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Abstract 

In this study, 4-pole type yoke hybrid electromagnet is modeled with respect 
to motion dynamics of the system. The hybrid electromagnet inherently has a 
non-linear characteristic and from the point view of controllability, it is 
unstable. This paper concerns the design of robust controller using first order 
integral sliding mode control method. Thus, the system becomes stable and 
robust against parametric uncertainties, nonlinearity, unmodeled uncertainties 
and external disturbance. Magnetic levitation system includes sensors that 
only measure the air gap. In order to estimate other states of the system, the 
full order disturbance observer is designed and integrated into the control 
loop. The estimated disturbance value is factored by the appropriate 
conversion gain and added to the input signal of the plant. The efficiency of 
control algorithm will be given in the paper by computer simulations.  

 
 Key words 

Magnetic levitation, Integral Sliding mode control, Disturbance observer 

 

1. INTRODUCTION 

The non-contant magnetic levitation systems can operate without mechanical problem such as vibration, noise, abrasion, 

friction and so on. They also meet high accuracy and precision specifications. Because of these advantages, they are used in 

passenger transport vehicles, vibration isolation systems, biomedical devices, wind turbine, space studies and clean rooms 

as a key technology [1, 2]. 

The U and E-shaped electromagnets are often used in magnetic levitation systems, but they have only one degree of 

freedom control.4-Pole type hybrid electromagnet, which proposed by Koseki et al, has 3 degree of freedom. Each pole 

includes a coil (to control the field intensity) and a laminate permanent magnet leading to hybrid structure as shown in 

Fig.1. 

The hybrid electromagnet inherently has a non-linear characteristic and from the point view of controllability it is unstable. 

In order to run such a system, it is required to actively control the hybrid electromagnet in multi axes. Several approaches 

have been proposed in the literature to control 4-pole type hybrid electromagnet [1-3]. In this paper, a sliding mode based 

control algorithm is proposed. 

Conventional sliding mode control method does not guarantee robustness throughout the entire system. The control system 

response is sensitive against uncertainty during the reaching phase. After sliding mode occurs, the system response remains 

insensitive to variations of system parameters and external disturbance. By adding the integral component to sliding mode 

control, which is named integral sliding mode control (ISMC),the system response is became robust in both the reaching 

and sliding phase. In addition, ISMC can be used to eliminate the control chattering, which is the high-frequency vibrations 

(oscillations) of the control signal [4]. 
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The performance of feedback control algorithm is associated with the measurement of the state variables of the system 

model. However, in practice, all the state variables are not measurable or the measurements of the state variables can be 

costly because of the high price of the sensors [5]. In order to obtain all state variables, the observer can be designed. 

This paper is organized as follows. First, the mathematical model of the system is briefly derived. Then, integral sliding 

mode control and disturbance observer are introduced and designed using pole placement method. Finally simulation 

results verify the effectiveness of controller. 

2. 4-POLE TYPE HYBRID ELECTROMAGNET 

4-pole type hybrid electromagnet has three degrees of freedom of movement (along Z plus rotation around X and Y). 
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Figure 1. Basic structure of 4-pole hybrid electromagnet Figure 2. 4-pole hybrid electromagnet movement axis.  

Independently control of each pole air gap is one of the way that can be followed to active control of the system. However, 

the implementation of this approach is difficult for controlling inclination axis motions and for compensating the 

unbalanced load. For this reason, system dynamics are developed independently using coordinate transformation. 4-Pole 

winding currents (i1, i2 , i3, i4) are transformed virtual axis currents to provide control of each axis separately. Three virtual 

winding currents (iz , iα , iβ ) are employed to control motion of vertical direction z, and inclinations α,β respectively.The 

relationships between virtual currents of the each degree of freedom and actual winding currents are represented by (Eq.1-

2). 
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(1) 

In considering figure-2, the axial displacements are subjected to the following conversion. 
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(2) 

Controller output signals are transformed to pole coil signals using H transformation matrix which is obtained from (Eq.1). 

Similarly, pole displacements are transformed to axial displacements using T transformation matrix which is obtained from 

(Eq.2). This axial transformation is shown in Fig. 3. 

 
Figure 3. Axial transformation schematic. 

The linearized mechanical system dynamics is given in below equation for z-axis motion [1-3].  
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(3) 

In the above equation, electrical input is the current form. In general, the voltage source is used to energize the coil of the 

magnetic levitation system. 
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(4) 

The linearized system block diagram is shown in Figure 4(a) for z-axis motion. Changes are only encountered in the 

relevant parameters for inclination (α and β-axis) motion model (Figure 4(b)). 
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Figure 4. (a) System block diagram for z-axis motion. (b) System block diagram for α, β axis motions. 

The state-space representation of the system is given in below. 
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3. DISTURBANCE OBSERVER-BASED INTEGRAL SLIDING MODE CONTROL 

3.1. Integral Sliding Mode Controller Design 

Sliding mode control signal is separated two components to achieve asymptotic output tracking; one is linear component 

𝑢𝑙 , and the other is nonlinear component 𝑢𝑛𝑙 . 
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𝑢𝑙  component of the control signal drive the sliding variable (σ) to zero in finite time. The sliding starts after the sliding 

variable reaches zero at time 𝑡𝑟 . After that time point,σ = σ = 0  is valid for all time [6]. 

The sliding surface can be defined as follows: 
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The sliding function is defined:  
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The sliding function (S) is obtained with selecting (𝑆2) parameter and calculating𝑘. The integral of the position error is 

added to eliminate the error at the steady-state. The extended steady-space equation decomposed as follows 

0 1 0 0
0

0 ( ) 0 ( )0 0 1 0
0

( ) ( )
( )00 0

( ) ( )
1

( ) ( )0 0

A B
z

A z
z z

z
B z

z t dt z t dt

d K Kz t z t
e t

dt m mz t z t

K Ri t i t
L

K L

 
             
      

        
      
              

 

 

 

1
x

11A 12
A

21A 2A 2
x B

1
B

22  

(9) 

The (Eq.10) can be obtained from the (Eq.8) and (Eq.9): 
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Since (𝐴11 , 𝐴12) is controllable, pole placement method is used to select the gain 𝑘[7,8]. Kessler canonical form (KCF) 

approach is used to obtain the gain𝑘. KCF is an effective method to find the coefficients of characteristics polynomial of 

the SISO system. The basic idea behind this approach is to determine proper and stable characteristic polynomial using 

stability index and equivalent time constant [10].The equivalent time constant specifies the output response speed while 

stability index determines robustness, stability and output response of the system against parameter changes. 

The characteristic equation of the closed-loop control system is given as: 
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In 1960s, Kessler has proposed that values of the γi should be two. In 1980s, Manabe proposed small modification of 

making γ1=2.5 instead of 2 to obtain no overshoot condition.It is practically acceptable to take the equivalent time constant 

smaller than 0.1[s] in the magnetic levitation based system[1,2]. 
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The characteristic equation is solved to obtain desired poles of the system. In this study, pole placement is performed with 

the following MATLAB command. 
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Thus, the sliding function S is obtained from (Eq.14) 𝑢𝑛𝑙  and selecting 𝑆2 . 

The linear component of control signal 𝑢𝑙  can be calculated by: 
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The nonlinear component of control signal is selected as follows: 
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To show stability of system, a positive definite Lyapunov function is selected as [9]: 
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The time derivative of Lyapunov function is negative definite: 
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Hence, the system becomes asymptotically stable. 

In nonlinear component of control signal 𝑢𝑛𝑙  contain signum function which cause chattering problem because of the 

discontinuity. In practical case, the sigmoid function is used instead of signum function to eliminate chattering problem [6]. 
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where ε  is a small positive scalar. 𝑢𝑛𝑙  is commonly selected by: 
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where ρ is a design parameter. 

3.2. Disturbance Observer Based Design 

Pole assignment is a basic design method for linear state feedback control system. In this method, it is assumed that all state 

variables are available for feedback. However, some state variables are not measurable directly or refrain from using of 

sensor because of noise occurring during the measurement. In order to estimate all state variables, the observer can be 

designed.  

Disturbance force is added as a variable to obtain expanded system model (Eq.21). The disturbance force is generally step 

input in magnetic levitation system, so a zero line is added the system model. The expanded state equation is completely 

observable, thus observer can be designed. Figure 5 shows the block diagram of disturbance observer. 
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Figure 5. Full-Order Disturbance Observer Block Diagram. 

Due to the separation principles, observer and controller can be designed independently of each other. The pole placement 

method is used to design full order disturbance observer similar to the controller design. Desired poles of the controllers 

and observers are decided by using Kessler’s canonical form. However, the observer poles must be three to eight times 

faster than the controller poles to make sure the observation error converges to zero quickly [5]. 

Disturbance compensation gain is given as follows [2]. 

 

(22) 

Disturbance compensation gain is used to convert estimated force (N) into the control voltage (V). Figure 6 shows the 

Simulink model of the disturbance observer based integral sliding mode controller.  
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Figure 6. Simulink Model of the Control System 

4. SIMULATION RESULTS AND EVALUATION 

The effectiveness of integral sliding mode controller and disturbance observer, as discussed in the previous section, are 

shown using MATLAB environment. The simulation parameters for the 4-pole hybrid electromagnetic levitation system 

are shown in Table 1. 

Table 1. System Parameters 

Size / Unit Value Size/ Unit Value Size / Unit Value 

m [kg] 10 z0 [mm] 4.3 α0, β0[rad] 0.0 

Jα,β[kg.m2] 0.3 iz0 [A] 0.0 iα0, iβ0 [A] 0.0 

k [N2/A2] 6.84*10-6 KA[N/m] 20991 KC[Nm/rad] 106.43 

Im [A] 13.44 KB[N/m] 14.87 KD [Nm/A] 3.13 

Rz,α,β [Ω] 1.50 Lz,α,β[H] 0.016 Epm [AT] 2689 
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Figure 7-8 show z-axes position and control signal waveform when a reference input is applied at 0.5 sec. of simulation 

time and 1.5 kg mass loads to the 4 pole type hybrid electromagnet at 2 sec. In Figure 7, the system can track step reference 

input with zero steady-state error. The disturbance compensator does not have much effect on the system response. This 

result indicates that proposed controller is insensitive to disturbance input. In Figure 9-10, the results show that the sliding 

mode control approach is achieved not only for vertical axis but also for inclinations. The chattering occurs particularly as 

shown on the control signals when a reference input and disturbance are applied. ρ parameter in (Eq.20)  is used to adjust 

chattering effect.  The higher value of ρ causes the high frequency chattering. The actual and observed disturbance values 

are shown in Figure 11. 

 
Figure 7. z-axis response for the step reference input and disturbance. 

 

Figure 8. Control signal for z axes response. 

 

Figure 9: β-axes response for the step reference input and disturbance. 
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Figure 10. Control signal for β axes response. 

  

Figure 11.  Actual and observed disturbance value for z and β axis. 

5. CONCLUSION AND FUTURE WORK 

In this paper, firstly, fundamentals of modeling of 4-pole hybrid electromagnet have been given and control methods of 4-

pole hybrid electromagnet were explained by using virtual axis currents. Then, designing of a sliding mode controller and 

disturbance observer have been outlined. To clarify the effectiveness of the proposed design approach simulation studies 

was conducted in MATLAB environment. In the near future, we are planning to implement the controller on the 

experimental setup. 
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