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SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND
THE WEINSTEIN-GABOR TRANSFORMS

NEJIB BEN SALEM AND AMGAD RASHED NASR

ABSTRACT. The aim of this paper is to prove new uncertainty principles for the
Weinstein and the Weinstein-Gabor transforms associated with the Weinstein
operator defined on the half space R‘j_ by

89 2a4+1 8
>

Aw = —
—1 (9117? Td 8xd,1

; d>2, a>—-1/2.

More precisely, we give a Shapiro-type uncertainty inequality for the Weinstein
transform that is, for s > 0 and {¢n }» be an orthonormal sequence in Li(Ri)

s I e
> (=] (z)n”ig(Rd + 1I1¢1° fw(¢>n)||L2 ®%) ) > KN 2akarT,

where K is a constant which depends only on d, s and a.
Next, we establish an analogous inequality for the Weinstein-Gabor transform

1. INTRODUCTION

H.S. Shapiro proved in [15] a number of uncertainty inequalities for orthonormal
sequences that are stronger then corresponding inequalities for a single function.
Quantitative versions of H.S. Shapiro’s results appeared in a recent article by Ph.
Jaming and A. Powell, [10], where in particular the following sharp Mean-Dispersion
inequality is obtained. Let {ex}r>0 be an orthonormal sequence in L?(R) then for
all N >0

N
N+1)(2N +1
S (M(e)? + A%er) + MFler))? + A2(F(er)) = T DENAD,
k=0
The equality is attained for the sequence of Hermite function
Here, M(ey) = [ptlex|?dt and  A%(ex) = ([p(t — M(ex))?|ex|*dt), which are
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called the time mean of ey, the variance of ey respectively and F is the Fourier
transform defined for f € L'(R) N L%(R) by

(L1) fuxozem*ﬂéfmmﬁﬁm

and extended from L'(R) N L?(R) to L?(R) in the usual way.

Next E. Malinnikova in [11] gives the following Shapiro type inequality which is a
generalization of the Mean-Dispersion principle :

let s > 0 and {¢,}, be an orthonormal sequence in L?*(R%), then

N

S (72 (0n) + 7H(F(B0)) = ONH/2

n=1

where C depends only on d and s, here  75(¢n) = [pa [2]%]¢n|*dx.

The purpose of this paper is to extend these type inequalities to the Weintsein
and Weintsein-Gabor transforms.
In order to describe our paper, we first need to introduce some notations.
Throughout this paper, « is a real number, o > —1/2. We consider the Weinstein
operator (also called Laplace-Bessel operator), (see [1, 2]), defined on R%~! x (0, 00)
by

d
0 2+1 O
Ap =S L 227 C o d>2, a>—1/2.
W ;3I?+ Tq OTg—1 =5« /

For d > 3, the operator Ay is the Laplace-Beltrami operator on the Riemanian
space R4~1 x (0,00) equipped with the metric [1]

d
ds? = x§a+2/(d72) Z dx?.

i=1

The Weinstein operator has several applications in pure and applied Mathematics
especially in Fluid Mechanics (see e.g. [5, 14]). For 1 < p < oo, we denote by

Lg(R‘i) the Lebesgue space consisting of measurable functions f on R‘i =R x
R, equipped with the norm

1/p
Hfmm1=<4dﬂﬂw@VMMWJm> 1<p<c
+

[flLge re = ess sup |f(x)] < oo,

$ERi
where for © = (21,...,24-1,24) = (2',24) and
Iza—&-l x(zia-u
dug(z) = do’ day = dzy ... dzg.
Hel®) = e T T 1) T e e )

For f € L. (R%), the Weinstein (or Laplace-Bessel) transform is defined by

FaP€0 = [ 16" e ) o wata) o' )
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where j, is the spherical Bessel function :

; _ - (=" Zy\2
Ja(z2) =T(a+1) kzﬂm(i) k zeC.

We recall the generalized translation operator 7., z € Ri associated with the
Weinstein operator Ayy is defined for a continuous function f on Ri, even with
respect to the last variable by

~ Tla+1)
= V(@ T 1/7)

where 2’ +y' = (v1 +y1,...,Ta—1 + Ya—1)-

o) / f(:v’+y’; x3+y3+2w§y3cose) (sin6)* 4, yeRY,
0

Also, we denote by L?, ;1 < p < oo the space of measurable functions f on R‘i X Ri
with respect to the measure dwg(x,y) = dpe(x) due(y) such that

P

1Pz, ety = ([ PP deawn) | <oo, 1<p< .
RixRi

1Fll e sty = ess sup |Fla,y)] < oo.
x,yeRi

For any function g € Li(R‘i) and any y € Ri, we define the modulation of g by y

as
Myg =Gy = Fw (\/7.:/|9|2> s

Due to Plancheral theorem and the invariance of the measure u, under the gener-
alized translation 7, we have for all g € L2 (R%)
||9y||Lg(Rd+) = HgHLi(Ri)-

The Weinstein—Gabor transform is defined as follows :
Let g be in LZ(R4), for a function f € LZ(R%) we define its Weinstein-Gabor
transform by

12 Gyt = [ ST 5 dua(s) = o 7 (/T ).

Here *yy denotes the convolution product associated with the Weinstein operator
given by

frw g(x) = (W) T=2(9)(y)dpay)-

S
Ry
The Weinstein Gabor transform satisfies the following properties :

1) For any f,g in LZ(R%),

(
(1.3) 1Gaf Lz (me xre) < [f 1|2 @e)llglle @e)-
(2) For any f,g in L2(R%), we have the following Plancherel-type formula
4)

(1.4

1Gg /L2 re xray = fllLz ®e) 9]l 2 e )-
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For more details see [12].

As we have mentioned above, we will here concentrate on Shapiro-type uncer-
tainty inequality for the Weinstein transform and for the Weinstein-Gabor trans-
form. Our first result is the following inequality :

For s > 0 and ¢ = {¢,}5° be an orthonormal sequence in L2 (R%), we have

N
Z(|Hx|s¢n”ia(mi) + |||f‘s]:W(¢n)H%g(Ri)) > KN'teasar,

n=1
where K depends only on d, s and a.
Next, we establish an analogous of the previous inequality for the Weinstein

Gabor transform as follows
N

Z(Hlx|sgg¢n||2L3a (RL xR) + |||£‘sgg(¢)n)”iga (Rixﬂ{i)) > K/N1+2”+Sd+17

n=1
where K’ depends only on d, s and a.
2. SHAPIRO TYPE UNCERTAINTY INEQUALITY FOR THE WEINSTEIN TRANSFORM
In this section we shall prove the above mentioned of Shapiro’s inequality for the
Weinstein transform. Our proof is inspired from the results of Malinnikova [11].
As consequence of Heisenberg-type inequality for the Weinstein transform see [3,

Theorem 3.4], we have the following lemma.

Lemma 2.1. Let s > 0 and let ¢ = {¢n}n be an orthonormal sequence in L2 (R%).
Then there exists jo € Z such that

max (|||x|s¢"||L§(Ri)’ ||‘£|S‘FW(¢TL)||L3(R1)> 2 25(j¢71)-

Theorem 2.1. Let s > 0 and let ¢ = {¢pn}n be an orthonormal sequence in
LZ(RY). Then for all N > 1,
(2.1)
N 2a+d+1 T 3\ Tt

) . (4 —1)77a T (T(a+ 4£2)) .
Z(|||$| ¢’GH§,3(R1)+H|£‘ ]:W((bn)H%g(Ri)) Z (2a+d)(5+3s)+6s5+5) . N1+20+d+1'
n=1 2 2afd+1

Proof. Let j be an integer and P; = {n : max (H\m|s¢nHlL§(Ri); ||£|S]:W(¢T7’)Hi/§s(]1§i)) € [2j_1,2j)}.

First, from Lemma 2.1 there exists j, such that P; is empty for all j < jg.
Let j > jg, then for all n € P;, we have

[ ¢nllrs me) < 2%, &1 Fw (o)l rz re) < 27°.

Let N; be the number of element in P;, then by [3, Lemma 4.3],
-2
N, < o Batdli-s)tats (F <a + d+ 3)> 4i(2atd i)
- 2

- .
The number of elements in (J;_;, P is less then ¢ q,q 4** T4 where

(2a+d) (4+5)+4+3s
B

I e — d+3\\ "’
Csad = “pagari —1 (\*T T
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is a constant that does not depend on k.
Now, if N > 2¢, 4.4 47¢(20+d+1) “then there exists ks > jg such that
208 od 4(k¢71)(2a+d+1) S N < QCS d 4k¢(20¢+d+1).

Therefore at least half elements of the set {1,..., N} does not belong to | J¥~
and then

]]d)

N
S (12 6nll2 gy + 1€ Fir (D)2 e

> Zmax(|||x\ Dull2s e 111 F (60) 12 e )
n=1
> E4s<k¢—1>
- 2
N N m
> - -
— 225+1 <QCS,(x,d)

1 S
= — Nltzagar,

22541 % (2¢4 o, q) TF T

If N <2¢50.4 47¢(2a+d+1) then from Lemma 2.1

N
> (I 0ul2 gty + NIEFFw (90) 125 s )) = Zmax (Ml 0l gt 11E1 Fur ()12 e )
n= =
> N225(J¢ 9]
N N 2(1+Sd+1
> (=
- 22 (205’%(1)
1 _—
= < N T2a+d+1
228 X (2¢4,q,q) 7T AHT
Then, we get the desired result. O

3. SHAPIRO TYPE UNCERTAINTY INEQUALITY FOR THE WEINSTEIN-(GABOR
TRANSFORM

In this section we will show the Shapiro-type uncertainty inequality for the
Weinstein-Gabor transform. In order to prove this, we introduce a pair of or-
thogonal projections on L2_(R% x R%).

Let g € L2(R%) be a nonzero function such that HgHL2 = 1. We define the

(RY)
orthogonal projection P, by

Py L2 (RE xRE) — L2 (RL x RY),
(3.1) PoFG) = [ FEnW (€ viny)dua()
R4 xRi

1

Wy, vi2,y) = TGy *w §u (=€) = Gg(gz,y)(& V).

|| ||L2 Rd HgHLz (]Rd
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Let U C RY x R% with w, (U) < oo and
Pu: L2, (RE xRL) — L2 (RE x RY),

the orthogonal projection from L2 (R% x R%) onto the subspace of function sup-
ported in the subset U i.e.

PuF =xuF, FelLl (R xR%).

A straightforward computation, as in [12] shows that Py P, is a Hilbert-Schmidt
operator with norm satisfying

(3:2) IPuPyllfrs < walU).
We shall use the following theorem which is similar to Theorem 2 in [11].

Theorem 3.1. Let {¢,}2_; be an orthonormal system of L2(RL) and U be mea-
surable subset of RY x RY such that 0 < wa(U) < co. Assume that

Hggfan%gQ(U) =1- ai-

Then
N
D (1—an) Swa(U).

Proof. A standard estimate of the trace of the Hilbert-Schmidt operator Py Py (see
e.g. [9, Theorem 5.6, p.63]) gives,

tr(PUPg) = ||PU7D9||%IS-
Then, for all N > 1,
N

N
Zl <7)Ugg¢n7 gg¢n>Laa (RiXRi) == Z <7)Upggg¢na gg¢n>Laa (RiXRi) S tI‘(,PU/P9> S Wa(U>‘

n=1

On the other hand, by Cauchy-Schwartz inequality,
<'PUgg¢n7 gg¢n>Lg}a (RiXRi) =1- <7)chg¢na gg¢">L5a (RiXRi) > 1- Qp.
Thus, for all N > 1,

(3.3) D (1= an) < wa(U).

O

Corollary 3.1. Let € € (0,1) and let {¢,}N_; be an orthonormal system in
L2 (RL x RY) such that Gy¢p is e-concentrated on the ball B,, = {(z,y) €
R? x R, |(z,y)| < 1o}, i.e

/ ‘gg¢n|2 >1- 62'
[(z,y)<ro

2(2a+d+1
p2(204d+1)

(1— )220+ 1T (20 + d + 2)

Then
N <

Consequently we obtain the following lemma.



74 NEJIB BEN SALEM AND AMGAD RASHED NASR

Lemma 3.1. Let s, J > 0 and {¢,})_, be an orthonormal system in L(R%) that
satisfies

|||(I7 y)|sgg¢n”iia (R xR) < J2s.
Then

(2a+d)(4—s)+ats

4 N < 2(20+d+1)
34 = 3F(2a+d+2)(J)

Proof. Since

/ 1Gyon (2, 9) 2 dta () = / (@ 0)] 2 (@, 9) 2 Gy (2, 9) ? ()
[(z,y)|>41/sJ

[(z,y)|=41/=]

1 R 9 1
< W\H(%yﬂ Goonlliz, @ixme) < 157

then ¢, is i—concentrated on the ball B4%J. Applying Corollary 3.1, we obtain the
desired result. (I

Lemma 3.2. Let s > 0 and let ¢ = {¢n}n be an orthonormal sequence. Then
there exists ig € Z such that

s s(ip—1
|||(.’17,§)| gg(¢n)||LE]a(RiXRi)22 (0 )
It is a consequence of [3, Inequality (5.50)].

Theorem 3.2. Lets > 0 and let ¢ = {¢n }n be an orthonormal sequence in L2 (R%).
Then for all N > 1,

(3.5)
N . .
s 9 (3(42a+d+1 _ 1)) 2atd+1 (F(QO{ +d+ 2)) ZatdFi o
Z H|($’§)| gg(¢n)HLz (Re xR%) > (Zatd)(5135)45465 NtzsarT,
ne1 wa N 2 Satd+1

Proof. For i € Z, let A; = {¢n : [||(z,£)°Ggnll 2 (RY xRY) € [20=1 21)}. First, let
19 as in Lemma 3.2, we can see that A; is empty for all ¢ < ig.
Let i > ig. Then for all ¢,, € A;, we have

|||(-ra§)‘sgg¢n“[,ia (R xR) < 20,

Let N; be the number of elements in A;, then by Lemma 3.1,
Qatd)(d—s)tdts
N,; < —54i(2a+d+1)'
T 3T(2a +d+2)
The number of elements in Uf:io A; is less then Ry o q4FC2+d+D) where

(2a4+d) (4+s)+4+3s
2 s

Rs a,d =
04T 34+t ) D20+ d + 2)

is a constant that does not depend on k.
Now, if N > 2R, 4,442+ then there exists kg > ig such that

2Rs o d4(k0—1)(2a+d+1) S N < 2Rs o d4k0(20¢+d+1).

Therefore at least half elements of the set {1,..., N} does not belong to Uf;i Ay,
then
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al N
E s 2 2s(ko—1
|||(.’E,£)| gg(anLia(RiXRi > 5 2 (ko—1)

n=1
N N SaFaTT
> | _—
— 225+1 (2Rs,o¢,d>

1

= — Nltzagarr,
2251 X (2Rg,q,4) 2o+ FT
If N < 2R o g4 +4+D) then from Lemma3.2
N
Z |||(xa€)|sgg¢n”%3(’ (RixRi) Z N225(1071)
n=1
N [ N \zraT
> (-
T2 <2Rs,a,d>
— 1 - N1+ TaTdTT .
225 X (2Rs,q,q) ToHaHT
Then, we get the desired result. (I

Corollary 3.2. Let s > 0 and let ¢ = {pn}n be an orthonormal sequence in
LZ(R%) . Then for all N > 1,

N
> (el Gutnlly s o + 1€ G0l et

- (3(420d+1 _ 1)) zawaw 1 (D(2a + d + 2)) Tarart

= 9 (20-+d) (5+55)+5+83)

]\]H‘ TatdTl .

2a+d+1
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