 5.80 36.626 3.76 304.8 5.74 25.45 2.68 

26 10 0 20 604.41 5.99 427.50 6.20 29.270 3.51 595.11 5.97 1.54 0.33 

27 10 2 20 224.34 5.34 331.95 5.10 47.969 4.49 294.32 5.81 31.20 8.80 
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Fig. 8. Comparison of the model predictions with the experimental results 

 
 
 
IV. CONCLUSION 
This paper discusses the development of fuzzy logic 
and regression models to predict the average burr 
height the hole entry, and surface quality of a drilled 
specimens on low lead brass alloy. After several trial-
and-error attempts, the accurate and effective types of 
fuzzification and defuzzification methods were 
determined. Moreover, a regression model was also 
developed to predict the responses as well. Afterall, 
the predicted results were compared with the 
experimental ones. The fuzzy logic average entry burr 
height and surface quality prediction error are %11.01 
and %2.98, respectively. On the other hand, these 
percentages were %12.26 and %7.15 in the regression 
model.  Both models are in good agreement with the 
achieved experimental results. Therefore, the 
developed models can be effectively used in to 
predicting the average entry burr height and surface 
quality. Consequently, these models can be helpful to 
neglect several costly experiments to predict the 
drilling responses as well as optimized cutting 
specially in industrial and academic applications.  
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