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Abstract: In this study, the differential equation characterizations of constant breadth timelike curves are given in Minkowski4-space
E4

1. Furthermore, a criterion for a timelike curve to be a curve of constant breadth inE4
1 is introduced. As an example, the obtained

results are applied to the case that the curvaturesk1, k2, k3 and are discussed.
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1 Introduction

Euler introduced the constant breadth curves in 1778[6]. He considered these special curves in the plane. Later, many

geometers have shown increased interest in the properties of plane convex curves. Struik published a brief review of the

most important publications on this subject[19]. Also, Ball [1], Barbier[2], Blaschke[3,4] and Mellish[13] investigated

the properties of plane curves of constant breadth. A space curve of constant breadth was obtained by Fujiwara by taking

a closed curve whose normal plane at a pointP has only one more pointQ in common with the curve, and for which the

distanced(P,Q) is constant[7]. He also defined and studied constant breadth surfaces. Later, Smakal studied the constant

breadth space curves[18]. Furthermore, Blaschke considered the notion of curve of constant breadth on the sphere[4].

Moreover, Reuleaux studied the curves of constant breadth and gave the method related to these curves for the

kinematics of machinery[15]. Then, constant breadth curves had an importance for engineering sciences and by

considering this fact Tanaka used the constant breadth curves in the kinematics design of Com follower systems[20].

Moreover, Köse has presented some concepts for space curves of constant breadth in Euclidean 3-space in[10] and Sezer

has obtained the differential equations characterizing space curves of constant breadth and introduced a criterion for

these curves[17]. Constant breadth curves in Euclidean 4-space were given byMağden and Köse[11]. Moreover,

constant breath curves have been studied in Minkowski space. Kazaz,Önder and Kocayiğit have studied spacelike curves

of constant breadth in Minkowski 4-space[8]. Later, Önder, Kocayiğit and Candan have obtained and studied the

differential equations characterizing constant breadth curves in Minkowski 3-space[14]. Furthermore, Kocayiğit and

Önder have showed that constant breadth spacelike curves are normal curves, helices, and spherical curves in some

special cases im Minkowski 3-space[9]. Moreover, in[12] Mağden and Yılmaz have given characterizations curves of

constant breadth in four dimensional Galilean space in terms Frenet-Serret vector fields. Also, Yılmaz and Turgut have

presented partially null curves of constant breadth in Semi-Riemannian space[21].
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In this paper, we study the differential equations characterizing constant breadth timelike curves in the Minkowski

4-spaceE4
1. Moreover, we give a criterion characterizing these curvesin E4

1.

2 Differential equations characterizing constant breadthtimelike curves in E4
1

Let (C) be a unit speed regular timelike curve in the Minkowski 4-space E4
1 with parametrizationα(s) : I ⊂ R → E4

1.

Denote by{T,N,B,E} the moving Frenet frame along the timelike curve(C) in E4
1. Then, the following Frenet formulae

are given,











T′

N′

B′

E′











=











0 k1 0 0

k1 0 k2 0

0 −k2 0 k3

0 0 −k3 0





















T
N
B
E











wherek1, k2 andk3 are the first, second and third curvatures of the curve(C), respectively and{T,N,B,E} denote the

tangent, the principal normal, the first binormal and the second binormal vector fields, respectively and they satisfy the

following equalities:

< T,T >=−1,< N,N >=< B,B >=< E,E >= 1,

where<,> is the Lorentzian inner product defined by

< a,b >=−a1b1+a2b2+a3b3+a4b4,

herea= (a1,a2,a3,a4), b = (b1,b2,b3,b4) are the vectors inE4
1 [22].

Definition 1. Let (C) be a unit speed regular timelike curve in E4
1 with position vectorα(s). If (C) has parallel tangents

T andT∗ in opposite direction at the opposite pointsα andα∗ of the curve and if the distance between these points is

always constant then(C) is called a timelike curve of constant breadth in E4
1. Moreover, a pair of curves(C) and(C∗)

for which the tangents at the corresponding points are parallel and in opposite directions and the distance between these

points is always constant is called a timelike curve pair of constant breadth in E41.

Let now(C) and(C∗) be a pair of unit speed curves inE4
1 with position vectorsα(s) andα∗(s∗), wheres ands∗ are arc

length parameters of the curves, respectively. Let(C) and(C∗) have parallel tangents in opposite directions at opposite

points. Then the curve(C∗) may be represented by the equation

α∗(s) = α(s)+m1(s)T(s)+m2(s)N(s)+m3(s)B(s)+m4(s)E(s) (1)

wheremi(s), (1≤ i ≤ 4) are the differentiable functions ofs which is the arc length of(C). Differentiating this equation

with respect tosand using the Frenet formulae we obtain

α∗(s)
ds

= T∗ ds∗

ds
=

(

1+
dm1

ds
+m2k1

)

T +

(

m1k1+
dm2

ds
−m3k2

)

N

+

(

m2k2+
dm3

ds
−m4k3

)

B+

(

m3k3+
dm4

ds

)

E.
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SinceT =−T∗ at the corresponding points of(C) and(C∗), we have































(

1+ dm1
ds +m2k1

)

=− ds∗
ds ,

(

m1k1+
dm2
ds −m3k2

)

= 0,
(

m2k2+
dm3
ds −m4k3

)

= 0,
(

m3k3+
dm4
ds

)

= 0.

(2)

It is well known that the curvature of(C) is lim(∆ϕ/∆s) = (dϕ/ds) = k1(s), whereϕ =
∫ s

0 k1(s)ds is the angle between

the tangent of the curve(C) and a given fixed direction at the pointα(s). Then from(2) we have the following system

m
′

1 =−m2− f (ϕ), m
′

2 = m3ρk2−m1, m
′

3 = m4ρk3−m2ρk2, m
′

4 =−m3ρk3. (3)

Here and after we will use(′) to show the differentiation with respect toϕ . In (3), f (ϕ) = ρ+ρ∗ and,ρ = 1
k1

andρ∗ = 1
k∗1

denote the radius of curvatures at the pointsα andα∗, respectively. From(3) eliminatingm2, m3 andm4 their derivatives

we have the following differential equation

d
dϕ

[

1
ρk3

d
dϕ

[

1
ρk2

(

d2m1

dϕ2 −m1

)]

−
k2

k3

dm1

dϕ

]

+
k3

k2

(

d2m1

dϕ2 −m1

)

+
d

dϕ

[

1
ρk3

d
dϕ

(

1
ρk2

d f
dϕ

)

−
k2

k3
f

]

+
k3

k2

d f
dϕ

= 0. (4)

Then we can give the following theorem.

Theorem 1.The general differential equation characterizing constant breadth timelike curves in E41 is given by(4).

Let now consider the system(3) again. The distanced between the opposite pointsα andα∗ is the breadth of the curves

and is constant, that is,

d2 = ‖d‖2 = ‖α∗−α‖2 =−m2
1+m2

2+m2
3+m2

4 = const. (5)

Then the system(3) may be written as follows:

m2 =− f (ϕ), m
′

2 = m3ρk2, m
′

3 = m4ρk3−m2ρk2, m
′

4 =−m3ρk3, m1 = 0, (6)

or

m
′

1 =−m2, m
′

2 =−m1+m3ρk2, m
′

3 = m4ρk3−m2ρk2, m
′

4 =−m3ρk3, (7)

which are the systems describing the curve(1).

Let us consider the system(7) with special chosenm1 = const. . Here, eliminating firstm1, m2, m3 and their derivatives,

and thenm1, m2, m4 and their derivatives, respectively, we obtain the following linear differential equations of second

order






(ρk3)m
′′

4− (ρk3)
′
m

′

4+(ρk3)
3m4 = 0, ρk2 6= 0,

(ρk3)m
′′

3− (ρk3)
′
m

′

3+(ρk3)
3m3 = 0, ρk3 6= 0.

(8)

By changing the variableϕ of the form ξ =
∫ ϕ

0 ρ(t)k3(t)dt , these equations can be transformed into the following

differential equations with constant coefficients,

d2m4

dξ 2 +m4 = 0 and
d2m3

dξ 2 +m3 = 0, (9)
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respectively. Then, the general solutions of the differential equations in(9) are















m3 = Acos

(

∫ ϕ
0 ρk3dt

)

+Bsin

(

∫ ϕ
0 ρk3dt

)

,

m4 =Ccos

(

∫ ϕ
0 ρk3dt

)

+Dsin

(

∫ ϕ
0 ρk3dt

)

.
(10)

respectively, whereA, B, C andD are real constants. Substituting(10) into (7), we obtainA=−D, B=C, and so, the set

of the solutions of the system(7), in the form











m1 = c= const., m2 = 0,

m3 = Acos
∫ ϕ

0 ρk3dt+Bsin
∫ ϕ

0 ρk3dt,

m4 = Bcos
∫ ϕ

0 ρk3dt−Asin
∫ ϕ

0 ρk3dt.











(11)

Thus the equation(1) is described and sinced2 = ‖α∗ − α‖2 = const., from (11) the breadth of the curve is

d2 =−c2+A2+B2.

Now, let us return to the system(6) with m1 = 0. By changing the variableϕ of the formu =
∫ ϕ

0 µ(t)dt, µ = ρk3 and

eliminatingm1, m2, m4 and their derivatives we have the linear differential equation

d2m3

du2 +m3 =−
d
du

(
k2

k3
m2), (12)

which has the following solution

m3 = A1cos
∫ ϕ

0
ρk3dt+B1sin

∫ ϕ

0
ρk3dt−

∫ ϕ

0
cos[u(ϕ)−u(t)]ρk2 f (t)dt. (13)

Then, the general solution of the system(6) is























m1 = 0,

m2 = f (ϕ),

m3 = A1cos
∫ ϕ
0 ρk3dt+B1sin

∫ ϕ
0 ρk3dt+

∫ ϕ
0 cos[u(ϕ)−u(t)]ρk2 f (t)dt,

m4 = B1cos
∫ ϕ
0 ρk3dt−A1sin

∫ ϕ
0 ρk3dt−

∫ ϕ
0 sin[u(ϕ)−u(t)]ρk2 f (t)dt,

(14)

which determines the constant breadth timelike curve in(1) whereA1, B1 are real constants.

Furthermore, in this case, i.e.,m1 = 0 , from(4) we have the following differential equation

d
dϕ

[

1
ρk3

d
dϕ

(

1
ρk2

d f
dϕ

)

−
k2

k3
f

]

+
k2

k3

d f
dϕ

= 0. (15)

By changing the variableϕ of the formw=
∫ ϕ

0 ρk2dϕ , (15) becomes

d
dw

[

k2

k3

(

d2 f
dw2 − f

)]

+
k3

k2

d f
dw

= 0, (16)

which also determines the constant breadth curve in(1).

So far we have dealt with a pair of timelike space curves having parallel tangents in opposite directions at corresponding
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points. Now let us consider a simple closed unit speed timelike space curve(C) in E4
1 for which the normal plane of

every pointP on the curve meets the curve of a single opposite pointQ other thanP. Then, we may give the following

theorem concerning the constant breadth timelike space curves inE4
1.

Theorem 2.Let (C) be a closed timelike space curve in E4
1 having parallel tangents in opposite directions at the opposite

points of the curve. If the chord joining the opposite pointsof (C) is a double-normal if and only if(C) is a timelike curve

of constant breadth in E41.

Proof. Let the vectord = α∗−α = m1T +m2N+m3B+m4E be a double-normal of(C) wherem1, m2, m3 andm4 are

the functions ofs, the arc length parameter of the curve. Then we get〈d,T∗〉=−〈d,T〉= m1 = 0. Thus from(2) we have

m2
dm2

ds
+m3

dm3

ds
+m4

dm4

ds
= 0. (17)

It follows thatm2
2+m2

3+m2
4 = constant, i.e., the breadth of(C) is constant, i.e.,(C) is a constant breadth timelike curve

in E4
1.

Conversely, if(C) is a constant breadth timelike curve inE4
1 then ‖d‖2= −m2

1 +m2
2 +m2

3 +m2
4 = constant. Then as

shown,m1 = 0. This means thatd is perpendicular to bothT andT∗. So,d is the double-normal of(C).

A simple closed timelike curve having parallel tangents in opposite directions at opposite points may be represented by

the system (14). In this case a pair of opposite points of the curve is(α∗(ϕ),α(ϕ)) for ϕ , where 0≤ ϕ ≤ 2π . Since(C)

is a simple closed timelike curve we getα∗(0) = α∗(2π). Hence from(14) we have

∫ 2π

0
ρk3dt = 2nπ , (n∈ Z). (18)

Using the equalityds= ρdϕ , this formula may be given as
∫

C k3ds= 2nπ , (n ∈ Z). This says that the integral third

curvature of(C) is zero. So, we can give the following corollary.

Corollary 1. The total third curvature of a simple closed timelike curve(C) of constant breadth is2nπ , n∈ Z.

Furthermore, if we takek2
k3

= a= constant, then from(16) we have

d3 f
dw3 +K

d f
dw

= 0. (19)

whereK =−1+ 1
a2 . If we assumeK 6=±1 , the general solution of(19) is

f = A2sin
∫ ϕ

0
Kρk2dt+B2cos

∫ ϕ

0
Kρk2dt+C1, (20)

whereA2, B2 andC1 are real constants. Since(C) is a simple closed timelike curve, i.e.,α∗(0) = α∗(2π), from (20) it

follows,
∫ ϕ

0
Kρk2dt = 2nπ , (n∈ Z). (21)

Using the equalityds= ρdϕ , this formula may be given as
∫

C k2ds= 2 n
K π , (K,n∈ Z). This says that the integral second

curvature of(C) is 2n
K π , (K,n∈ Z). So, we can give the following corollary.

Corollary 2. The total second curvature of a simple closed constant breadth timelike curve(C) with a= k2/k3 = constant

is 2 n
K π , where n∈ Z and K=−1+ 1

a2 .
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3 A criterion for constant breadth timelike curves in E4
1

Let us assume that(C) is a constant breadth timelike curve inE4
1 andα(s) denotes the position vector of a generic point

of the curve. If(C) is a closed curve, the position vectorα(s) must be a periodic function of periodω = 2π , whereω is

the total length of(C). Then the curvaturesk1(s), k2(s) and k3(s) are also periodic of the same period. However,

periodicity of the curvatures and closeness of the curve arenot sufficient to guarantee that a timelike space curve is a

constant breadth curve inE4
1. That is, if a timelike curve is closed curve (periodic), it may be the constant breadth curve

or not. Therefore, to guarantee that a timelike curve is a constant breadth curve, we may use the system(7)

characterizing a constant breadth timelike curve and follow the similar way given in[5].

For this purpose, first let us consider the following Frenet formulas at a generic point on the curve(C),

dT
ds

= k1N,
dN
ds

= k1T + k2B,
dB
ds

=−k2N+ k3E,
dE
ds

=−k3B. (22)

Writing the formulas(22) in terms ofϕ and allowing fordϕ
ds = k1 =

1
ρ we have

dT
dϕ

= N,
dN
dϕ

= T +ρk2B,
dB
dϕ

=−ρk2N+ρk3E,
dE
dϕ

=−ρk3B. (23)

Furthermore we can write the Frenet vectorsT, N, B, E in the coordinate forms as follows

T =
4

∑
i=1

tiei ,N =
4

∑
i=1

niei ,B =
4

∑
i=1

biei ,E =
4

∑
i=1

εiei . (24)

Since{T,N,B,E} is the orthonormal base inE4
1, putting (24) and their derivatives into(23), we have the systems of

linear differential equations























dt1
dϕ = n1,

dt2
dϕ = n2,

dt3
dϕ = n3,

dt4
dϕ = n4

dn1
dϕ = t1+ρk2b1,

dn2
dϕ = t2+ρk2b2,

dn3
dϕ = t3+ρk2b3,

dn4
dϕ = t4+ρk2b4

db1
dϕ = ρk3ε1−ρk2n1,

db2
dϕ = ρk3ε2−ρk2n2,

db3
dϕ = ρk3ε3−ρk2n3,

db4
dϕ = ρk3ε4−ρk2n4

dε1
dϕ =−ρk3b1,

dε2
dϕ =−ρk3b2,

dε3
dϕ =−ρk3b3,

dε4
dϕ =−ρk3b4.























(25)

From(25), we find that{t1,n1,b1,ε1}, {t2,n2,b2,ε2}, {t3,n3,b3,ε3} and

{t4,n4,b4,ε4} are four independent solutions of the following system of differential equations:

dψ1

dϕ
= ψ2,

dψ2

dϕ
= ψ1+ρk2ψ3,

dψ3

dϕ
= ρk3ψ4−ρk2ψ2,

dψ4

dϕ
=−ρk3ψ3. (26)

If the curve(C) is the constant breadth timelike curve, then the systems(7) and(26) must be the same system. So, we

observe thatψ1 = m1, ψ2 = m2, ψ3 = m3, ψ4 = m4. For brevity, we can write(7) or (26) in the form

dψ
dϕ

= A(ϕ)ψ , (27)

where

ψ =











m1

m2

m3

m4











,A(ϕ) =











0 1 0 0

1 0 ρk2 0

0 −ρk2 0 ρk3

0 0 −ρk3 0











.

c© 2016 BISKA Bilisim Technology



CMMA 1, No. 1, 52-61 (2016) /ntmsci.com/cmma 58

Obviously,(27) is a special case of the general linear differential equations abbreviated to the form







































dψ
dt = A(t)ψ ,

ϕ =















m1

m2

...

mn















, A(t) =















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann















, (4≤ n)
(28)

whereai j (t) are assumed to be continuous and periodic of periodω (See[5,16]). Let the initial conditions beψi(0) = xi ,

(i = 1,2, ...,n). Let us takex=
[

x1, x2, ..., xn

]T
and

ψ(t,x) =
[

m1(t,x), m2(t,x), ... ,mn(t,x)
]T

.

Then the equation(28) may be written in the formdψ
dt = A(t)ψ , ψ(0) = x as is well known from[5], the solutionψ(t,x)

of this equation is periodic of periodω , if
∫ ω

0
A(ξ )ψ(ξ ,x)dξ = 0,

and






















ψ(t,x) = {E+M(t)}x, (E = unit matrix),

M(t) = IA(t)+ I (2)A(t)+ ...+ I (n)A(t)+ ...,

(IA)(t) = I (I)A(t) =
∫ t
0 A(ξ )dξ ,

(I (n)A)(t) =
∫ t
0 A(ξ )(I (n−1)A)(ξ )dξ , n> 1.

(29)

Furthermore, the following theorem is given in[5].

Theorem 3.The equationsdψ
dt =A(t)ψ possess a non-vanishing periodic solution of periodω , if and only if det(M(ω)) =

0. In particular, in order that the equationsdψ
dt = A(t)ψ possess n linearly independent periodic solutions of period ω ,

the necessary and sufficient condition is that M(ω) be a zero matrix.

Now, let us apply this theorem to the system(27). If M(ω) = 0, there exist the unit vector functionsT, N, B, E of period

ω , such that each set of functions{ti,ni ,bi ,εi}, (i = 1,2,3,4) form a solution of the equation(27) corresponding to the

initial conditions(Ai ,Bi ,Ci ,Di). The curve(C) can be described as follows

α(s) =
∫ s

0
T(s)ds or α(ϕ) =

∫ ϕ

0
ρ(ϕ)T(ϕ)d(ϕ).

Here, to findT, we can make use of the equation











ti
ni

bi

εi











= {E+M(ϕ)}











Ai

Bi

Ci

Di











, (i = 1,2,3,4), (30)

which is established by(29). If we take the initial conditions asti(0) =Ai , ni(0) =Bi , bi(0) =Ci , εi(0) =Di , (i = 1,2,3,4)

such that(A1,A2,A3,A4), (B1,B2,B3,B4), (C1,C2,C3,C4), (D1,D2,D3,D4) form an orthonormal frame, then from(30)

we obtain

ti = (1+m11)Ai +m12Bi +m13Ci +m14Di ; (i = 1,2,3,4). (31)
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When the timelike curve(C) is a constant breadth curve, which is also periodic of periodω , it is clear that

∫ ω

0
ρtidϕ = 0. (32)

Hence, form(31) and(32), we have

Ai

∫ ω

0
ρ(1+m11)dϕ +Bi

∫ ω

0
ρm12dϕ +Ci

∫ ω

0
ρm13dϕ +Di

∫ ω

0
ρm14dϕ = 0; (i = 1,2,3,4).

Since the coefficient determinant∆ 6= 0 in this system, we obtain the equalities

∫ ω

0
ρ(1+m11)dϕ = 0=

∫ ω

0
ρm12dϕ =

∫ ω

0
ρm13dϕ =

∫ ω

0
ρm14dϕ , (33)

which are the conditions for a timelike curve to be constant breadth curve inE4
1. Here, we can take the periodω = 2π

because of 0≤ ϕ ≤ 2π . Thus we establish the following corollary.

Corollary 3. Let (C) be a regular curve in E41 such thatρ(ϕ)> 0, k2(ϕ) and k3(ϕ) are continuous periodic functions of

periodω . Then(C) is a constant breadth timelike curve and also periodic of period ω , if and only if

M(ω) = 0,
∫ ω

0
ρ(1+m11)dϕ = 0=

∫ ω

0
ρm12dϕ =

∫ ω

0
ρm13dϕ =

∫ ω

0
ρm14dϕ , (34)

holds, where






































M(t) = IA(t)+ I (2)A(t)+ ...+ I (n)A(t)+ ...,

A(t) =















0 1 0 0

1 0 ρk2 0

0 −ρk2 0 ρk3

0 0 −ρk3 0















(35)

and mi j (t) are the entries of the matrix M(t).

By means of(29) and(35), the matrixM(t) can be constructed and eachmi j involves infinitely many integrations. Hence,

we can write the conditions(34) in the following forms:



























































∫ ω
0 ρ(ϕ)dϕ +

∫ ω
0

∫ r
0

∫ s
0 ρ(ϕ)dsdtdϕ

+
∫ ω

0

∫ φ
0

∫ p
0

∫ r
0

∫ s
0 ρ(ϕ)[1−λ (p)λ (s)]dtdsdrdpdϕ+ ...= 0

∫ ω
0

∫ s
0 ρ(ϕ)dtdϕ +

∫ ω
0

∫ p
0

∫ r
0

∫ s
0 ρ(ϕ)[1−λ (t)λ (s)]dtdsdrdϕ + ...= 0

∫ ω
0

∫ r
0

∫ s
0 ρ(ϕ)λ (t)dtdsdϕ

+
∫ ω

0

∫ φ
0

∫ p
0

∫ r
0

∫ s
0 ρ(ϕ)[λ (t)−λ (p){λ (t)λ (s)+ µ(t)µ(s)}]dtdsdrdpdϕ+ ...= 0

∫ ω
0

∫ p
0

∫ r
0

∫ s
0 ρ(ϕ)λ (s)µ(t)dtdsdrdϕ

+
∫ ω

0

∫ q
0

∫ φ
0

∫ p
0

∫ r
0

∫ s
0 ρ(ϕ)λ (p)µ(t)[1−λ (t)λ (s)− µ(t)µ(s)]dtdsdpdφdϕ+ ...= 0,

(36)

whereλ (ξ ) = p(ξ )k2(ξ ), µ(ξ ) = p(ξ )k3(ξ ).
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Example 1.Let us consider the special caseρ = const., k2 = const. andk3 = const. In this case, from(33), we have



























ω + ω3

3! +(1−ρ2k2
2)

ω5

5! +(1−ρ2k2
2)

2 ω7

7! + ...= 0
ω2

2! +(1−ρ2k2
2)

ω4

4! +(1−ρ2k2
2)

2 ω6

6! + ...= 0

k2[
ω3

3! +(1−ρ2k2
2−ρ2k2

3)
ω5

5! +(1−ρ2k2
2−ρ2k2

3)
2 ω7

7! + ...] = 0

k2k3[
ω4

4! +(1−ρ2k2
2−ρ2k2

3)
ω6

6! + ...] = 0,

(37)

or


























ρ2k2
2(1−ρ2k2

2)
1
2 ω − sinh[(1−ρ2k2

2)
1
2 ω ] = 0,

cosh[(1−ρ2k2
2)

1
2 ω ] = 1 or (1−ρ2k2

2)
1
2 ω = 2kπ , (k∈ Z),

k2[(1−ρ2k2
2−ρ2k2

3)
1
2 ω − sinh[(1−ρ2k2

2−ρ2k2
3)

1
2 ω ]] = 0,

k2k3[(1−ρ2k2
2−ρ2k2

3)
ω2

4 − sinh2[(1−ρ2k2
2−ρ2k2

3)
1
2 ω ]] = 0,

(38)

whereω = 2kπ . It is seen that all of the equalities(37) or (38) are satisfied simultaneously, if and only ifρk2 = 0,

ρk3 = 0 that is,ρ = const. > 0 andk2,k3 = 0. Therefore, only ones withρ = const. > 0 andk2,k3 = 0 of the curves with

ρ = const. > 0 andk2,k3 = const. are curves of constant breadth, which are Lorentzian circles in E4
1.

Now let us construct the relation characterizing these circles. Sinceρk2 = 1,ρk3 = 0, system(7) becomes

m
′

1 =−m2, m
′

2 = m3−m1, m
′

3 =−m2, m
′

4 = 0. (39)

The general solution of(39), is


























m1 =
c1
2 ϕ2+ c2ϕ + c3

m2 =−c1ϕ − c2

m3 =
c1
2 ϕ2+ c2ϕ + c3− c1

m3 = c4.

(40)

Consequently, replacing(40) into (1), we obtain the equation

α∗(ϕ) = α(ϕ)+ (
c1

2
ϕ2+ c2ϕ + c3)T +(−c1ϕ − c2)N+(

c1

2
ϕ2+ c2ϕ + c3− c1)B+ c4E,

which represents the Lorentzian circles with the diameter

d = ‖α∗−α‖= (c2
1+ c2

2+ c2
4−2c1c3)

1
2 .

In this case, a pair of opposite points of the curve is(α∗(ϕ),α(ϕ)) for ϕ in 0≤ ϕ ≤ 2π .

4 Conclusion

In the characterizations and determinations of the specialcurves and curve pairs are important in the curve theory. A

differential equation or a system of differential equations with respect to the curvatures can determinate the specialcurves

or curve pairs. In this paper, the differential equations characterizing the constant breadth timelike curves in are studied

E4
1. Furthermore, a criterion for a timelike space curve to be the curve of constant breadth inE4

1 is given.
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