ÇÜRÜK TEŞHİSİNDE LAZER ENERJİSİ KULLANILMASI

CARIES DETECTION WITH LASER ENERGY

Meryem TORAMAN ALKURT*

Ova BALA[†]

ÖZET

Topikal florid kullanımının giderek yaygınlaşmasına bağlı olarak çürük yapısı değişmekte ve remineralizasyon sürecine tabi olan mine çürüğü altında dentine ilerleyen kavitasyonsuz çürükler saklı kalabilmektedir. Çürük teşhisinde kullanılan yöntemler diş dokusunda harabiyete yol açmamalı ve hekime uygulayacağı tedavi planlamasında doğru karar vermesinde rehberlik edebilmelidir. Son yıllarda bu ideale ulaşmak amacıyla lazer enerjisi kullanılarak çürük teşhisi çalışmaları yapılmaktadır. Bu derlemede lazer enerjisi kullanılarak yapılan çürük teşhisinin temel prensiplerini ve bugün gelinen noktayı özetlemek amaçlanmıştır.

Anahtar Kelimeler: Çürük teşhisi, lazer enerjisi

SUMMARY

Increase in using topical fluorids has caused a remarkable change in caries structure and the remineralization process of enamel caries may hide dentinal caries without cavitation. The methods used for caries detection should not cause any defects on tooth structure and should led the clinican to make an accurate decision on treatment planing. In recent years, caries detection using laser energy studies have been caried on to reach this ideal. The purpose of this article was to summarize the basic principles of using laser energy for caries diagnosis and the current state of the subject.

Key Words: Caries detection, laser energy

Makale Gönderiliş Tarihi : 08.05.2006 Yayına Kabul Tarihi: 24.07.2006

GİRİŞ

Çürük teşhisinde kullanılacak aletler ve metodlar idealde diş dokusuna zarar vermemeli, kolay, güvenilir ve hassas sonuçlar vermeli, özel durumlarda uygulanabilmeli, lezyonun derinliği ve aktivitesini doğru olarak ölçebilmelidir. Maliyeti hasta ve hekim tarafından kabul edilebilir miktarlarda olmalı, gerek klinikte gerekse araştırmalarda kullanıldığında koruyucu tedavi kararlarının alınmasına yardımcı olarak ağız sağlığının uzun süreli korunmasına hizmet edebilmelidir²².

Çürüğün klinik teşhisinde, uzun yıllardır dental ayna ve ışık ile yapılan gözle muayene, sond ve yardımcı olarak bite-wing radyografi kullanılmaktadır.

Gözle muayene en yaygın olarak kullanılan çürük teşhis yöntemidir. Bu metotta dental ayna, ışık ve tüm diş yüzeyini detaylı inceleyebilmek amacıyla sond kullanılır. Sensitivitesi (seçicilik) düşük olmasına rağmen, spesifitesi (duyarlılık) yüksektir. Bu metod ile

- dişlerin bukkal ve lingual yüzeyleri,

- ön dişlerin arayüzeyleri

- bazı fissür girişlerindeki kavitasyonsuz mine çürüklerinin,

- klinik olarak saptanabilen minede sınırlı olan kavi-telerin,

- arka grup dişlerin bukkal ve lingual yüzeyleri,

- ön dişlerin arayüzeylerinde oluşan ve dentinde de kavitasyon oluşturmuş lezyonların,

- kavitasyon oluşturmuş sekonder çürüklerin,

- kavitasyonlu ve kavitasyonsuz kök çürüklerinin teşhisi yapılabilir.

Metodun en önemli eksikliği özellikle arka grup diş-

* Gazi Üniversitesi Diş Hekimliği Fakültesi, Oral Diagnoz ve Radyoloji Bilim Dalı, Öğretim Görevlisi, Dr.

† Gazi Üniversitesi Diş Hekimliği Fakültesi, Diş Hast. ve Tedavisi Anabilim Dalı, Prof. Dr.

lerin oklüzal ve ara yüzeyinde oluşan kavitasyon oluşturmadan dentine kadar ilerlemiş lezyonların teşhisinde yetersiz kalmasıdır^{13,14}.

Son yıllarda çürük teşhisinde sond kullanımı tartışmalı bir durum olarak değerlendirilmektedir. Geçmiş yıllarda çürük tespitinde geçerli bir yöntem olan sond kullnımında eğer sond ucu pit, fissür veya kavitasyon bölgesine takılıyorsa, bu durum restorasyon endikasyonu olarak kabul edilirdi22. Günümüz diş hekimliğinde sondun teşhis amacıyla kullanımı söz konusu değildir. Kavitasyonsuz lezyon, remineralizasyon veya fissür örtücüler, mikrorestorasyonlar gibi dis dokusunu koruyucu tekniklerle tedavi edilmelidir20. Ayrıca, sondlamanın çürük teşhisinin kesinliğini arttırmadığı da belirtilmektedir¹³. Hafif basınçla yapılan sondlama, beyaz, opak lezyonlarda kavitasyon meydana getirebilir. Dar fissür ve pitlerde oluşan kavitasyonsuz lezyonlar oldukça kırılgan mine dokusu ile örtülüdürler3. Pit ve fissürler kesinlikle sondlanmamalıdır, renklenmis veya kavitasyonsuz pit ve fissürlerde sond kullanımı etik değildir. Gerekli durumlarda, diş yüzeyinden plak ve debrisi uzaklaştırmak ve lezyonun yüzey yapısını kontrol etmek amacıyla künt uçlu periodontal sond kullanılabilir^{3,31}.

Bite-wing radyografi; özel ısırma kısmı bulunan periapikal filmlerle çekilmektedir. Temel prensip, merkezi x ışını fotonu dişlerin ara yüz bölgelerinden geçecek şekilde tüpün konumlandırılmasıdır. Böylece arayüzeylerin birbiri üstüne superpoze olması engellenebilir. Ayrıca, kon oklüzal düzleme paralelliği sağlayacak şekilde +10 derece açılandırılarak, tüberküllerin okluzal yüzeye superpoze olması engellenir, bu da erken okluzal çürüklerin teşhisine yardımcı olacaktır¹⁰. Geleneksel bite-wing radyografinin, dentine ilerlemiş kavitasyonsuz lezyonların doğru teşhis oranını belirgin şekilde arttırması ile beraber yanlış pozitif teşhis riskinin de mevcut olduğu bildirilmiştir²¹. Arayüz çürüğü teşhisinde radyografi kullanımının avantajları artık kabul edilmiş olmasına rağmen, erken mine çürüğü teşhisinde tüberküllerdeki sağlam minenin superpoze olması sebebi ile yetersiz olduğu rapor edilmiştir^{32,33}. Buna rağmen özellikle bite-wing radyografi, başlangıç oklüzal çürüklerinin teşhisi için klinik muayeneyle birlikte kullanılabilecek bir teşhis yöntemi olarak önerilmiştir²¹.

Çürük Teşhisinde Lazer Kullanılması

Doğal gaz, element ve moleküllerden veya insan yapımı kristallerden aktive olan lazer, uzayda mesafelerin ölçülmesi, insan hayatını tehdit eden savaş aracı olarak kullanılması, marketlerde alışverişlerimizin kaydedilmesi gibi pek çok alanda karşımıza çıkmaktadır. Günümüzde tıbbın pek çok alanında olduğu gibi dişhekimliği alanında da lazer kullanımı giderek yaygınlaşmaktadır. Diş hekimliği alanında lazerin kullanılması aslında çok da yeni değildir. İlk *in vitro* çalışma raporları 1960'lı yılların sonlarına dayanır. Buna rağmen, 1980'li yılların başlarında ancak klinik anlamda kullanılmaya başlanmıştır. Etkin ve etiğe uygun kullanıldığında diş hekimliğinde lazer, pekçok klinik durum için kabul edilebilir bir tedavi alternatifi getirmektedir. Kullanılan dalga boyu göz önünde bulundurularak, lazer kullanımı diş hekimliğine pek çok avantaj sunar¹⁸.

Diş ve kemiklerin mineral kristalleri karbonize hidroksi apatitlerden oluşur. Bu kristal yapı hidroksiapatitten daha kolay çözünür. Hidroksiapatit yapısı da florapatitten daha kolay çözünür bir yapıya sahiptir. Karbonize hidroksi apatit mineral yapısı minede % 3, dentinde ise % 5 oranında karbonat içerir. Bu oranlar, kristal kafesindeki fosfat içeriği ile yer değiştiren ve mineral yapısını aside daha duyarlı hale getiren yapısal defekt olarak tanımlanır. Mineral matriksin bu özelliği, lazer tedavisi ile dişin yüzey yapısını kalıcı olarak değiştirmek ve asitlere karşı daha dayanıklı hale dönüstürmek icin temel olusturur. Fermente olan karbonhidratların metabolizmaları sonucu ortaya çıkan asitler, diş yapısına difüze olur ve yüzey mineral matriksi eritir. Kalsiyum ve fosfat iyonları diş yapısından uzaklaşır ve yüzeyel demineralizasyon gelişir. Bu süreç başlangıç çürük lezyonu olarak adlandırılır. Yüzeyel lezyonun yapısı daha az mineralize, daha çok porludur ve protein ve bakteriyel ürünleri absorbe eder, dolayısıyla farklı optiksel özelliklere sahiptir. Yüzeyel lezyonların bu özelliği, çürük teşhisinde lazer enerjisi kullanılmasının ana mekanizmasıdır. Lezyonun gelişimi bu aşamada durdurulmaz ise kavitasyon gelişecektir¹⁸.

Mine ve Dentinde Işık Etkileşimleri

Etkin ve güvenilir bir tedavi sağlanması için lazer ile yapılan işlemlerde, ışın ve doku arasındaki optik etkileşim iyi anlaşılmalıdır. Lazer - doku mekanizması, ışınlama parametreleri ile kontrol edilir. Bunlar, dalga boyu, devamlı veya atımlı yayılım, tekrarlama oranı, atım süresi, atım enerjisi, lazer ışın demetinin hacmi ve taşınma metodu, ışının uzaysal ve zamana bağlı özellikleri ve dokunun optik özellikleri olarak sayılabilir. Uzun yıllardır yapılan çalışmalar, bugün diş hekimlerine planladıkları tedavi için uygun dalga boyunda ve tipinde lazer ışını seçme şansını sunmaktadır¹⁸.

Çürük lezyonunun sağlam dokudan ayırt edilebilmesi için lazer ışınının her iki dokuda farklı oranlarda saçılması ve farklı floresans meydana getirmesi gereklidir. Işın aynı zamanda, yüzey mine tabakası altındaki lezyonların da teşhiş edilebilmesi için yeterli derinliğe penetre olabilmelidir. Doku uzaklaştırmak isteniyorsa, uygulanan ışın doku tarafından yeterli derecede absorbe edilmelidir. Eğer dokunun içeriği veya çözünürlüğü ısı yoluyla değiştirilmek isteniyorsa, lazer ışını güçlü bir şekilde absorbe edilmeli ve komşu yüzeylere zarar verilmeden etkili biçimde ısıya dönüşebilmelidir^{6,8,9}.

Çürük teşhisi, çürüğün kaldırılması veya çürük önleyici tedaviler için gerekli olan optiksel doku özellikleri ise ışını geçirme, saçma ve absorbe etme özellikleridir. Eğer ışın doku ile reaksiyona girmeden geçiriliyorsa daha alt dokulara iletilmektedir, bu durum emilimin minimum olduğu durumdur. Eğer ışın saçılıyorsa, artık etkin bir demet değildir ve gerekli dokuya taşınamaz. Eğer bir doku diğerinden fazla ışın saçıyorsa ve ilk doku ışığa geçirgense bu özellik çürük taramasında etkilidir⁸.

Işın absorbe edildiğinde, dokunun atomları ile etkileşime girerek ısıya dönüşür. Absorbsiyonun derecesi, penetrasyonun derinliğini ve açığa çıkan ısı miktarını belirler¹⁸.

Dokunun optiksel özelliği, *kırılma indeksi* olarak tanımlanır ve *saçılma katsayısı* (μ_s) ve *absorbsiyon katsayısı* (μ_s) ile ifade edilir. Lazer ışınının diş dokusu üzerindeki etkisi, enerjinin nasıl yayıldığına ve ne kadarının tutulduğuna bağlıdır. Isı artışı ise belirli zaman diliminde ve enerji düzeyinde tutulan enerji ile ısıya dönüşen enerji arasındaki dengeye bağlıdır. Dokunun morfolojik ve kimyasal özelliklerinin değişmesini meydana gelen ısı artışı belirler⁸.

Saçılma ve absorbsiyon parametreleri

Absorbsiyon ve yansıtma katsayıları deneysel olarak tespit edilmiştir ve resiprokal cm değeri ile ifade edilir (cm⁻¹). Lazer ışını yüksek absorbsiyon katsayısına sahip materyaller (≥ 100 cm⁻¹) tarafından yüzeyin 10 µm altına kadar emilir ve ısıya dönüşür. Atımlı lazer kullanıldığında atım süresi kısa ise uygulanan alanda tüm enerji ısı olarak tutulur, eğer atım süresi uzun ise bir miktar ısı tutulur, kalan enerji ise daha derin dokulara iletilir. Dokuya enerji transferi ısı iletimi ile gerçekleşir. Dokunun ısı geçirgenliği ve ısı tolore edebilme kapasitesi transferin miktarını belirler⁸.

Mine dokusu 400 – 700 nm arasındaki görünür ışığa zayıf absorbsiyon gösterirken (absorbsiyon katsayısı <1cm⁻¹), 240 – 300 nm arasındaki ultraviyole ışığına ise orta dereceli absorbsiyon gösterir. Saçılma katsayıları ise 240 – 700 nm arasında düzenli olarak azalırken, infrared sınırına gelindiğinde 400 cm⁻¹ olan saçılma katsayısı değeri 15 cm⁻¹'ye kadar düşmektedir. 1064 nm'lik Nd:YAG ışınlamasında ise dalga boyu arttığından ışın minimal

GÜ Diş Hek Fak Derg 24 (2) : 125-130, 2007 emilim ve düşük saçılma ile mineyi rahatlıkla geçmektedir^{8,28}.

Dentin dokusu mine ile kıyaslandığında mineral içerikte azalma, su ve protein içeriğinde ise artma söz konusudur. Görünür ışık düzeyinde (400–700 nm) dentinin absorbsiyon katsayısı düşüktür fakat saçılma katsayısı (μ_s) mineye oranla artmıştır. İnfrared sınırında yani Nd: YAG dalga boyunda, dentinde düşük fakat ölçülebilen absorbsiyon mevcut iken saçılma oranı oldukça yüksektir. Saçılan ışın, tümü ile absorbe olana veya komşu dokulara iletilene kadar hareket etmeye devam eder²⁸.

Mine ve dentinin mineral yapısı kalsiyum, sodyum, fosfat, karbonat, hidroksil ve flor iyonları içerir. Mine ve dentin aynı zamanda su içerir, bu oran % 12 ile % 25 arasındadır. Absorbsiyon sınırları su için yaklaşık 3 µm, hidroksil iyonu için 2.8 µm, karbonat iyonu için 7 µm ve fosfat iyonu için 9 - 11 µm'dir^{7,28}.

Orto - infrared dalga boyu sınırında (>2.10 µm) diş dokularının içeriği gözönüne alındığında, absorbsiyon katsayısı (800 – 8000 cm⁻¹) oldukça yüksektir. Absorbsiyon değerleri yüksek olunca geçirgenlik azalır. Örneğin; 9.6 mm dalga boyunda, tüm ışın yüzeyel 1mm'lik alanda absorbe edilir. Er: YAG (2.94 µm) ile Er: YSGG (2.79 µm) dalga boyundaki lazer ışını su absorbsiyon sınırını geçmektedir, bu sebeple temel absorban bu seviyede sudur. Bu özellik sağlam ve çürük minenin ve dentinin kaldırılmasında kullanılır. Bu lazerler, suyun yanısıra hidroksil iyonunun da absorbsiyon sınırını geçtiği için etkili bir şekilde dokunun kaldırılmasın sağlamakla beraber yüzey ısısını da arttırır⁸.

Tıpta ve diş hekimliğinde kullanılan geleneksel CO₂ lazerlerin dalga boyu 10.6 μ m'dir ve bu dalga boyunda lazer ışını mineral yapı tarafından etkin bir şekilde absorbe edilir. CO₂ lazerlerin dört temel dalga boyu vardır; bunlar 9.3, 9.6, 10.3, 10.6 μ m'dir. Çürük önleyici tedavilerde gerekli görülen, mineral matriksin etkili ve kısa süreli ısıtılması için 9.3 ve 9.6 μ m'lik CO2 lazer tedavisi uygun olacaktır⁶.

Lazer uygulaması sonucu, ışın yoğunlukla dokuların su içeriği tarafından absorbe edilmekte ve çok kısa süre zarfında su buharlaşmaktadır. Biyolojik dokular yüksek oranlarda su içerdiklerinden lazer ışını ile ışınlama sonucunda yıkıma uğrarlar ve dokudaki su içeriği buharlaşarak karbon esaslı bir artık bırakırlar. Lazerin çürük teşhisinde kullanılma felsefesi de bu mekanizmaya dayanır. Çürük lezyonu, çevreleyen sağlam mineye oranla daha fazla organik materyal içerir. Lazer ışınlamasından sonra organik materyal buharlaşınca, geriye karbonize bir artık doku kalacaktır ve bu alan daha koyu olarak gözlenecektir. Düşük güç seviyeleri ve kısa zaman aralıkları kullanıldığında sağlam minede inorganik içeriğin fazla olması sebebiyle hasar daha az olacaktır⁸.

Erken mine çürüğü tanısında, lazer floresans metodu ilk olarak 1982 yılında Bjelkhagen ve arkadaşları⁴ tarafından kullanılmıştır. 448 nm'lik argon - ion lazer kullanarak sağlam ve dekalsifiye mine dokularındaki floresan farkını gözlemlemiş ve filtreler yardımı ile fotoğraflamışlardır. Sundstrom ve arkadaşları²⁷ 488 - 515 nm'lik argon - ion, 337 nm'lik nitrogen ve 633 nm'lik helium - neon lazer kullanarak okluzal çürük taraması çalışmaları yapmışlardır. Lazer ışınlamasının ardından dişlerin okluzal yüzeylerinin asit ile dağlama işleminden sonraki görüntüye benzer şekilde camsı görünüm aldığı, bazı fissürlerde ise siyah alanların gözlendiği rapor edilmiştir. Bu alanların dekalsifiye bölgelerin yüksek organik içeriğinin buharlaşması ile meydana gelen artık karbon sahaları olduğu belirtilmiştir¹⁸.

Lazerin çürük teşhisinde kullanılması amacıyla yapılan ilk çalışmalar, sağlam ve çürük minenin ışın demetini saçmasındaki farklılıklar üzerinde yoğunlaşmış fakat bu çalışmalar başarısız olmuştur. Floresans esasına dayanan çalışmalar sonucunda elde edilen gelişmeler umut vericidir^{8.18}.

Floresans

Floresans bilim ve teknoloji alanında oldukça iyi bilinen bir kavramdır. Tanımlanacak olursa, herhangi dalga boyundaki ışığın (uyarıcı dalga boyu) doku tarafından absorbe edilmesinin ardından daha uzun bir dalga boyuyla (yayılma dalga boyu) yayılmasıdır. Floresans oluşabilmesi için belirli bir maddenin belirli bir dalga boyuyla uyarılması gereklidir. Bu konudaki ilk çalışmayı, 1911 yılında Stubell dişlere ultraviyole ışığı uygulayarak yayınlamıştır. Daha sonra 1933 yılında Eisenberg mavi ışıkla uvarılan dislerde floresans olustuğunu belirtmistir⁸. Alfano ve Yao1 görünür ışık tatbik edilen dişlerde oluşan floresans üzerine çalışmışlardır. Sağlam ve çürüklü insan dişleri kullanarak yaptıkları çalışmada, tungsten kaynaktan sağlanan 350, 410 ve 530 nm ışık uygulamasından sonra sırasıyla 427, 480 ve 580 mm'lik yayılma piklerini ölçmüşlerdir. Çürük lezyonlarındaki yayılma spektrumu, ışık spektrumunun kırmızı alanına doğru kayma göstermiştir. Alfano ve Yao² daha sonra, 400 - 700 nm dalga boyunda ışık kullanarak sağlam ve çürük dokular arasındaki yayılma farkını gözlemlemişlerdir. Bu sırada Sundstrom ve arkadaşları27, 337, 488, 515 ve 633 nm dalga boyunda ışık kullanarak sağlam ve çürük dokudaki floresans oluşumunu incelemişler ve 633 nm'lik görünür ışık uyaranı altında floresans oluşmadığını belirtmişlerdir.

Düz yüzey ve fissür çürüklerinin erken teşhisi için genelde ışık spektrumunun mavi yeşil bölgesindeki görünür ışık kullanılmıştır. Alfano ve Yao², 350, 410 ve 530 nm'lik monokromatik ışık kullanarak gözlenebilir yayılım spektrumunu, çürüklü ve çürüksüz doku kıyaslamasında kullanmışlar. Bjelkhagen ve arkadaşları⁴, argon lazer kullanarak çürük taraması yapmışlar ve çürük lezyonunu sağlam dokuya göre daha koyu renkte gözlemlemişlerdir.

Argon lazer uygulanan çürük doku, klinik olarak koyu alev kırmızısı renginde, sağlam diş dokusundan kolayca ayırt edilecek şekilde gözlenir. Rekalsifiye alanlar ise kalın, opak ve turuncu renkte gözlenir⁸.

Okluzal Yüzeylere Kırmızı İşık Uygulanması Sonucu Oluşan Floresans

1990'lı yıllardan beri sürdürülen çalışmalar sonucunda kırmızı ışığın infrared sınırında floresans oluşturduğu açığa çıkmıştır. Hibst ve Gall¹¹ 665 nm dalga boyunda lazer ışının uyarıcı olarak kullanarak ve 680 nm'lik filtreler yardımı ile daha yüksek dalga boylarında floresans sinyalleri elde etmişlerdir. Longbottom ve arkadaşları¹², Lussi ve arkadaşları¹⁵ da bu konuda çalışmalarını sürdürmüşlerdir. Bu çalışmalar Alman KaVo firması tarafından piyasaya sürülen Diagnodent isimli cihazın temel prensibini oluşturmuştur.

Diagnodent

Cihaz pek çok Avrupa ülkesinde, Brezilya'da ve 2000 yılı Nisan ayından bu yana Amerika'da kullanımdadır. Kırmızı diod lazer ışını, özel olarak tasarlanmış bir uç yardımı ile okluzal yüzeye uygulanır ve floresans sinyalleri filtre edilerek cihazın dedektörü tarafından toplanır. Toplanan sinyal 0-99 arasında sayısal bir değerle cihazın göstergesinde izlenir. Sayısal değer arttıkça çürük olasılığı artmaktadır. Cihaz iki ve ya üç boyutlu görüntü vermemesine rağmen, gözle veya sondla muayene ile kıyaslandığında daha somut bir veri söz konusudur^{12,15}.

Yapılan *in vitro* çalışma sonuçlarına göre, düşük sinyal sağlam dokuyu işaret ederken, sinyalin artması mevcut çürüğün kimyasal ya da fiziksel müdahaleye gereksinim gösterdiğini ifade etmektedir. 655 nm dalga boyunda ve 1 W gücünde laser diod ışık ve 680 nm filtreler kullanıldığında, ışık penetrasyonu 2 mm derinliğe ulaşmaktadır. Çürük doku dışında renklenmelerin de floresans sinyaline sebep olması çözüm bekleyen bir sorundur. Tüm diğer klinik yöntemler gibi Diagnodent sonuçları da farklı tekniklerle bir arada değerlendirilmeli ve ortak bir sonuca varılmalıdır. Henüz cihazın hassasiyeti konusunda kesin sonuçlar mevcut olmamasına rağmen, fonksiyonel bir araç olarak dikkatle kullanıldığında başarı vaat etmektedir. Cihazın restorasyonlara komşu sekonder çürük teşhisinde kullanımı teknik olarak mümkün değildir⁸. Forgie ve arkadaşları⁹ tarafından gerçekleştirilen çalışma sonuçlarına göre, arayüz çürüklerinin teşhisinde de kullanılabileceği rapor edilmiştir, fakat bu konuda yeterli çalışma mevcut değildir. Yapılan çalışmalarda cihazın, yüksek tekrar edilebilirlik ve okluzal çürük teşhisinde başarı vaat eden sonuçlar gösterdiği rapor edilmiştir^{15,16,23,24}.

Lussi ve arkadaşları¹⁵, Shi ve arkadaşları²⁴, ve Bala²⁹ ve Toraman³⁰'nın çalışma bulgularına göre çürük derinliği arttıkça, cihazın ortalama sayısal değerinin de arttığı bu artışın özellikle dentin çürüğü tanısında daha belirgin olduğu rapor edilmiştir. Lussi ve arkadaşlarının¹⁶, mine çürüğü ve yüzeyel dentin çürüğü için 7 - 99 ve derin dentin çürüğü için 12 - 99 arasında değişen Diagnodent değeri aldıklarını belirttikleri çalışma sonuçlarına göre cihazın derin dentin çürüğü ve yüzeyel dentin çürüğü ile mine çürüğü arasındaki ayırımı yapmada yeterli hassasiyet oranına sahip olmadığını göstermektedir. Lussi ve arkadaşları¹⁵ başka bir çalışmalarında Diagnodent cihazının, sağlam mine ile minenin dış yarısında bulunan başlangıç lezyonlarını ayırt edemediği için, bu iki skoru birleştirdiklerini rapor etmişlerdir.

Diagnodent cihazı renklenme, debris veya kalkulus varlığına oldukça hassas olup, dikkat edilmezse mine veya dentin yapısında değişiklik varmış gibi sinyal verebilmektedir^{12,15,23,24,34}. Bu durum cihazın klinik pratik kullanımında dezavantaj sayılabilir. Cihazın temel çalışma prensibi, çürük lezyonunun çevre sağlam dokuya göre lazer ışınını farklı absorbe etmesi ve saçmasıdır^{8,19,24}. Yöntemin en önemli kısıtlaması, yüksek sinyalin dişte meydana gelmiş herhangi bir yapısal değişimden kaynaklanabilmesidir. Bu değişim çürük olabileceği gibi, diş gelişimi veya mineralizasyonunda bozukluk, kalkulus veya organik artıklar nedeniyle de olabilir²⁴. Nitekim, Sheey ve arkadaşları²³ yaptıkları bir çalışmada, yüksek Diagnodent değeri aldıkları yedi diş yüzeyinden ikisinin hipomineralizasyon gösterdiğini rapor etmişlerdir.

İn vitro çalışmalarda Diagnodent ile yapılan ölçümler üzerinde dişlerin kuru veya nemli olması da sonuçları etkileyebilir. Nitekim, Lussi ve arkadaşları¹⁵, Mendes ve arkadaşları¹⁷, Shi ve arkadaşları²⁴ ve Toraman ve Bala²⁹'da Diagnodent ölçümlerinin dişlerin nemli veya kuru olmasından etkilendiğini, dişler nemli iken yapılan ölçümlerin histolojik değerlendirme ölçümleriyle daha belirgin uyum gösterdiğini, dişler kurutulduktan sonra yapılan ölçümlerde ise sayısal değerlerin belirgin şekilde yükseldiğini rapor etmişlerdir.

GÜ Diş Hek Fak Derg 24 (2) : 125-130, 2007 Shi ve arkadaşları²⁵ çalışmalarında cihazın lezyon derinliğinden çok lezyon hacmine duyarlı olduğunu belirtmişlerdir. Shi ve arkadaşlarının²⁴ bir diğer çalışma sonuçlarında ise cihazın mineral kaybından ziyade lezyon derinliğinin saptanmasında etkili olduğunu ve minör çürük değişikliklerinin belirlenmesinde yetersiz kaldığını bildirmişlerdir. Hibst ve Gall¹¹ da Diagnodent değerlerinin, dişin yapısındaki inorganik materyalden ziyade organik materyaldeki değişiklikleri yansıttığını rapor etmişlerdir. Bütün bu farklı görüşler, cihazın ölçtüğü değerin yükselme mekanizmasının tam olarak anlaşılamadığı ve değerin yükselmesinin pek çok nedeni olabileceğini ortaya çıkarmaktadır. Bu da, yüksek değer alındığında nedenlerin iyi araştırılması gerektiğini göstermektedir.

Diagnodent cihazının etkinliğini değerlendiren çalışma sonuçlarına göre cihaz dentin çürüğü tanısında histoloji sonuçlarıyla uyumlu bulunmasına rağmen mine çürüğü veya çürüksüz dişlerde yanlış pozitif değer oranı artmaktadır^{5,12,15,29}.

Diagnodent ile yapılan çalışmalar ve yorumlar ve ışığında, düşük spesifite oranları yani yüksek oranda yanlış pozitif ölçümler vermesi nedeniyle, cihazın çürük teşhisi için hekimin doğru karar vermesinde tek başına yeterli olamayacağını fakat diğer klinik teşhis yöntemleri ile birlikte yardımcı bir unsur olarak kullanılabileceği söylenebilir. Ayrıca yapılan çalışmaların pek çoğunun *in vitro* olması sebebiyle, cihazın klinik şartlarda kullanımının incelenmesi için *in vivo* olarak da çalışmalar yapılması ve onların ışığı altında değerlendirilmesi gereklidir.

Çürük lezyonu yeterince erken teşhis edilebilirse, dişteki lokalizasyonu neresi olursa olsun lezyonun ilerleme sürecine müdahale mümkündür. Müdahale için kullanılacak yöntemler antibakteriyel tedavi, flor tedavileri, koruyucu restorasyonlar, örtücüler, lazer tedavisi veya bu yöntemlerin birkaçının bir arada kullanılması olabilir. Çürük oranındaki azalmanın en büyük etkeni flor tedavileri olarak kabul edilse de daha kat edilecek uzun bir yol vardır. Çürüğün erken teşhisi ve ilerlemesine müdahale seçeneklerinin doğru uygulanması ile risk değerlendirmesi yapılarak çürüğün tedavi edilmesi modern diş hekimliğinin temel prensibi olacaktır. Bu sürecte lazer en önemli bölümü teşkil edecektir. Lazer kullanılarak çürüğün erken teşhis edilmesi konusunda pek çok araştırma yapılmış ve erken teşhisin, dişin doğal formunda korunması için başarılması gereken ilk ve en önemli adım olduğu kabul edilmiştir. Erken teşhis metodları aynı zamanda çürük lezyonunun geri dönüşümünün sağlanması yolundaki tedavilerin de gelişmesine yol açacaktır⁸.

KAYNAKLAR

- Alfano RR, Yao SS. Human teeth with and without caries studied by lazer scattering, fluorescence and absorption spectroscopy. IEEE Journal of Quantum Electronics 20: 1512-1516, 1984.
- Alfano RR, Yao SS. Human teeth with and without caries studied by visible luminescent spectroscopy. J Dent Res 54: 67-71, 1984.
- Axelsson P. Diagnosis and risk prediction of dental caries. Karstald: Quintessence Publishing Co Inc, 2000.
- Bjelkhagen H, Sunderstrom F, Angmar-Mansson B. Early dedection of enamel caries by luminescence excited by visible laser light. Swed Dent J 6: 1-7, 1982.
- El-Housseiny AA, Jamjoum H. Evaluation of visual, explorer and a laser device for detection of early occlusal caries. J Clin Pediatr Dent 26: 41-48, 2001.
- Featherstone JDB, Barrett-Vespone NA, Fried D. CO₂ laser inhibition of artificial caries-like lesion progression in dental enamel. J Dent Res 77: 1397-1403, 1998.
- Featherstone JDB. Prevention and reversal of dental caries: Role of low level flouride. Community Dent Oral Epidemiol 27: 31-40, 1999.
- Featherstone JDB. Caries detection and preventation with laser energy. Dent Clin North Am 44: 955-969, 2000.
- Forgie A, Pine CM, Pitts NB. Laser fluorescence detection of aproximal caries: initial in vitro results. J Dent Res 78: 1044, Abstract no:74, 1999.
- Goaz PW, White SC. Oral Radiology Principles And Interpretation, 3rd ed, Mosby Company, 1994.
- 11. Hibst R, Gall R. Development of a diode laser-based fluorescence caries dedector. Caries Res 32: 294, Abstract no: 80, 1998.
- Longbottom C. Pitts NB, Lussi A. In-vitro validation of a new laser-based detection device. J Dent Res 77: 766, Abstract no: 1074, 1998.
- Lussi A. Validity of diagnostic and treatment decisions of fissure caries. Caries Res 25: 296-303, 1991.
- 14. Lussi A. Comparison of different methods for the diagnosis of fissure caries without cavitation. Caries Res 27: 409-416, 1993.
- Lussi A, Imwinkelried S, Pitts NB, Longbottom C, Reich E. Performance and reproducibility of a laser flourescence system for detection of occlusal caries in vitro. Caries Res 33: 261-266, 1999.
- Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser flourescence device for detection of occlusal caries lesions. Eur J Oral Sci 109: 14-19, 2001.
- Mendes FM, Hissadomi M, Imparato JCM. Effects of drying time and presence of plaque on the in vitro performance of laser fluorescence in occlusal caries of primary teeth. Caries Res 38: 104-108, 2004.
- Miserendino LJ. The History and Development of Laser Dentistry, Lasers in Dentistry, Chicago: Quintessence Publishing Co, Inc, 1995.
- 19. Pinelli C, Campos Serra M, Loffredo LCM. Validity and reproducibility of a laser fluorescence system for detecting activity of whi-

te-spot lesions on free smooth surfaces. Caries Res 36: 19-24, 2002.

- Pitts NB, Longbottom C. Preventive care adviced (pca) / operative care adviced (oca)- categorising caries by the manegement opinion. Community Dent Oral Epidemiol 23: 55-59, 1995.
- Pitts NB. The use of bite-wing radiographs in the management of dental caries: scientific and practical considerations. Dentomaxillofac Radiol 25: 5-16, 1996.
- 22. Pitts NB. Diagnostic tools and measurements impact on appropriate care. Community Dent Oral Epidemiol 23: 55-59, 1997.
- Sheey EC, Brailsford SR, Kidd EAM, Beighton D, Zoitopoulos L. Comparison between visual examination and a laser flourescence system for in vivo diagnosis of occlusal caries, Caries Res 35: 421-426, 2001.
- Shi XQ, Welander U, Angmar-Mansson B. Occlusal caries detection with KaVo Diagnodent and radiography: An in vitro comparison. Caries Res 34: 151-158, 2000.
- Shi XQ, Tranaeus S, Angmar-Mansson B. Comparison of QLF and Diagnodent for quantification of smooth surface caries. Caries Res 35: 21-26, 2001.
- Soh G, Loh FC, Chong TH. Radiation dosage of a dental imaging system. Quint Int 24: 189-191, 1993.
- Sundstrom F, Fredriksson K, Montan S. Laser induced fluorescence from sound and carious tooth substance: spectroscopic studies. Swed Dent J 9: 71-80, 1985.
- Ten Boch JJ, Angmar-Mansson B. A review of quantitative methods for studies of mineral content of intra-oral incipient caries lesions. J Dent Res 70: 2-10, 1991.
- Toraman M, Bala O. Yeni bir lazer floresans cihazının oklüzal çürük teşhisi açısından in vitro olarak değerlendirilmesi . GÜ Dişhek Fak Derg 20: 9-14, 2003.
- Toraman M. Başlangıç okluzal çürüklerinin gözle muayene, geleneksel radyografi, direkt dijital radyografi ve lazer floresans cihazı ile değerlendirilmesi. Doktora tezi, 2004.
- Van Dorp CSE, Exterkate RAM, Ten Cate JM. The effect of dental probing on subsequent enamel demineralization. J Dent Child 55: 343-347, 1988.
- Verdonschot EH, Bronkhorst EM, Burgersdijk RCW, Konig KG, Schaeken MJM, Truin GJ. Performance of some diagnostic systems in examinations for small occlusal carious lesions. Caries Res 26: 59-64, 1992.
- Weerheijm KI, Van Amerong WE, Eggink CO. The clinical diagnosis of occlusal caries: a problem. J Dent Child 56: 196-200, 1989.
- Welsh GA, Hall AF, Hannah AJ, Foyle RH. Variation in diagnodent measurements of stained artificial caries lesions. Caries Res 34: 324-329, 2000.

Yazışma adresi

Meryem TORAMAN ALKURT Gazi Üniversitesi Diş Hekimliği Fakültesi Oral Diagnoz ve Radyoloji Bilim Dalı Bişkek Cad. 82. sok. 06510 Emek/ANKARA Telefon: 0312 203 41 52 e-posta: meryem@gazi.edu.tr

> GÜ Diş Hek Fak Derg 24 (2) : 125-130, 2007