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Abstract 
In this study, a decision-support system is presented to aid cardiologists during 
the diagnosis and to create a base for a new diagnosis system which separates 
two classes (CAD and no-CAD patients) using an electrocardiogram (ECG).  
24 hour filtered ECG signals from PhysioNet were used. 15 second short-term 
ECG segments were extracted from 24 hour ECG signals to increase the number 
of samples and to provide a convenient transformation in a short period of 
time. The Hilbert-Huang Transform, which is effective on non-linear and non-
stationary signals, was used to extract the features from short-term ECG 
signals. Instinct Mode Function (IMF) was extracted by applying Empirical Mode 
Decomposition to short-term ECG signals. The Hilbert Transform (HT) was 
applied to each IMF to obtain instantaneous frequency characteristics of the 
signal. Dataset was created by extracting statistical features from HT applied to 
IMF. Deep Belief Networks (DBN) which have a common use in Deep Learning 
algorithms were used as the classifier. DBN classification accuracy in the 
diagnosis of the CAD is discussed. The extracted dataset was tested using the 
10-fold cross validation method. The test characteristics (sensitivity, accuracy 
and specificity) that are the basic parameters of independent testing in the 
medical diagnostic systems were calculated using this validation method. Short-
term ECG signals of CAD patients and no-CAD groups were classified by the 
DBN with the rates of 98.05%, 98.88% and 96.02%, for accuracy, specificity and 
sensitivity, respectively.  
The DBN model achieved higher accuracy rates than the Neural Network 
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1. INTRODUCTION 

An electrocardiogram (ECG) is a uniform signal that records electrical changes at certain intervals of the heartbeat. It is 

also known as a map which shows the electrical activity of the heart. The ECG signals (ECGs), which are recorded with the 

aid of electrodes placed at different parts of the body, can have different electrical charges at any time. Electrical charges 

specify leads in the ECG. Bipolar and unipolar leads occur as a result of the position of the electrodes [1]. The ECG is a 

type of biomedical signal that is widely used for a variety of diagnosis and monitoring of cardiac diseases [2]. The 

electrical charges that are obtained directly as the result of discomfort of the heart and segments and intervals between 

waves on the ECG are of a paramount importance for the identification of the cardiac abnormalities in a subject [3]. 

Cardiac diseases have a high mortality rate worldwide. One of the most common cardiac diseases is Coronary Artery 

Disease (CAD). It is usually known as atherosclerosis in which there is a cardiac abnormality because of the narrowing of 

the arteries that feed the heart in time. In this cardiac disease, plaque caused by cholesterol collects in the coronary arteries 

and over time congestion results due to dilation of plaque. As a result of biological conditions, the arteries fail to feed the 

heart and it disrupts the rhythmic systole activity of the heart [4], [5]. CAD in adults results in heart attacks or a congestive 

heart. In the diagnosis of CAD, there are many clinical trials like physical examinations from which ST-deviation is 

measured, lab tests, Electrocardiogram (ECG), echocardiogram, stress tests and electron beam computed tomography, 

coronary angiography and cardiac catheterization [4]. In the literature, a diagnosis of the CAD has worked with various 
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signal-processing methods using the clinical dataset (age, sex, history, physical exam, cardiac risk factors, exercise stress 

test data, heart rate, etc.) on the rule-based fuzzy classification [6], Other methods include using the clinical attributes on 

data mining techniques [7]–[14]; the chronic conditions, risk factors, and laboratory results of data mining techniques [15]; 

the clinical attributes on data discretization, data partitioning and reduced error pruning [16]; the history and physical 

examination data and the diastolic heart sounds [17]; both the heart rate variability (HRV) features and the non-linear 

features (Poincare Plot, entropy, etc.) [18]–[22]; the P wave features on the ECG [7]; the Wavelet Packet Transformation 

(10 levels) [23]; the cardiac analysis of ST measures [24], [25]; the Empirical Mode Decomposition (EMD) and Teager 

Energy operator [26]; the Discrete Wavelet Transformation (DWT) [27], [28] and using the Principal Component Analysis 

(PCA) [28], [29]. In this study, the Hilbert-Huang Transform (HHT) is applied to filtered short-term ECGs from the 

PhysioNet database to extract features. 

HHT is an adaptive method to analyze the nonlinear and non-stationary signals [30]. It has a common use in the biomedical 

signal analysis transformations due to these characteristics. The HHT is applied to the ECG for the diagnosis of Atrial 

Fibrillation [31] and Congestive Heart Failure [32]. In this study, the HHT would be applied to the filtered short-term 

ECGs for designing an effective statistical feature extraction model and classification of HHT-based statistical features 

using Deep Learning (DL) algorithms. 

The DL is a comparatively new algorithm that is utilized to estimate the classification performances in many distributions 

such as speech recognition [33], [34], computer vision [35], [36], natural language processing [37]–[39], physiological data 

[40]–[42], biomedical datasets [43], [44] and non-linear signals [45], [46]. The DL aims to discover the multiple and deeper 

levels of distributions for a better classification performance. The basic concept of the DL is based on enhancing the 

classification performance using an artificial neural network model with multilayer hidden units. The most important 

difference of the DL is this: while both the multilayer neural network model and the DL has the same structure, it has at 

least two hidden layers and an unsupervised pre-training phase [47]. The depth of the DL is defined by the number of 

hidden layers on the model. The DL can also show a higher performance than neural networks with a small number of 

neurons. A fewer number of neurons on models can make it more convenient to calculate weights using supervised learning 

[48]. 

The aim of this study is to design a deep CAD diagnosis system that can be an alternative short-term ECG-based statistical 

feature based classification method to studies in the literature. 100 instances of 15 second ECG forms would be extracted 

from long-time ECGs in preprocessing. In this way, using short-term ECG forms would solve analysis problems and would 

enhance the number of samples up to 100x. The HHT would be applied to separated short-term ECGs and Instinct Mode 

Functions (IMFs) would be extracted. The system would extract statistical features from IMFs that are obtained applying 

the HHT. Each Instinct Mode Function (IMF) group obtained would be classified using the Deep Belief Networks (DBN) 

algorithm. Classification performances of the diagnosed subjects with or without the CAD would be examined. 

2. MATERIALS AND METHODS 

ECGs were used in the proposed diagnosis system. We preferred the moving window analysis technique and segmented 

long-time ECGs recorded into 15 second windows which were used in the preprocessing part. 15 second short-term ECGs 

were utilized in this study. IMFs were extracted applying HHT and statistical features were calculated for the obtained 

IMFs in feature extraction. Statistical features were classified using the DBN. A detailed description of the structure of the 

system is presented in the following sections. 

2.1. Database 

In the literature, different databases including different diagnosis systems were used for the diagnosis of the CAD. Clinical 

characteristics in particular [7]–[14] were used to separate subjects with or without CAD. Outside of the literature, the 

Long-Term ST Database [49] was used in the diagnosis of the CAD. The Long-Term ST Database contains 85 long-term 

ECGs from 80 subjects, chosen to exhibit a variety of events of ST segment changes. There are 25 subjects labeled as 

undiagnosed CAD patients and 60 subjects labeled as diagnosed CAD in this database. The individual recordings of the 

Long-Term ST Database are between 21 and 24 hours in duration. 

2.2. Preprocessing 

The information in a biomedical signal is unevenly distributed. We would like to call attention to the fact that all data 

records were from the PhysioNet databases as filtered long-term ECGs. Long-term ECGs may have too much noise while 

being recorded because of physical and recording conditions. The short-term ECGs usually have an ability to represent the 

Long-term ECG characteristics. The short-term ECG is a less affected form of represented Long-term ECG. That is why 

short-term ECGs were randomly segmented into 15 second short-term ECGs using the moving window analysis technique 

100 times. In this way, the number of instances from each subject in the dataset could be increased by 100x. 

2.3. Hilbert-Huang Transform 

HHT is an effective analysis technique for non-linear signals. It has a common use in biomedical signals (ECG, EMG, 

EEG, etc.). It has a flexible mathematical formulation and is easily adaptable for various types of processes [32]. HHT is a 

two-stage transform. The first stage is EMD and the second stage is the Hilbert Spectrum Analysis (HSA). EMD extracts 

frequency-modulated signals that are named IMFs. After IMFs are extracted, HSA is applied to each IMF to calculate the 

instantaneous frequency and amplitude [50].  Considering all these characteristics, our work focuses on HHT analysis in 

short-term ECGs. 
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EMD is an algorithm that breaks down natural form non-linear signals without leaving the time domain. EMD assumes a 

random signal which consists of its own self-oscillation at different frequencies. Oscillations are symmetrical to the mean 

of the local minimum and the local maximum at a t time. EMD extracts Instinct Mode functions which are a complete and 

nearly orthogonal basis at different frequencies [31]. IMFs are all in the time-domain and of the same length as the original 

signal. EMD has a detailed formula in the literature [30]. In the formula, 𝑋 represents the original signal, c represents 

extracted IMF and r_n represents the residual signal [30], [31]. 

𝑋 𝑡 =  𝑐𝑗+𝑟𝑛

𝑛

𝑗 =1
 (1) 

After sifting through IMFs by obtaining a monotonic residual signal, the Hilbert Transform (HT) can be applied to each 

IMF to compute the instantaneous frequencies spectral analysis. The instantaneous frequencies give most important 

information about the signal characteristics. After performing the HT to each IMF component, the amplitude and frequency 

of each component as functions of time is [30]: 

𝑥 𝑡 = ℝ  𝑎𝑖
𝑛
𝑖=1  𝑡 𝑒𝑗⍵ 𝑡 𝑑𝑡   (2) 

The frequency-time distribution of the amplitude is designated as the HSA, 𝐻 𝜔, 𝑡  and the marginal spectrum is ℎ 𝜔 as 

follows [30] : 

ℎ ⍵ =  𝐻 ⍵, 𝑡 𝑑𝑡
𝑡

0
 (3) 

2.4. Deep Belief Networks 

The DBN is a machine learning algorithm become more popular because of its semi-supervised learning methods. The 

DBN has a two stage learning process: unsupervised learning followed by supervised learning. In the first stage, it 

evaluates weights and biases between visible and hidden layers using an unsupervised pre-training of stacked Restricted 

Boltzmann Machines (RBM). RBMs are stacked between two adjacent layers which are visible-hidden layers or hidden-

hidden layers. RBMs are energy-based functions and have only connections between adjacent nodes. Weights and biases 

between hidden and visible layers are evaluated with the aid of the probability of greedy layer-wise method. At the second 

stage, pre-training is followed by supervised fine-tuning with weighted neurons and biases to improve parameters.  

The DBN can be defined as a specialized model with many hidden layers of DL. The upper layers of the DBN may hold 

more detailed and descriptive features to identify the solution of diagnosing systems, whereas lower layers may not. The 

DBN has more important advantages than the classical neural networks such as achieving high performance with a small 

number of training sets, and having the ability of utilizing the connections between the features in deeper processes. In the 

supervised learning phase, weights and biases are updated using fine-tuning in which the gradient descent or ascent 

algorithms are used for improving the accuracies and sensitivities of models [51], [52]. The DBN is a probabilistic joint 

distribution of input vector 𝑥 and the ℓ hidden layers as follows: 

𝑃 𝑥, ℎ1 , … , ℎℓ =   𝑃(ℎ𝑘ℓ−2

𝑘=0
 ℎ𝑘+1  𝑃(ℎℓ−1, ℎℓ) (4) 

𝑃 ℎℓ−1 , ℎℓ is the probability of conditional distribution between the adjacentlayers and ℎ0 is the input vector.  

The energy function of the state  ℎ𝑘−1 , ℎ𝑘  is defined as:  

𝐸 ℎ𝑘−1, ℎ𝑘 ; 𝜃 = −  𝑤𝑠𝑡
𝑘 ℎ𝑠

𝑘−1ℎ𝑡
𝑘 −  𝑏𝑠ℎ𝑠

𝑘−1 −  𝑐𝑡
𝐷𝑘
𝑡−1

𝐷𝑘−1
𝑠=1

𝐷𝑘
𝑡=1

𝐷𝑘−1
𝑠=1 ℎ𝑡  (5) 

where 𝜃 =  𝑤𝑠𝑡 , 𝑏, 𝑐  which are the parameters of the DBN;𝑤𝑠𝑡
𝑘 is the weight between 𝑠𝑡ℎ  neuron in the layerℎ𝑘−1 and 𝑡𝑡ℎ  

neuron in the layer ℎ𝑘 ; 𝑏𝑠is the 𝑠𝑡ℎ  bias of layer ℎ𝑘−1 and 𝑐𝑡 is the 𝑡𝑡ℎ  bias of layer ℎ𝑘 . 𝐷𝑘 is the number of neurons in the 

𝑘𝑡ℎ  layer. The probabilistic distribution of the energy function is:  

𝑃 ℎ𝑘−1; 𝜃 =
 exp ⁡(−𝐸 ℎ𝑘−1 ,ℎ𝑘 ;𝜃 )

ℎ𝑘

  exp ⁡(−𝐸 ℎ𝑘−1 ,ℎ𝑘 ;𝜃 )
ℎ𝑘ℎ𝑘−1

 (6) 

After layer-wise unsupervised learning, calculated weights are refined using supervised learning based on gradient descent. 

This fine-tuning process updates 𝑤 parameters for a better discriminative ability and for obtaining higher classification 

performances [53].  

Accuracy (ACC), Specificity (SPE) and Sensitivity (SEN) are used to evaluate the performance of medical diagnosis 

systems. Calculation of these performance measurements are described in [22], [54]. 

3. RESULTS 

Various biomedical signals and clinical characteristics are analyzed with lots of digital signal processing methods and data 

mining algorithms in medical diagnosis systems. Computer-based diagnosis systems may have support decision systems for 

improving clinicians’ performance and classification performance. Computer-based diagnosis systems can also be 

enhanced using biomedical signal processing methods and can be utilized as an alternative or additional method to the 
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clinical characteristics of the subjects.  In this study, the ECG is used to diagnose the subjects with or without CAD. The 

DBN structure of the proposed diagnosis system is seen in Fig.1. 

 

Figure 1. Structure of the DBN Classifier to diagnose CAD 

Long-term ECGs may have much more noise than the short-term ECGs. Physical conditions such as coughing, changing 

the standing possession, instantaneous movements and recording conditions such as dislocation of the probe, etc. can 

handle noise in the long-term ECGs.  The short-term ECG is less affected by these kinds of conditions. The short-term 

ECGs usually have an ability to represent the long-term ECG characteristics in most cardiac diseases. 15 second short-term 

ECGs were segmented from 85 long-term ECGs using the moving window analysis technique 100 times. The number of 

instances was increased to 8500 ECGs.  

EMD was applied to each short-term ECG and the IMFs ranging in number from 10 to 14 were extracted for 8500 ECGs. 

Obtained IMFs can be seen in Fig.2. HT was applied to each IMF and the instantaneous frequencies spectral features were 

computed. HT allows deriving the analytic representation of a signal and includes phase features. 

 

Figure 2. A randomly selected Short-term ECG and Extracted IMFs by applying EMD 

HHT is used for feature extraction using the Hilbert Spectral Analysis in most of the studies. In this study, the IMFs that 

were extracted after the HHT process were used as the base of the features, but not directly used as the features. Statistical 

features (minimum (Min), maximum (Max), skewness (Skw), median, mean, Standard Deviation (SD), correlation (Corr), 

mode and energy) were calculated from each IMF for creating the diagnosis dataset. Each short-term ECG had a number of 

9 statistical features multiplied by the number of the extracted IMF. The MATLAB statistical toolbox is used for 

calculation of statistical features. As it is seen in Table I, the highest five responsible features in the diagnosis of the CAD 

are Max and Min of the 3rd IMF, Max and Corr of the 4th IMF and Min of the 5th IMF. The lowest responsible features 

are mode values of IMFs. 

Table I. Performance of each statistical feature for reduced the short-term ECG in diagnosis of the CAD 

 

Max Min Corr Energy Mean SD Skw Median Mode All 

SEN 85.05 80.98 78.72 60.67 52.70 57.10 43.50 39.77 21.05 96.02 

SPE 92.56 81.40 62.52 78.52 73.20 30.24 22.52 5.36 28.00 98.88 

ACC 87.26 81.11 73.95 65.92 58.73 49.20 37.33 29.65 23.09 98.05 

The system was tested using a 10-fold cross validation. The dataset was randomly divided into 10 folds with the same 

number of subjects with and without the CAD. 9-folds of dataset were used for the training of the DBN classifier and one 

fold was used for testing the DBN. We subdivided the 9-folds of the dataset into 100 batches to speed-up and update 

weights step by step on the learning phase. The DBN that was utilized in the proposed diagnosis model has one input layer, 

2 hidden layers and one output layer (Fig.1). The input layer has 9 input units for statistical features. 
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Greedy layer-wise pre-training is used in this model at the unsupervised learning stage of the DBN with 5 epochs. The 

DBN has 2 hidden layers with 100 hidden units for each. All feature sets were normalized to 0-1. The output layer has two 

outputs (subjects with and without CAD). To unfold the DBN to a neural network for the supervised learning stage of 

DBN, model parameters were selected by iterations. The learning rate is 2 and the activation function of the hidden layers 

on the supervised learning phase is the hyperbolic tangent function to avoid bias in the gradients and to have a stronger 

gradient. And a sigmoid output function was utilized. After training the DBN, test results were performed and the reliability 

and statistical performances of the model were calculated.  

Table II. Comparison of the models on diagnosis of the CAD 

Authors ACC SPE SEN Method Classification Data 

Lee at. al[21] 85.00-

90.00 

- - HRV measurements SVM HRV 

Dua et. al. [20] 89.50 - - HRV measurements ANN HRV 

Kim et. al. [22] 75.00 - - HRV measurements MDA HRV 

Giri et. al. [28] 96.80 93.70 100.00 DWT, LDA, PCA GMM HRV 

Patidar et. al. [29] 99.70 99.80 99.60 Co-entropy, PCA SVM HRV 

Arafat et. al. [24] 86.00 - - ST measures Fuzzy Clustering ECG 

Alizadensani et. al. 

[25] 

94.08 - - Q waveand ST 

measures 

SVM ECG 

Thisstudy 98.05 98.88 96.02 HHT, Statistical 

Features 

DBN ECG 

*MDA: Multiple Discriminant Analysis, SVM: Support Vector Machines, ANN: Artificial Neural Network, LDA: Linear 

Discriminant Analysis, GMM: Gaussian Mixture Model, HRV: Heart Rate Variability 

As it is seen in Table II, when we compared the classification performances in literature, high accuracy rates were achieved 

using various classification methods on both ECG and HRV data. The highest classification performance on ECG data is 

achieved using the DBN on ECG based features. The achieved performance measurements that are achieved using the 

proposed method have a remarkable point in both HRV and ECG studies. Subjects with and without CAD were separated 

with a classification accuracy rate of 98.05%, a specificity of 98.88% and a sensitivity of 96.02% using statistical features 

from IMFs. 

4. CONCLUSIONS 

Linear and non-linear HRV features, various analysis techniques on ECG, heart sounds and clinical characteristics were 

used to evaluate diagnosis of the CAD. Different classification methods were utilized on these features to achieve high 

classification performances. In this study, the HHT that has a widespread utilization on non-linear signals was used to 

extract features from filtered ECGs. The proposed system diagnoses the subjects with or without the CAD. In this 

integrated system, DBN was used to classify the statistical features of IMFs. Accuracy, specificity and sensitivity 

achievements were used to evaluate system performance.  

HRV are the Poincare plots, cross Corr, SD, arithmetic mean, Skw, kurtosis, and approximate entropy measurements 

between R waves which are extracted from 5 min short-term ECGs. Using HRV does not take into consideration the 

durations and intervals of the other waves except R waves on the ECGs. In this study, the ECG was used considering that 

all waves (whole ECG) may carry significant characteristics in diagnosis of the CAD. As seen in Table 1, an accuracy rate 

of 98.05%, a specificity rate of 98.88% and a sensitivity rate of 96.02% were achieved in the diagnosis of the CAD. It is 

difficult to compare the classification accuracies with the literature, because of different databases. Achieved performances 

show that the proposed method has an ability to separate the subjects with and without the CAD. Thus, the highest accuracy 

is achieved in the studies using ECG signals and most of the studies using HRV. The biggest advantage of the proposed 

method compared to HRV is using 15 second short-term ECG segments. 
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