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AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED

TO NUMERICAL RADIUS OF MATRICES

ALEMEH SHEIKHHOSSEINI

Abstract. For positive matrices A,B ∈ Mn and for all X ∈ Mn, we show that
ω(AXA) ≤ 1

2
ω(A2X+XA2), and the inequality ω(AXB) ≤ 1

2
ω(A2X+XB2)

does not hold in general, where ω(.) is the numerical radius.

1. Introduction

Let us denote by Mn the C∗−algebra of all n×n complex matrices. For A ∈Mn

the numerical radius and the operator norm are defined and denoted, respectively,
by

ω(A) = max{|x∗Ax| : x ∈ Cn, x∗x = 1},
and

‖A‖ = max{|x∗Ay| : x, y ∈ Cn, x∗x = y∗y = 1}.
We recall the following results that were proved in [3, 6].

Lemma 1.1. Let A ∈Mn and let ω(.) be the numerical radius. Then
(i) ω(.) is a norm on Mn,
(ii) ω(UAU∗) = ω(A), for all unitary matrices U ,
(iii) ω(Ak) ≤ ω(A)k, k = 1, 2, 3, . . . (power inequality)
(iv) 1

2‖A‖ ≤ ω(A) ≤ ‖A‖.
Moreover, ω(.) is not a unitarily invariant norm and is not submultiplicative.

For positive real numbers a, b, the classical Young inequality says that if p, q > 1
such that 1/p+ 1/q = 1, then

(1.1) ab ≤ ap

p
+
bq

q
.

Replacing a, b by their squares, we could write (1.1) in the form

(1.2) (ab)2 ≤ a2p

p
+
b2q

q
.
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Some authors considered replacing the numbers a, b by positive matrices A,B. But
there are some difficulties, for example if A and B are positive matrices, the matrix
AB is not positive in general. Hence the authors studied the singular values and
the norms of the matrices instead of matrices in some inequalities.
In Mn, beside the usual matrix product, the entrywise product is quite important
and interesting. The entrywise product of two matrices A,B is called their Schur (or
Hadamard) product and denoted by A◦B. With this multiplication Mn becomes a
commutative algebra, for which the matrix with all entries equal to one is the unit.
The linear operator SA on Mn, called the Schur multiplier operator, is defined by
SA(X) := A ◦X. The induced norm of SA with respect to the spectral norm will
be denoted by

‖SA‖ = sup
X 6=0

‖SA(X)‖
‖X‖

= sup
X 6=0

‖A ◦X‖
‖X‖

,

and the induced norm of SA with respect to numerical radius norm will be denoted
by

‖SA‖ω = sup
X 6=0

ω(SA(X))

ω(X)
= sup

X 6=0

ω(A ◦X)

ω(X)
.

Throughout the paper we use the term positive for a positive semidefinite matrix,
and strictly positive for a positive definite matrix. Also we use the notation A ≥ 0
to mean that A is positive, A > 0 to mean it is strictly positive, |||A||| to denote
an arbitrary unitarily invariant norm of A. It is known that if A ≥ 0 and B ≥ 0,
then A ◦B ≥ 0 [10, page 8]. Also in [8], we established that, if p > q > 1 such that
1/p + 1/q = 1 and A ∈ Mn is a non scalar strictly positive matrix with 1 ∈ σ(A),
then there exists X ∈ Mn such that ω(AXA) > ω( 1

pA
pX + 1

qXA
q). In this paper

we consider this inequality for p = q = 2.

2. main results

Bhatia and Kittaneh in 1990 [4] established a matrix mean inequality as follows:

(2.1) |||A∗B||| ≤ 1

2
|||A∗A+B∗B|||,

for matrices A,B ∈Mn.
In [3] a generalization of (2.1) was proved, for all X ∈Mn,

(2.2) |||A∗XB||| ≤ 1

2
|||AA∗X +XBB∗|||.

Ando in 1995 [1] established a matrix Young inequality:

(2.3) |||AB||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣Ap

p
+
Bq

q

∣∣∣∣∣∣∣∣∣∣∣∣
for p, q > 1 with 1/p+ 1/q = 1 and positive matrices A,B. In [9], we showed that

|||AXB||| ≤
∣∣∣∣∣∣∣∣∣ 1pApX + 1

qXB
q
∣∣∣∣∣∣∣∣∣ does not hold in general, and in [8], we considered

the inequalities (2.1) and (2.3) with the numerical radius norm as follows:

Proposition 2.1. [8, Proposition 1] If A,B are n× n matrices, then

(2.4) ω(A∗B) ≤ 1

2
ω(A∗A+B∗B).



AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY ... 87

Also if A and B are positive matrices and p, q > 1 with 1/p+ 1/q = 1, then

ω(AB) ≤ ω(
Ap

p
+
Bq

q
).

Also, in [8] we showed that if A ∈ M2 is a non scalar strictly positive matrix such

that 1 ∈ σ(A), then for all X ∈ M2 we have ω(AXA) ≤ 1

2
ω(A2X + XA2). In the

following theorem we will generalize this theorem for all n × n positive matrix A.
Therefore we will show that the version of the arithmetic geometric mean inequality
with numerical radius holds when A = B ∈Mn.

Lemma 2.1. [3, Exercise 1.1.2] Let A = [
1

λi + λj
] ∈Mn be a Cauchy matrix based

on positive elements λi. Then A is positive.

Theorem 2.1. Let A ∈Mn be a positive matrix. Then for all X ∈Mn,

(2.5) ω(AXA) ≤ 1

2
ω(A2X +XA2).

Proof. First, we assume that A = diag(a1, a2, . . . , an) such that ai > 0 and define

F = [fij ] :=

[
2aiaj
a2i + a2j

]
. Now, let Y = (a1, a2, . . . , an)t and C :=

[
1

a2i + a2j

]
be a

Cauchy matrix. Since Y Y ∗ and C (using definition of positive matrix and in view
of Lemma 2.1) are positive matrices, then F = 2Y Y ∗ ◦ C is positive; see [10, page

8]. In fact F = 2Y Y ∗ ◦ C, where Y = (a1, a2, . . . , an)t and C :=

[
1

a2i + a2j

]
is a Cauchy matrix, consequently F is positive. By [2, Corollary 4], we have
‖SF ‖ω = max fii ≤ 1 and hence for all X ∈Mn,

ω(AXA) ≤ 1

2
ω(A2X +XA2).

Now, assume A = A1⊕ 0, such that A1 ∈Mk (k < n) is a strictly positive matrix.
Then by the above argument, we obtain ω(A1X1A1) ≤ 1

2ω(A2
1X1 + X1A

2
1), for all

X1 ∈Mk. For all X ∈Mn, we have AXA = A1X1A1 ⊕ 0, and

1

2
(A2X +XA2) =

[
1
2 (A2

1X1 +X1A
2
1) 1

2A
2
1X2

1
2X3A

2
1 0

]
,

where X =

[
X1 X2

X3 X4

]
. Finally, by [5, Lemma 2.1]

ω(AXA) = ω(A1X1A1) ≤ 1

2
ω(A2

1X1 +X1A
2
1) ≤ 1

2
ω(A2X +XA2)

and so the inequality (2.5) holds. �

Note that for any matrix F, ω

([
0 F
0 0

])
=
‖F‖

2
. So if in the inequality (2.5),

A and X are replaced by

[
A 0
0 B

]
,

[
0 X
0 0

]
respectively, then we obtain the

following:
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Corollary 2.1. Let A,B ∈Mn be positive matrices. Then for all X ∈Mn,

‖AXB‖ ≤ 1

2
‖A2X +XB2‖.

We will show that if A,B ∈ Mn are positive matrices, then for all X ∈ Mn, the
inequality

(2.6) ω(AXB) ≤ 1

2
ω(A2X +XB2)

does not hold in general (It is clear that for n = 1 the inequality (2.6) for all
A,B ≥ 0 and X ∈Mn holds).

Lemma 2.2. [7, Theorem 1] Let A =

[
a b
0 c

]
∈ M2 and ac̄ be a real number.

Then

ω(A) =
1

2
(|a+ c|+

√
|b|2 + |a− c|2).

Example 2.1. Let A = In(n ≥ 2), B = diag(0, 1)⊕ 0n−2 and

X =

[
1 3
0 −2

]
⊕ 0n−2. Then we have

AXB =

[
0 3
0 −2

]
⊕ 0n−2, A

2X +XB2 =

[
1 6
0 −4

]
⊕ 0n−2.

Now by Lemma 2.2

(2.7) ω(AXB) >
1

2
ω(A2X +XB2).

In fact for all A = αIn(n ≥ 2), B = diag(0, α)⊕0n−2, (α > 0) andX =

[
1 3
0 −2

]
⊕

0n−2, the inequality (2.7) holds.

Example 2.2. LetA = I2, B = diag((4±
√

12)/2, 1) andX =

[
1/(4±

√
12) 3

0 −2

]
.

Then AXB =

[
1/2 3
0 −2

]
, A2X + XB2 =

[
2 6
0 −4

]
. Now, by Lemma 2.2 we

have

ω(AXB) = 2.7025 > 2.6213 =
1

2
ω(A2X +XB2).

Therefore the inequality (2.7) holds.

Theorem 2.2. Let F =

[
2aibj
a2i + b2j

]
be a n× n matrix such that ai, bj ≥ 0,

(i, j = 1, . . . , n). Then ‖SF ‖ ≤ 1.

Proof. Assume if possible ‖SF ‖ > 1. Then there is Y ∈ Mn, such that ‖F ◦ Y ‖ >
‖Y ‖. Now, if we define the matricesA := diag(a1, a2, . . . , an), B := diag(b1, b2, . . . , bn)

and X := E ◦Y, where E =

[
1

a2i + b2j

]
, then it is readily seen that F ◦Y = 2AXB

and Y = E−1 ◦ X = A2X + XB2, where E−1 =
[
a2i + b2j

]
is inverse of E with

respect to the Hadamard product. Thus

2‖AXB‖ = ‖F ◦ Y ‖ > ‖Y ‖ = ‖A2X +XB2‖.
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This is a contradiction to Corellary 2.1. �

In the following example, we will show that the converse of Theorem 2.2 does
not holds.

Example 2.3. Let F = I2. Then by [2, Corollary 4 ], ‖SF ‖ = 1.

Proposition 2.2. Let F =

[
2aibj
a2i + b2j

]
be an n× n matrix such that ai, bj ≥ 0,

(i, j = 1, . . . , n) and ‖SF ‖ω ≤ 1. Then there are matrices A,B ≥ 0, such that for
all X ∈Mn the reverse of inequality (2.7) holds.

Proof. If ‖SF ‖ω ≤ 1, then by definition we have ω(F ◦ X) ≤ ω(X), for all X ∈
Mn. Replacing X by C ◦ X, where C = [a2i + b2j ], we have ω(F ◦ C ◦ X) ≤

ω(C ◦ X) which is equivalent to ω(AXB) ≤ 1

2
ω(A2X + XB2), such that A :=

diag(a1, a2, . . . , an), B := diag(b1, b2, . . . , bn). Hence we get the required result. �

Lemma 2.3. Let F = [fij ] ∈M2 such that 0 < |fij | ≤ 1. Then

2∏
i,j=1

|fij | =
2∏

i, j = 1
εij ∈ {1,−1}

(1 + εij

√
1− |fij |2),

(for at least one of the 16 possible cases ) if and only if there exist positive numbers

ai and bi(i = 1, 2) such that |fij | =
2aibj
a2i + b2j

, for all i, j = 1, 2.

Proof. First we define T±ij :=
1±

√
1− |fij |2
|fij |

for all i, j = 1, 2. Easy

computation shows that

(2.8) |fij | =
2aibj
a2i + b2j

⇐⇒ ai = bjT
±
ij and bj = aiT

±
ij .

(⇒) Without loss of generality, assume that b1 = 1 and(
1 +

√
1− |f11|2
|f11|

)(
1−

√
1− |f12|2
|f12|

)(
1 +

√
1 + |f21|2
|f21|

)(
1−

√
1− |f22|2
|f22|

)
= 1.

Now define a1 := b1T
+
11, b2 := a1T

−
12, a2 := b2T

−
22 and consequently, a2T

+
21 = 1 = b1.

By using the above definitions and (2.8), we obtain that |fij | =
2aibj
a2i + b2j

, for all

i, j = 1, 2. The other cases are in the same way.

(⇐) Let |fij | =
2aibj
a2i + b2j

, for all (i, j = 1, 2). If we define S11 :=
a1
b1
,

S21 :=
b1
a2
, S22 :=

a2
b2

and S12 :=
b2
a1
, then by (2.8) it is easy to show that Sij = T+

ij

or Sij = T−ij and

1 =

2∏
i,j=1

Sij =

2∏
i, j = 1

εij ∈ {1,−1}

(
1 + εij

√
1− |fij |2

)
|fij |

.
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Therefore,
2∏

i,j=1

|fij | =
2∏

i, j = 1
εij ∈ {1,−1}

(
1 + εij

√
1− |fij |2

)
.

�

The following example shows that, we cannot remove the condition
|fij | > 0 in Lemma 2.3.

Example 2.4. Let F = [fij ] =

[
0 1
1 1

]
. Then

∏2
i,j=1 |fij | =

∏2
i,j=1(1−

√
1− |fij |2),

but there are not any a1, b1 > 0 such that |f11| =
2a1b1
a21 + b21

.

Theorem 2.3. The following are equivalent:
(a) There is F = [fij ] ∈M2 with positive entries such that ‖SF ‖ω > 1 ≥ ‖SF ‖ and

2∏
i,j=1

fij =

2∏
i, j = 1

εij ∈ {1,−1}

(
1 + εij

√
1− f2ij

)
,

for at least one of the 16 possible cases
(b) There are 2 × 2 matrices A,B and X such that AB = BA and A,B > 0 and
the inequality (2.7) holds.

Proof. We define the matrices D := [2aibj ] , E :=

[
1

a2i + b2j

]
and C :=

[
a2i + b2j

]
.

(a) =⇒ (b) Since ‖SF ‖ω > 1 ≥ ‖SF ‖, there exists Y ∈ M2 such that ω(F ◦ Y ) >
ω(Y ) and |fij | ≤ 1. In view of Lemma 2.3 there exist ai, bj > 0(i, j = 1, 2) such that

fij =
2aibj
a2i + b2j

. Now, define the matrix X := E ◦ Y . Then ω(D ◦X) = ω(F ◦ Y ) >

ω(Y ) = ω(C ◦X). Hence if we define A := diag(a1, a2) and B := diag(b1, b2), then
ω(D ◦X) = 2ω(AXB) and ω(C ◦X) = ω(A2X + XB2) and hence the inequality
(2.7) holds.
(b) =⇒ (a) Without loss of generality, we assume that A = diag(a1, a2) and

B = diag(b1, b2) and ω(AXB) >
1

2
ω(A2X + XB2). Now, define F = [fij ] :=[

2aibj
a2i + b2j

]
∈M2. by Lemma 2.3 we have for at least one of the 16 possible cases

2∏
i,j=1

fij =

2∏
i, j = 1

εij ∈ {1,−1}

(1 + εij

√
1− f2ij).

Assume if possible, ‖SF ‖ω ≤ 1, then for all Y ∈ M2, we have ω(F ◦ Y ) ≤ ω(Y ).
Let Y = C ◦X. Then ω(D ◦X) ≤ ω(C ◦X). Since D ◦X = 2AXB and C ◦X =
A2X + XB2, then we have 2ω(AXB) ≤ ω(A2X + XB2), a contradiction. Hence
‖SF ‖ω > 1. Also by the inequality (2.2), we know that ‖SF ‖ ≤ 1. Then we conclude
that ‖SF ‖ω > 1 ≥ ‖SF ‖. �
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