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Abstract: In this study, the differential equation characterizagioh constant breadth timelike curves are given in Minkowskpace
Ef. Furthermore, a criterion for a timelike curve to be a curfeanstant breadth i is introduced. As an example, the obtained
results are applied to the case that the curvatkirele, ks and are discussed.
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1 Introduction

Euler introduced the constant breadth curves in 1B}.8He considered these special curves in the plane. Latery man
geometers have shown increased interest in the propeff@ar® convex curves. Struik published a brief review of the
most important publications on this subj¢t®]. Also, Ball [1], Barbier|[2], Blaschke[3,4] and Mellish[13] investigated
the properties of plane curves of constant breadth. A spawe of constant breadth was obtained by Fujiwara by taking
a closed curve whose normal plane at a p8itias only one more poir@ in common with the curve, and for which the
distanced(P, Q) is constan{7]. He also defined and studied constant breadth surfaces, Batakal studied the constant
breadth space curvé$g|. Furthermore, Blaschke considered the notion of curve aktamt breadth on the spherg.
Moreover, Reuleaux studied the curves of constant breawith gave the method related to these curves for the
kinematics of machinery15]. Then, constant breadth curves had an importance for esnggesciences and by
considering this fact Tanaka used the constant breadtlesimthe kinematics design of Com follower systgg.

Moreover, Kdse has presented some concepts for spacesafreenstant breadth in Euclidean 3-spacfbj and Sezer
has obtained the differential equations characteriziragspurves of constant breadth and introduced a criterion fo
these curvegl7]. Constant breadth curves in Euclidean 4-space were givekldyden and Kosé€ll]. Moreover,
constant breath curves have been studied in Minkowski sp@zaz Onder and Kocayigit have studied spacelike curves
of constant breadth in Minkowski 4-spa¢8. Later, Onder, Kocayigit and Candan have obtained and studied the
differential equations characterizing constant breadttves in Minkowski 3-spacél4]. Furthermore, Kocayigit and
Onder have showed that constant breadth spacelike cureesoamal curves, helices, and spherical curves in some
special cases im Minkowski 3-spaf®. Moreover, in[12] Magden and Yilmaz have given characterizations curves of
constant breadth in four dimensional Galilean space ingdfrenet-Serret vector fields. Also, Yilmaz and Turgut have
presented partially null curves of constant breadth in SRemannian spadel].
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In this paper, we study the differential equations charaitey constant breadth timelike curves in the Minkowski
4-spaceET. Moreover, we give a criterion characterizing these cuinds’.

2 Differential equations characterizing constant breadthtimelike curves in Ef

Let (C) be a unit speed regular timelike curve in the Minkowski 4espa! with parametrizatior(s) : | € R — Ef.
Denote by{T,N,B,E} the moving Frenet frame along the timelike cut@ in E{. Then, the following Frenet formulae
are given,

T 0k 0 0][T
N| |k O k O [N
B| |0-k 0 ks| |B
E/ 0 0 k0] |E

wherek;, k, andks are the first, second and third curvatures of the c(@)e respectively andT,N,B,E} denote the
tangent, the principal normal, the first binormal and theoeddinormal vector fields, respectively and they satis§ th
following equalities:

<T, T>=-1L<NN>=<B,B>=<E,E>=1,

where<, > is the Lorentzian inner product defined by
< a,b >= —ajb; +aghy + agbz + azbg,

herea= (aj,ap,as,a4), b = (by, by, b3, bs) are the vectors ik [22).

Definition 1. Let (C) be a unit speed regular timelike curve if Bith position vectorr (s). If (C) has parallel tangents

T and T* in opposite direction at the opposite poirtsand a* of the curve and if the distance between these points is
always constant the(C) is called a timelike curve of constant breadth ifl. Moreover, a pair of curve¢C) and (C*)

for which the tangents at the corresponding points are gataind in opposite directions and the distance betweerethes
points is always constant is called a timelike curve pairafstant breadth in E

Let now (C) and(C*) be a pair of unit speed curvesfif with position vectors(s) anda*(s*), wheres ands" are arc
length parameters of the curves, respectively.(Bytand (C*) have parallel tangents in opposite directions at opposite
points. Then the curvfC*) may be represented by the equation

a’(s) = a(s) + mu(s)T(s) + my(s)N(s) + m(s)B(S) + Mu(S)E(S) 1)

wherem(s), (1 <i < 4) are the differentiable functions efwhich is the arc length ofC). Differentiating this equation
with respect te and using the Frenet formulae we obtain

a*(s) _.ds" dmy dmp
8l (1+ m +mzk1)T+(m1k1+ n mskz)N

dmg dmy
ko +—— —myks | B ks+—— | E.
+<mzz+ ds m43> +(mss+ ds)
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SinceT = —T* at the corresponding points (€) and(C*), we have

)

Itis well known that the curvature ¢C) is lim(A¢ /As) = (d¢ /ds) = ki(s), wherep = [5ki(s)dsis the angle between
the tangent of the curv&€) and a given fixed direction at the poiats). Then from(2) we have the following system

my = —mp — f(¢), My = Mapky — My, My = MyPks — Mypky, My = —Mapks. 3)

Here and after we will usg) to show the differentiation with respectgo. In (3), f(¢) =p+p* and,p = k—ll andp* = %
denote the radius of curvatures at the pom@nda*, respectively. Frong3) eliminatingmy, mg andmy their derivatives
we have the following differential equation

d 1 d 1 dzml >] kzdml] k3<d2m1 > d [ 1 d < 1 df) k2 :| kgdf
== (2 em )| -2 2 ) o | = (= ) - 22— =0. (4
a6 [pk3d¢ {Pk2<d¢2 )] ke do | e\ dpz ™) T dg [ pkeds \plods ) ke Tiodg O

Then we can give the following theorem.

Theorem 1.The general differential equation characterizing constareadth timelike curves infs given by(4).

Let now consider the syste(8) again. The distanca between the opposite poindssanda* is the breadth of the curves
and is constant, that is,

d?=||d||? = ||a* — a||* = —m& + mB + m§ + mj = const (5)

Then the systen(i3) may be written as follows:

mp = —f($), M, = Mgpky, My = Mypks — Mppky, M, = —Mepks, My = O, (6)

or

/

My = —Mp, My = —IMy + Mgpky, My = Mypks — Mppksy, My = —Mapks, @)

which are the systems describing the cufie

Let us consider the syste(if) with special chosem; = const . Here, eliminating firstry, mp, mz and their derivatives,
and thenmy, mp, my and their derivatives, respectively, we obtain the follogvlinear differential equations of second
order

U I (8)

(pks) My — (pks) M, + (pks)®mu = 0, pko #0,
(pks) Mg — (pks) Mg+ (pks)*mg =0, pks # 0.

By changing the variablg of the formé& = f0¢p(t)k3(t)dt , these equations can be transformed into the following
differential equations with constant coefficients,
d?my d?mg

F—I—W:O andd—fz—i—mgzo, (9)
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respectively. Then, the general solutions of the diffaedequations in9) are

mg = Acos( J¢ pksdt ) +Bsin ( I pkgdt) ,
(10)
my = Ccos _[g’ pkzdt | +Dsin <fo¢ Pk3dt> _

respectively, wheré, B, C andD are real constants. Substitutifi)) into (7), we obtainA = —D, B=C, and so, the set
of the solutions of the systefi7), in the form

my =c=const, npb =0,
ms = Acosfg’ pkadt+ Bsinjb"’ pksdt, (11)
my = Bcosfép pkadt — Asin_[o¢ pkadt.

Thus the equatior(1) is described and sincd? = ||a* — a||? = const, from (11) the breadth of the curve is
d?=—c?+ A2+ B2

Now, let us return to the syste(®) with m; = 0. By changing the variabl¢ of the formu = _[g’ u(t)dt, u = pks and
eliminatingmy, mp, my and their derivatives we have the linear differential etunat

d?mg d ky
- = =——(= 12
gz e du(k3rr1z), (12)
which has the following solution
o ot b
mg = A;cos| pksdt+ Blsln/ pkgdtf/ cogu(¢) — u(t)]pkaf (t)dt. (13)
0 0 0
Then, the general solution of the systé@) is
my =0,
m = f(¢),
4 ¢ 4 (14)
mg = A1 Cos |, pkadt+Bysin g pkadt+ [ coqu(@) —u(t)]pko f (t)dt,
my = Blcosfép pkgdthlsinfo'b pkadt — fép sinfu(¢) — u(t)]pka f (t)dt,
which determines the constant breadth timelike curvd)rwhereAs, B; are real constants.
Furthermore, in this case, i.ey = 0, from (4) we have the following differential equation
dl1d 1 df ko } ko df
— | —— |- =f|+=—=0. 15
a8 e (paas) ic!| e -

By changing the variabl¢ of the formw = fép pkod¢, (15) becomes

d [kp [/ d?f ks df

e B (L bl 1

dw[kg(dw? )}Jrkzdw 0 (16)
which also determines the constant breadth curyé)n

So far we have dealt with a pair of timelike space curves ltpparallel tangents in opposite directions at correspandin
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points. Now let us consider a simple closed unit speed tieedpace curvéC) in Ef for which the normal plane of
every pointP on the curve meets the curve of a single opposite gQinther thanP. Then, we may give the following
theorem concerning the constant breadth timelike spacesimE;.

Theorem 2.Let (C) be a closed timelike space curve ifi Eaving parallel tangents in opposite directions at the ogifeo
points of the curve. If the chord joining the opposite podftéC) is a double-normal if and only {fC) is a timelike curve
of constant breadth in £

Proof. Let the vectod = a* — a = m T 4+ mpN + mgB + nyE be a double-normal afC) wheremy, mp, mz andmy are
the functions of, the arc length parameter of the curve. Then weldet*) = —(d, T) = my = 0. Thus from(2) we have

dmp dmg dmy
mZE + mSE er4E =0. a7

It follows thatm2 + m§ 4+ m3 = constant, i.e., the breadth ofC) is constant, i.e(C) is a constant breadth timelike curve
in Ef.

Conversely, if(C) is a constant breadth timelike curve i then ||d||?>= —m + m3 + m + mg = constant Then as
shown,my; = 0. This means that is perpendicular to botfi andT*. So,d is the double-normal ofC).

A simple closed timelike curve having parallel tangentsppasite directions at opposite points may be represented by
the system (14). In this case a pair of opposite points of tineecis (a*(¢),a(¢)) for ¢, where 0< ¢ < 2. Since(C)
is a simple closed timelike curve we get(0) = a*(2m). Hence from(14) we have

21T
/ pkadt = 2n11, (n€ 7). (18)
JO

Using the equalityds= pd¢, this formula may be given ag ksds= 2nm, (n € Z). This says that the integral third
curvature of(C) is zero. So, we can give the following corollary.

Corollary 1. The total third curvature of a simple closed timelike cuf@g of constant breadth i&nm, n € Z.

Furthermore, if we tak% = a = constanf then from(16) we have

d*f df

awé + Kd_W 0. (29)

whereK = —1+ a% . If we assum& # +1 , the general solution @fL9) is
Y 9
f = Agsin / K pkadt + By cos / K pkodt +Ci, (20)
0 Jo

whereAy, B, andC; are real constants. Sin¢€) is a simple closed timelike curve, i.e;(0) = a*(2m), from (20) it
follows,

0
/ Kpkodt = 2n7, (n€ 7). 1)
JO

Using the equalityls= pd¢, this formula may be given ag kods= 22 11, (K,n € Z). This says that the integral second
curvature of(C) is 2g 1, (K,n € Z). So, we can give the following corollary.

Corollary 2. The total second curvature of a simple closed constant tintirdelike curveC) with a= ky/ks = constant
is 22 1, where ne Z and K= —1+ a%
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3 A criterion for constant breadth timelike curves in E}

Let us assume thdC) is a constant breadth timelike curvefiif anda (s) denotes the position vector of a generic point
of the curve. If(C) is a closed curve, the position vect(s) must be a periodic function of periad = 21T, wherew is

the total length of(C). Then the curvaturek(s), kx(s) and ks(s) are also periodic of the same period. However,
periodicity of the curvatures and closeness of the curvenatesufficient to guarantee that a timelike space curve is a
constant breadth curve E. That is, if a timelike curve is closed curve (periodic), iaynbe the constant breadth curve
or not. Therefore, to guarantee that a timelike curve is astom breadth curve, we may use the systém
characterizing a constant breadth timelike curve andvottee similar way given in5|.

For this purpose, first let us consider the following Frewetfulas at a generic point on the cul(@,

dT dN dB dE
Writing the formulag22) in terms of¢ and allowing for%"; =k = % we have
daT dN dB dE
— =N,— =T+ pk:B, — = —pkoN + pksE, — = —pk3B. 2
dp ~Nag T HPkeB gp = —PlkeN+pkeE G5 = —pks (23)

Furthermore we can write the Frenet vectdrd\, B, E in the coordinate forms as follows

4 4 4 4
T:i;tieuN:i;nia,B:i;bia,E:i;aa_ (24)

Since{T,N,B,E} is the orthonormal base iEf, putting (24) and their derivatives int¢23), we have the systems of
linear differential equations

?,—f,%:nl, %:nz, 3—53:n3, 3—5;;:n4
?,2,1 =1+ pkoby, % =tr + pkoby, ?14, =t3+ pkobg, 4, =14+ pkaby (25)
d¢ = pkaer — pkony, (é;"z pksgz — pkony, % = pkagz — pkons, % PKags — pkang
d—}? = —pksby, & = —pkaby, de = —pkabs, & = —pkaba.
From(25), we find that{ty,n1, b1, &1}, {to, N2, by, &2}, {t3,n3,b3, &3} and
{ta,n4, by, €4} are four independent solutions of the following system &edéntial equations:
dyn dy,
_ — k = pk k = —pkas. 2
rrs =2, a0 =y +p 24’37 d¢ = pkas—p 24’2, d¢ pkays (26)

If the curve(C) is the constant breadth timelike curve, then the systgthand (26) must be the same system. So, we
observe thaty; = my, Yo = My, Ys = mg, Y4 = my. For brevity, we can writé7) or (26) in the form

dy
%—A(mw, (27)
where
my 0 1 0O O
mp 1 0 pk O
— A
v mg () 0—pkz 0 pks
my 0 0 —pk3 O

(© 2016 BISKA Bilisim Technology
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Obviously,(27) is a special case of the general linear differential equatabbreviated to the form

d
=AY,

m il ai2 - An

mp ap1 @ -+ an (28)
=1 .  [.AO=| . | (4<n

My | an1 @n2 - Ann

wherea;j (t) are assumed to be continuous and periodic of pexig8ee[5,16]). Let the initial conditions by (0) = x;,
1T
(i=1,2,...,n). Letus takex= | xq, X, ..., Xn | and

Y(t,x) = [ml(t,x), my(t,X), ... ,mM(t,X) !

Then the equatio(28) may be written in the for ‘f =A(t)y, g(0) = x as is well known fromi5], the solutiony(t,x)
of this equation is periodic of periad , if "
| A@wExde~o
and
Y(t,x) = {E+M(t)}x, (E= unit matrix),
M(t) = IA®) + 1A + ... +TVAR) + ..,
(1A) (1) = 1OA®M) = [FAE)dE,
(1AL = [SAE) (1" VA)(E)dE, n> 1.

(29)

Furthermore, the following theorem is given[).

Theorem 3.The equation% = A(t) possess a non-vanishing periodic solution of petindf and only if defM(w)) =
0. In particular, in order that the equatio ‘f = A(t)y possess n linearly independent periodic solutions of plesio
the necessary and sufficient condition is thgid) be a zero matrix.

Now, let us apply this theorem to the systéaT). If M(w) = 0, there exist the unit vector functiofis N, B, E of period
w, such that each set of functiofig, n;,b;, &}, (i = 1,2,3,4) form a solution of the equatiof27) corresponding to the
initial conditions(A;, Bi,Ci, D). The curve(C) can be described as follows

S

a(s) :./o

Here, to findT, we can make use of the equation

T(9ds or a@)= [ p(6)T($)d9)

f; A
M _eamen | B =1234), (30)
bi G
& Di

which is established b§29). If we take the initial conditions ag0) = A;, nij(0) =B, bj(0) =C;, &(0) =Dy, (i=1,2,3,4)
such that{A1, Ay, As,A4), (B1,B2,B3,B4), (C1,Cy,C3,Cy), (D1,D2,D3,D4) form an orthonormal frame, then fro(80)
we obtain

ti = (14 M)A+ mpoBi + MG 4+ maDi; (1 =1,2,3,4). (31)
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When the timelike curvéC) is a constant breadth curve, which is also periodic of pesipi is clear that
w
/ ptidd = 0. (32)
0
Hence, form(31) and(32), we have
o mu)dd 8 [ pomiade +Gi [ pmisdd +Di [ pruadd = 0; (i =1,2,3,4
A'/o p(1+my)de + |/0 pmi2de + |/0 pmizde + |/0 pmigdg =0; (i=1,2,3,4).
Since the coefficient determinafit£ 0 in this system, we obtain the equalities
HO) {0 w w
[ o1+ mydd 0= [ pmids = [~ pmisd = |~ pmusds. (33)

which are the conditions for a timelike curve to be constaeabth curve irEf. Here, we can take the perieo= 2711
because of & ¢ < 27 Thus we establish the following corollary.

Corollary 3. Let (C) be a regular curve in Esuch thatpo(¢) > 0, kx(¢) and k(¢) are continuous periodic functions of
periodw. Then(C) is a constant breadth timelike curve and also periodic ofgukoo, if and only if

W I3 ) ©
M(@) =0, [ p(L+mydp 0= [ pmidp — [~ pmiadp = [~ prmcs. (34)
holds, where
M(t) = IA®L) + 1AL + ... + 1AL + ...,

0 1 0 O
1 0 kxz 0 35
A(t) = P2 (35)

O—pkz 0 pk3

0 0 —pks O

and m; (t) are the entries of the matrix ).

By means 0f29) and(35), the matrixM(t) can be constructed and ead}j involves infinitely many integrations. Hence,
we can write the conditiong4) in the following forms:

Jo’p(9)d¢ + [5° f5 Jo p(9)dsdtdp

+ 1 IS S S S5 P(9)[1— A(p)A(s)]dtdsdrdpap+ ... =0

& [5p(9)dtdd + J5° [P 5 Jop(@)[1— A (t)A(s)]dtdsdrdp + ... =0

J8° Jo [ p(#)A (t)dtdsap (36)
IS IS S5 S5 P(9)IA(®) = A(P){A (DA (S) + u(t) u(s) }dtdsdrd pap + ... = 0

J6° 1§ I3 J5 p(9)A (s)u(t)dtdsdrdp

+ I3 o IS S8 S5 JSP(@)A (P ()L — A ()A(S) — p(t)u(s)]dtdsd pdpdp + ... = O,

whereA (&) = p(&)ka(&), u(&) = p(&)ks(&).

(© 2016 BISKA Bilisim Technology
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Example 1Let us consider the special cgse- const, k, = const andkz = const In this case, fron{33), we have

W+ 9 +(1-pAB) % +(1-pA)2Y +.. =0
‘5’.2+(1 PAR) Y 4 (1 kaZ)Z‘g—H =0 @7
ko[ 2 + (1— pAG — p2R) L + (1— pAB — pAR)2LL 1] =0
koka[ %5 + (1—pzk%—p2k2)°§—+ ]1=0,

or
pPH(1- pAB) 2w —sinh(1- pAE)2w] =0,
cost(1— p?@) 2] =1 or (1—p2d)2w =2k, (k€ Z),
ko[(1— p2E — p23)2 @ — sinH(1— pAE — pE) 2 w]] = 0,
koks[(1— p23 — pAZ) % — sint?((1— pA& — p2id) 2] = O,

(38)

wherew = 2kr. It is seen that all of the equaliti€87) or (38) are satisfied simultaneously, if and onlygk, = 0
pks = 0 that is,p = const > 0 andky, k3 = 0. Therefore, only ones with = const > 0 andky, k3 = 0 of the curves with
p = const > 0 andks, ks = const are curves of constant breadth, which are Lorentzian linIEf.

Now let us construct the relation characterizing thesdesrSincepk, = 1, pks = 0, system(7) becomes

—Mp, My = Mg — My, Mg = —Mp, My = 0. (39)

The general solution df39), is
M =%2¢2+cp+c3

=—cp—c
mp le 2) (40)
Mg =2¢°+C¢+C3—C1
Mg = C4.

Consequently, replacin@o0) into (1), we obtain the equation
C c
o (9) = a(9) + (5% +Cop +Ca) T+ (~C1 — N+ (597 + Co + 03 — C1)B + CaE,

which represents the Lorentzian circles with the diameter

I\)H—‘

d=|la*—al = (243 +c5— 2cic3) 2.

In this case, a pair of opposite points of the curvgi$(¢),a(¢)) forp in0< ¢ < 2.

4 Conclusion

In the characterizations and determinations of the spediales and curve pairs are important in the curve theory. A
differential equation or a system of differential equaiovith respect to the curvatures can determinate the speciads

or curve pairs. In this paper, the differential equationarabterizing the constant breadth timelike curves in ardist

Ef. Furthermore, a criterion for a timelike space curve to leediirve of constant breadth &f is given.
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