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Abstract. In this article, we study the fractional-order SEIR mathematical

model of Lumpy Skin Disease (LSD) in the sense of Caputo. The existence,
uniqueness, non-negativity and boundedness of the solutions are established

using fixed point theory. Using a next-generation matrix, the reproduction

number R0 is determined for the disease’s prognosis and durability. Using
the fractional Routh-Hurwitz stability criterion, the evolving behaviour of the

equilibria is investigated. Generalized Adams–Bashforth–Moulton approach is

applied to arrive at the solution of the proposed model. Furthermore, to vi-
sualise the efficiency of our theoretical conclusions and to track the impact

of arbitrary-order derivative, numerical simulations of the model and their

graphical presentations are carried out using MATLAB(R2021a).

1. Introduction

Lumpy skin disease mainly spread to ruminants such as cattle and water buf-
faloes (Bubalus bubalis), making it a non-zoonotic viral disease that develop and
reproduce entirely in non-human hosts via arthropod vectors such as biting flies,
mosquitoes, and ticks. Contagious sustenance such as contaminated fodder, wa-
ter and animal semen during artificial insemination are also responsible for the
spread. It is a trans-boundary disease brought on by the Lumpy skin disease virus
(LSDV) which go by names Pseudo-urticaria, Neethling viral disease belonging to
the Poxviridae family, and genus Capripoxvirus ([6], [19], [28], [51], [59]).

Zambia marked the presence of LSD in 1929 [38], propagating to Zimbabwe
and South Africa in 1949, Ethiopia in 1983, Israel in 1989, and then spreading
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throughout the Middle East, West Asia, and Europe. It produced a massive eco-
nomic calamity in South Africa for about 30 years (1950-1980) [3], [30]. The year
2018-19 recorded infections in Greece, Georgia, and Russia. Cattle in various Asian
nations are currently suffering from LSD including Nepal [4], Thailand [7], [37],
Malaysia, Laos, Cambodia [8], Mynmar [18], Bangladesh [25], India [23], China
[32], Sri Lanka, Bhutan and Vietnam [58].

Though cattle are the prime species to be infected by LSD but experimental
infections show that the virus can also infect sheep, goat, giraffe, gazalles and im-
palas [23]. The name LSD is attributed to the fact that lymph nodes of the infected
animal grows and resemble lumps on the skin. Large cutaneous nodules emerge on
the head, neck, arms, legs, udder, abdomen, and private parts of the infected cattle
subsequently evolve into ulcers and finally convert into skin scabs [51]. According
to the FAO [24], it is a high morbidity(2-45 percent) and low mortality disease (less
than 10 percent). The disease evolve in 4 to 14 days.

August 2019 marked the initial outbreak of LSD in the Indian states of Odisha
and West Bengal [56]. Within a few months, other LSD outbreaks were recorded
across the country causing the dairy industry to incur significant financial losses.
With the most cow and buffalo in the world, India is the largest milk producer
and ranks first in the world, producing twenty-four percent of global milk output
in 2021-22. According to government data, lumpy skin disease has infected millions
of cattle and killed more than 1,84,000 in India, causing less milk production due
to weakness and appetite loss caused by mouth ulcers, inadequate development,
decreasing draught power, and reproductive difficulties such as abortions, infertility,
and a lack of sperm for artificial insemination. As a result, LSD has been identified
in India as a potentially lethal disease for cattle.

1.1. Motivation and Research Background. Modelling of epidemic diseases is
of utmost importance to understand the behaviour of the ailment across time and to
devise appropriate safeguards for the same. Numerous epidemic models have been
developed for various diseases, including dengue and chikungunya [1], typhoid [2],
cholera [10], HIV/AIDS [11], Covid-19 [14], [15], [57], leptospirosis, H1N1, measles
[17], and others. But to our surprise there is not enough research on transmission
dynamics and LSD control using a compartmental modelling technique; by the time
this study was completed, there had only been one work [46], to examine the effects
of vaccination on LSD and the spread of the illness in Ethiopia. Butt et al. [15] had
also researched the SVEIR epidemic model and examined it for the presence of a
unique positive and bounded solution at the end of initial revision. The authors of
both of these studies, however, relied on the traditional integer-order derivatives,
which are frequently unable to foresee the remembrance and inheritance character-
istics of substances and phenomenons, leading to erroneous depictions of dynamic
real-world events. Due to the significant amount of unidentified, uncertainties, and
misinformation, developing a mathematical model that accurately captures LSD
using classical differentiation is a difficult task. The use of non-local operators is
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encouraged by coincidences and diminishing retention effects, the argument being
supported by plenty of scholarly articles [12], [13], [42], [43], [60].

Fractional derivatives come in a wide range of forms, both with and without sin-
gular kernels. For singular kernels, we’ve got the derivatives of Caputo, Riemann-
Liouville, and Katugampola [27], [53]. The Caputo-Fabrizio fractional derivative
[16], which has an exponential kernel, and the Atangana-Baleanu fractional deriva-
tive [9], which has a Mittag-Leffler kernel, are the two types of fractional derivatives
without singular kernels. It is crucial to work with fractional-order derivatives be-
cause they provide a more accurate way to describe LSD outbreaks, even while
memory and genetic features are implicated. We offer and examine the fractional
order SEIR mathematical model in Caputo sense in light of the recent research
to comprehend the evaluation, existence, stability, and control of LSD and to the
best of our knowledge, this is the first paper to use fractional order derivative for
modeling the transmission dynamics of LSD, which is critical for understanding the
epidemiology and dynamic nature of exotic disease for timely disease management
and planning because of the global character of the fractional derivatives which
improves the system’s consistency domain. The Caputo derivative serves best as a
base model and is preferred over Riemann–Liouville fractional derivative for formu-
lating epidemiological models for the obvious reasons concerning the use of initial
and boundary conditions and the differentiation of a constant being zero. For more
details one can refer to the following researches [4], [7], [8], [18], [20], [23], [25], [26],
[36], [40], [47], [52], [54], [58], [62].

1.2. Structure of the Paper. The following is how rest of the paper is set up:
Section 2 presents auxiliary results and essential notions from fractional calculus.
The LSD propagation model is devised in Section 3, along with a schematic diagram
for the same. Section 4 provides us with the insights of the model by providing
the existence, uniqueness, positivity, and feasible region for the proposed system’s
solution, along with the analysis of the equilibrium points, reproduction number,
and stability of the proposed model. Computational simulations are executed in
Section 5 to backup the qualitative analysis results of the model. The findings and
discussions required for the policy implications are covered in Section 6.

2. Auxiliary Results

Definition 1 ([31]). The Caputo fractional derivative of a continuous function g
on [0, T ] is defined as:

Dαg(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1 dn

dsn
g(s)ds,

where 0 < α ≤ 1, n = [α] + 1, and [α] represents the integer part of α.
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Definition 2 ([31]). The fractional integral of a continuous function g on L1([0, T ],R)
of order 0 < α ≤ 1 corresponding to t is defined as:

Iαg(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds.

Definition 3 ([29]). The Laplace transform is defined by

F (s) = L[f(t)] =

∫ ∞

0

e−stf(t)dt,

where f(t) is n-dimensional vector-valued function.

Definition 4 ([49]). The Mittag-Leffler function in two parameters is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0, β > 0, C denotes the complex plane.

Lemma 1 ([29]). Let C be a complex plane, for any α > 0, β > 0 and A ∈ Cn×n,

L[tβ−1Eα,β(Atα)] =
sα−β

sα −A

holds for Re(s) > ∥A∥ 1
α , where Re(s) represents the real part of the complex number

s.

Lemma 2 ([39]). Let F (s) be the Laplace transform of the function f(t), n being
an integer then the Laplace transform of the Caputo fractional derivative of order
α is given by

L(Dαf(t)) = sαF (s)−
n∑

k=1

sα−kf (k−1)(0), n− 1 < α ≤ n.

Lemma 3 ([44], Generalized Mean Value Theorem). Let g(t) ∈ C[a, b] and Dαg(t) ∈
C[a, b] for 0 < α ≤ 1, then

g(t) = g(a) +
1

Γ(α)
(Dαg)(s)(t− a)α

with 0 ≤ s ≤ t, ∀ t ∈ (a, b]. Thus, we can deduce that for g(t) ∈ C[0, b] and Caputo
fractional derivative Dαg(t) ∈ C[0, b] for 0 < α ≤ 1, if Dαg(t) ≥ 0, ∀ t ∈ [0, b],
then the function g(t) is non-decreasing and if Dαg(t) ≤ 0, ∀ t ∈ [0, b], then the
function g(t) is non-increasing ∀ t ∈ [0, b].

Theorem 1 ([55]). Consider the fractional differential equation:

Dαx(t) = f(t,x(t)),

x(k)(t0) = x
(k)
0 , k = 0, 1, . . . , n− 1, (1)
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where Dα represents the Caputo fractional derivative. Let L > 0 and f : [0, L] ×
R → R is continuous and suppose that there exists a real number l > 0 such that
|f(t, x) − f(t, y)| ≤ l|x − y| for t ∈ [0, L] and x, y ∈ R. Then, the initial value
problem has a unique solution in AC[0, L].

Theorem 2 ([48]). Consider the following fractional-order system:

DαX(t) = F(X); (2)

with 0 < α < 1, X(t) = [x1(t), x2(t), . . . , xn(t)] and F(X) : [t0,∞) → Rn×n.
The equilibrium points of system (2) are evaluated by solving system of equations
F(X) = 0. These equilibrium points are locally asymptotically stable if each eigen-
value λ of the Jacobian matrix J(X) calculated at the equilibrium points satisfies
|arg(λi)| > απ

2 .

3. LSD Propagation Model

A lumpy skin disease propagation model is proposed by categorising the entire
cattle population N into system four different classes: S, E , I and R suscepti-
ble, exposed, infected and recovered cattle population respectively. S reflects the
cattle population that is prone to infection, E displays livestock that have previ-
ously been exposed to disease-causing germs (LSDV), I comprises of those cattle
who have been identified and confirmed positive for LSD, and finally, the recov-
ered cattle are placed in the category R. According to the model, cattle enter the
susceptible population at the rate of Ξ either by migration from some other state
or by birth. Susceptible cattle become infected by interacting with the diseased
cattle at a contact rate of β per cattle per time(morbidity rate). η, ρ, σ denotes the
incubation, recovery, mortality rate of the disease respectively.

Dα
t St = Ξ− βStIt − σSt ,

Dα
t Et = βStIt − (σ + η)Et , (3)

Dα
t It = ηEt − (ρ+ σ)It ,

Dα
t Rt = ρIt − σRt

along with the initial conditions St=0 = S0, Et=0 = E0, It=0 = I0, Rt=0 = R0.
Here, Dα

t is the Caputo fractional derivative of order α; 0.5 < α < 1.

Table 1. Meaning of various parameters

Parameter Significance
Ξ influx rate or birth/migration rate
β morbidity rate/number of bites
η incubation rate
ρ recovery rate
σ death rate
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Figure 1. An illustration of the model’s scheme.

4. Model Analysis

This section marks the discussion about the uniqueness of the solution along with
its non-negative and bounded nature, the equilibrium points and basic reproduction
number are also obtained for the model.

Theorem 3. There is a unique solution U(t) = [S(t), E(t), I(t),R(t)]T for the
initial value problem given by the system of equations in (3) on t ≥ 0 in (0, θ) and
the solution will remain in R4

+. Furthermore, the solutions are all bounded.

Proof. Here, Lemma 2 is used to establish the uniqueness of solution for the given
system of initial value problems on (0,∞). Firstly, we shall establish the non-
negativity and boundedness of solution. From model (3), we find

Dα
t St|S=0 = Ξ > 0 ,

Dα
t Et|E=0 = βStIt ≥ 0 ,

Dα
t It|I=0 = ηEt ≥ 0 ,

Dα
t Rt|R=0 = ρIt ≥ 0 .

The vector field on each hyperplane enclosing the non-negative orthant points into
R4

+. Furthermore, from system (3)

DαN (t) = Ξ− σN (t) ≥ 0 ,

i.e. DαN (t) + σN (t) ≤ Ξ . (4)

Thus, from equation (4) and deduction of Lemma 3, in the case of LSD infection,
the total population and hence the sub populations are all bounded. Consequently,
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the IVP’s biologically viable region (3) is

Ω =

{
(St, Et, It,Rt) ∈ R4

+ : S, E , I,R ≥ 0; 0 ≤ St + Et + It +Rt ≤
Ξ

σ

}
. (5)

The next step is to demonstrate the uniqueness of solution in Ω ∀ t ≥ 0. As we
know, N (t) is the sum S(t), E(t), I(t), R(t) populations. The Caputo fractional
derivative of order α of this equation, gives

DαN (t) = DαSt +DαEt +DαIt +DαRt

which gives

DαN (t) = Ξ− σN (t).

Now, by taking Laplace transformation using Lemma 2, we have

N (s) =
Ξ s−1 + sα−1N (0)

sα + σ
.

Using Lemma 1 to obtain inverse Laplace transformation, we get

N (t) =
Ξ

σ
[1− Eα(−σtα)] +N (0)Eα(−σtα) .

From the complete monotonicity of Eα(−t) for t > 0 and 0 ≤ Eα(−σtα) ≤ 1 on
0 < α ≤ 1 [35], [50], we obtain

N(t) ≤ Ξ

σ
. (6)

To explore the presence of unique solution, we assume the model (3), where all
the functions on right hand side of system of equation (3) are continuous and
bounded for t ≥ 0 as S(t), E(t), I(t), R(t) bounded by equation (6). Also, they
satisfy Lipschitz condition. Thus, there exists a bounded and unique solution of the
proposed model on (0,∞) owing to Theorem 1. □

4.1. Equilibrium Points.

4.1.1. LSD-free equilibrium. When there are no infected cattle i.e. It = 0. The
LSD-free equilibrium point (E0) is attained when we take E = 0, I = 0, R = 0.
Thus, the steady state for LSD-free equilibrium is

(
Ξ
σ , 0, 0, 0

)
.

4.1.2. Reproduction Number: The number of cattle infected by a single sick cattle
throughout the course of the incubation period in the population of entirely sus-
ceptible cattle is known as the reproduction number (R0). The largest eigenvalue

of F∗V∗−1

at E0 is used to calculate the reproduction number (R0) of the given
model [61]. [

DαSt,D
αEt,DαIt,DαRt

]T
= F(t)− V(t) , (7)

where F represents the rate at which new infections appear in different classes, V−

is the pace of shifting individual cattle into various classes using all other methods,
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and V+ is the pace at which individual cattle are transferred between classes. Also,
V(t)=V−(t)− V+(t) such that

F(t) =


0

βStIt
0
0

 , V+(t) =


Ξ
0
ηEt
ρIt

 , V−(t) =


βStIt + σSt

(σ + η)Et
(ρ+ σ)It

σRt

 .

At E0, the Jacobian matrix of F(t) is given by

F∗(t) =


0 0 0 0

0 0 β Ξ
σ 0

0 0 0 0
0 0 0 0

 .

The Jacobian matrix of V(t) is

V∗(t) = V∗−(t)− V∗+(t) =


σ 0 β Ξ

σ 0
0 (σ + η) 0 0
0 −η (ρ+ σ) 0
0 0 −ρ σ

 .

F∗V∗−1 is the next generation matrix for the model. And, R0 is the spectral radius
of this matrix. Now, the eigenvalues of F∗V∗−1 are 0, 0, 0 and β Ξ η

σ(σ+η)(σ+ρ) . Thus,

the reproduction number is given by

R0 =
β Ξ η

σ(σ + η)(σ + ρ)
. (8)

Analyzing R0:
To determine how sensitive each of R0’s parameters is,

∂R0

∂β
=

Ξ η

σ(σ + η)(σ + ρ)
> 0, (9)

∂R0

∂Ξ
=

βη

σ(σ + η)(σ + ρ)
> 0, (10)

∂R0

∂η
=

β Ξ σ

σ(σ + η)2(σ + ρ)
> 0, (11)

∂R0

∂ρ
=

−β Ξ σ

σ(σ + η)(σ + ρ)2
< 0, (12)

∂R0

∂σ
=

−β Ξ η

σ(σ + η)(σ + ρ)

{
1

σ
+

1

(σ + η)
+

1

(σ + ρ)

}
< 0. (13)

Thus, R0 is increasing with β, Ξ, η and decreasing with ρ and σ.
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4.1.3. LSD-Persistent Equilibrium. When the number of infected cattle i.e. It ̸= 0.
The LSD-persistent equilibrium point (E1) is attained when the number of infected
cattle is not zero i.e (I ≠ 0). Therefore, the disease persistent equilibrium point is
given by (S1, E1, I1,R1), where

S1 =
(σ + η)(σ + ρ)

βη
, E1 =

β Ξ η − σ(σ + η)(σ + ρ)

βη(σ + η)
,

I1 =
σ(R0 − 1)

β
and R1 =

ρ(R0 − 1)

β

which implies (S1, E1, I1,R1) > 0 iff R0 > 1. So, the LSD-persistent steady state
exists iff R0 > 1. For R0 = 1, LSD-persistent steady state becomes LSD-free steady
state.

4.2. Stability Analysis.

Theorem 4. LSD-free equilibrium point E0 =
(
Ξ
σ , 0, 0, 0

)
of the system is locally

asymptotically stable when R0 < 1, unstable otherwise.

Proof. The Jacobian matrix at E0 is
−σ 0 −β Ξ

σ 0

0 −(σ + η) β Ξ
σ 0

0 η −(ρ+ σ) 0
0 0 ρ −σ

 .

Now, two of the eigenvalues are −σ. The characteristic equation for finding the
remaining two eigenvalues is given by

P (λ) = λ2 + P1λ+ P2 , (14)

where

P1 = (2σ + η + ρ),

P2 = (η + σ)(ρ+ σ)− β Ξ η

σ
= (η + σ)(ρ+ σ)[1−R0].

Now, P1 > 0 always and P2 > 0 for R0 < 1. Thus, for R0 < 1, by using Routh-
Hurwitz criteria [5], all the eigenvalues of the Jacobian matrix at E0 have negative
real parts, it implies from Theorem 2 that the LSD-free equilibrium point is locally
asymptotically stable when R0 < 1 and unstable otherwise. □

Theorem 5. The LSD-persistent equilibrium point E1 = (S1, E1, I1,R1) exists and
is locally asymptotically stable iff R0 > 1.

Proof. The Jacobian matrix at E1 is
−σR0 0 − (η+σ)(ρ+σ)

η 0

σ(R0 − 1) −(σ + η) (η+σ)(ρ+σ)
η 0

0 η −(ρ+ σ) 0
0 0 ρ −σ

 .
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Thus, on observation we see that one of the eigenvalues is −σ. The characteristic
equation to obtain the remaining eigenvalues is

P (λ) = λ3 + P1λ
2 + P2λ+ P3 ,

where

P1 = (σ(R0 + 2) + η + ρ) ,

P2 = σR0(2σ + η + ρ) ,

P3 = (R0 − 1)σ(η + σ)(ρ+ σ) .

Clearly, P1 > 0 and P3 > 0 whenever R0 > 1. Also, P1P2 − P3 > 0. Thus, by
Routh-Hurwitz criterion, all the eigenvalues of the Jacobian matrix of the system of
equations defining the model have negative real parts at LSD-persistent equilibrium
point E1 for R0 > 1, which ensures the locally asymptotic stability of the LSD-
persistent equilibrium point for R0 > 1 and unstable elsewhere using Theorem 2.

□

5. Numerical Simulations

Computing findings that highlight the fluctuating nature of the lumpy skin dis-
ease propagation model and to verify the analytical outcomes for multiple deriva-
tive orders are presented in this section. Using a MATLAB programme supplied by
Roberto Garappa in [22], the proposed model is solved using the Adams-Bashforth-
Moulton predictor-corrector method. Table 2 carries the variables and parameters
used for simulation. According to 19th livestock census-2012 and 20th livestock
census-2019 all India report the total Cattle population in the country was 190.90
and 192.50 million respectively [41]. This shows that there has been an approxi-
mate increase of 0.0114 percent per year giving us the birth rate or the influx rate
(Ξ). The morbidity rate (β) can be retrieved from [43] by making a few necessary
changes to it. As per the 20th livestock census-2019, the total cattle population
in the state of Gujarat is 10,165,000. Therefore, the total susceptible cattle pop-
ulation is 10,165,000/232. Similarly as in the case of COVID-19 (there it was 250
for the Wuhan city with a population of 11 million), the denominator was chosen
early in the epidemic and later proven to be a reasonable figure. It is a suitable
parameter for limiting the movement of cattle that were imposed by the respective
state governments on different dates between July to September, 2022 as reported
by various newspapers [34]. Now, assuming the average number of bites per cattle
per day to be 5, this gives us β = 5 ∗ 10, 165, 000/232 [43]. The incubation period is
between 4 to 14 days [33]. Since, there is no or a little information available about
the mortality rate and recovery period(reciprocal of the recovery rate), we assume
them to be 0.0057 (half of the birth rate) and 7 days (keeping a positive view),
respectively.
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Table 2. Parameter Values

Parameter Value Source

Ξ 0.0114 [41]

β 1.1412× 10−4 [43]

η 1/6 [33]

ρ 1/7 Assumed

σ 0.0057 Assumed

Population S E I R

Initial Values 43815 1 1 0

For the initial populations, the initial susceptible population along with restricted
cattle movement is assumed to be S0 = 10, 165, 000/232, we assume that initially
exposed and infected cattle are 1 each, no recovered cattle. In the event that R0 > 1,
the cattle population cannot be free of disease. Following the start of the pandemic,
the number of susceptible cattle continued to decline, while the exposed and infected
cattle classes show a rapid rise in population density, as seen by Figures 2, 3 and
4, respectively. The rapid rise in the number of recovered cattle population in
Figure 5 can be attributed to the massive vaccination drive in the state of Gujarat,
steps were made to control disease causing vectors and restrict bovine movement.
Regardless of the order, the plots in Figure 6 for each class of cattle population
indicates that the proposed model is asymptotically stable for the LSD-persistent
equilibrium points the population swiftly approaches its equilibria when we increase
the value of α. Since the susceptible and infected cattle populations are reduced to
negative populations, which is something we all know is not conceivable, we can
plainly state that the fractional order models are far superior than the conventional
integer order model with α = 1. The equations (9), (10) and (13) support the
findings of Figure 7(a), (b)and (c), respectively. Equation (11) demonstrates that
R0 rises with an increase in the incubation rate, η, and falls with an increase in
the incubation duration (1/η), as shown by Figure 8(a). In a similar vein, equation
(12) reveals that R0 drops as the recovery rate, (ρ) rises. The recovery period (1/ρ)
grows as R0 does, as shown by Figure 8(b).
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Figure 2. Graphical display of the susceptible class at various
fractional orders.

Figure 3. Graphical display of the exposed class at various frac-
tional orders.

Figure 4. Graphical display of the infected class at various frac-
tional orders.
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Figure 5. Graphical display of the recovered class at various frac-
tional orders.

(a) α = 0.6 (b) α = 0.7

(c) α = 0.8 (d) α = 0.9

Figure 6. Variations of susceptible, exposed, infected and recov-
ered cattle populations with different values of α
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(a) R0 increases with increase in mor-
bidity rate (β)

(b) R0 increases with increase in birth
rate (Ξ)

(c) R0 decreases with increase in death
rate (σ)

Figure 7. Variation of R0 with β, Ξ, σ

(a) R0 increases with increase in incu-
bation rate (η)

(b) R0 decreases with increase in recov-
ery rate (ρ)

Figure 8. Variation of R0 with η and ρ
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6. Concluding Remarks And Future Strategy

For R0 < 1, the diffusion of the virus can be controlled, and the equilibrium free
of LSD can be preserved across Gujarat. The susceptible cattle population keeps
on decreasing with time. The exposed and infected cattle population regularly rises
over time until it reaches a peak, after which it starts to decline until it attains
equilibrium. We can see that the best results are shown by taking α = 0.5 as it shows
the infected cases reach an all-time high in 56 days following the discovery of the first
case on April 23 of this year in the hamlet of Kaiyari, located on the Indo-Pak border
in the Kutch district’s Lakhpat taluka. Mosquito and housefly infestations continue
at their peak during the monsoon season, and veterinary scientists and government
officials blame a very wet July for the infection’s quick spread in Gujarat this year.
So far, Gujarat has experienced 1010 mm of rain, which is 20 percent higher than
the state normal of 850 mm. The four-month south-west monsoon season began in
June and ended in September. There is also an issue with feral cattle in Gujarat,
a state where cow slaughter is outlawed, and experts believe these free-roaming
cattle may be a factor in the quick spread of LSD. The dearth of knowledge about
the sickness may also contribute to the rapid spread of LSD. As can be seen, the
peak does not last long, which might be attributed to the state animal husbandry
department treating diseased cattle and administering goat pox vaccine to healthy
animals in surrounding regions.

This current investigation suggests the following policy changes to assist, iso-
late, and stop the further spread: import restrictions on domestic cattle and water
buffaloes, as well as their products; surveillance beyond the containment zone of
goods, trash, and disease spreading vectors; restriction on movement of cattle; pest
control measures; incineration; and cleaning and disinfection of the surroundings.

Effective LSD treatment with complete coverage is required. Given that LSD is
in close relation to the sheep pox and goat pox viruses, vaccine against same is
used to treat LSD. New animals should be inoculated before being introduced to
the afflicted farm. Calves reared from vaccinated or naturally infected moms should
be inoculated at the age of 3 to 4 months. Bulls used for breeding and pregnant
cows can both receive annual vaccinations [21]. The R0 may be used to calculate
the amount of vaccine needed to suppress an epidemic (i.e. to reduce R0 below one).
The study also emphasised the need of starting immunisation efforts ahead of viral
entrance.
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