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ABSTRACT: 

In this paper, the complex-type Narayana-Fibonacci numbers are defined. 

Additionally, we arrive at correlations between the complex-type Narayana-

Fibonacci numbers and this generating matrix after deriving the generating 

matrix for these numbers. Eventually, we get their the Binet formula, the 

combinatorial, permanental, determinantal, exponential representations, and the 

sums by matrix methods are just a few examples of numerous features. 
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INTRODUCTION 

As it is known, recurrence sequences are frequently encountered at the point of interdisciplinary 

relations. As an example of such studies, we can give the scientific outputs in (Mandelbaum, 1972; 

Adams and Shanks, 1982; Kirchoof and Rutishauser, 1990; Stein, 1993; Becker, 1994; Fraenkel and 

Klein, 1996; Spinadel, 2002; El Naschie, 2005). Algebraically reducing sequences, many of its 

features such as the generating matrix, generating function, Binet formula, exponential, permanental, 

and combinatorial representations have been studied and continue to be studied by many scientists. We 

can give (Shannon and Bernstein, 1973; Shannon and Horadam, 1994; Lee, 2000; Stakhov and Rozin, 

2006; Gogin and Myllari, 2007; Ozkan, 2007; Yılmaz and Bozkurt, 2009; Tasci and Firengiz, 2010; 

Tuglu et al., 2011; Akuzum and Deveci, 2021; Halici and Deveci, 2021; Erdag et al., 2022) studies as 

an example of the current ones among these studies. In many of these studies, matrices corresponding 

to reduced sequences have been used to obtain various results. The authors constructed new sequences 

utilizing quaternions and complex numbers, particularly the complex-type k-Fibonacci numbers were 

defined by Deveci and Shannon in (Deveci and Shannon, 2021), after which they provided a variety of 

attributes and numerous applications for the sequences they had developed. The complex-type 

Narayana-Fibonacci numbers are defined in this paper. Then, we arrive at the Binet formula for the 

complex-type Narayana-Fibonacci numbers utilizing the roots of characteristic polynomials of these 

numbers. Additionally, using matrix methods, we derive their different features, including the 

combinatorial, permanental, determinantal, exponential representations, and sums. 

MATERIALS AND METHODS 

The homogeneous linear recurrence relation given below for 𝑘 ≥ 0 defines the Narayana-

Fibonacci sequence (Akuzum and Deveci, 2022). 

𝑛𝑘+5
𝑓

= 2𝑛𝑘+4
𝑓

− 𝑛𝑘+1
𝑓

− 𝑛𝑘
𝑓
  

in which 𝑛0
𝑓
= 𝑛1

𝑓
= 𝑛2

𝑓
= 𝑛3

𝑓
= 0 and 𝑛4

𝑓
= 1. 

The complex Fibonacci sequence {𝐹𝑛
∗} is given (Horadam, 1961) with the subsequent equation: 

for 𝑛 ≥ 0 

𝐹𝑛
∗ = 𝐹𝑛 + 𝑖𝐹𝑛+1  

Such that√−1 = 𝑖 and the 𝑛th Fibonacci number is designated as 𝐹𝑛 (Horadam, 1963; Berzsenyi, 

1975). 

As it is known, all of the reduction sequences defined by their unique reduction relations and 

initial values are special cases of the reduction sequences defined by the relation: 

ℵ𝑛+𝑘 = 𝛾0ℵ𝑛 + 𝛾1ℵ𝑛+1 +⋯+ 𝛾𝑘−1ℵ𝑛+𝑘−1  

Such that real constants 𝛾0, 𝛾1, … , 𝛾𝑘−1 are present.  

In this sense, along with the relation of the Narayana-Fibonacci sequence, new reduction 

sequences will be defined with the help of appropriate reduction relations and initial values, taking into 

account their structural properties.  

Think about the given above sequence {ℵ𝑛}. By using the companion matrix method, Kalman 

constructed the following closed-form formulas in (Kalman, 1982): 

Suppose that 𝑀 is defined as 
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𝑀 = [𝑀𝑖,𝑗]𝑘×𝑘 =

[
 
 
 
 
 
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋱ 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 1
𝛾0 𝛾1 𝛾2 𝛾𝑘−2 𝛾𝑘−1]

 
 
 
 
 

,

  

Then 

𝑀𝑛 [

ℵ0
ℵ1
  ⋮
ℵ𝑘−1

] = [

ℵ𝑛
ℵ𝑛+1
  ⋮
ℵ𝑛+𝑘−1

]  

for 𝑛 ⩾ 0. 

RESULTS AND DISCUSSION 

We next define the complex-type Narayana-Fibonacci numbers by integer constants 𝑛0
𝑓,∗
= ⋯ =

𝑛3
𝑓,∗
= 0 and 𝑛4

𝑓,∗
= 1 and the recurrence relation: 

𝑛𝑘+5
𝑓,∗

= 2𝑖. 𝑛𝑘+4
𝑓,∗

− 𝑛𝑘+1
𝑓,∗

− 𝑖. 𝑛𝑘
𝑓,∗

  (1) 

for 𝑘 ≥ 0. 

Using relation (1), the generating matrix for the complex-type Narayana-Fibonacci numbers can 

be written as below: 

𝑁𝑐 =

[
 
 
 
 
2𝑖 0 0 −1 −𝑖
1 0 0    0   0
0 1 0    0   0
0 0 1    0   0
0 0 0    1   0]

 
 
 
 

(5)×(5).

  

The companion matrix 𝑁𝑐 is called a complex-type Narayana-Fibonacci matrix. 

An inductive argument can be used to prove that for 𝛼 ≥ 4, 

(𝑁𝑐)𝛼 =

[
 
 
 
 
 
 𝑛𝛼+4

𝑓,∗
−𝑛𝛼+1

𝑓,∗
− 𝑖. 𝑛𝛼

𝑓,∗
−𝑛𝛼+2

𝑓,∗
− 𝑖. 𝑛𝛼+1

𝑓,∗
−𝑛𝛼+3

𝑓,∗
− 𝑖. 𝑛𝛼+2

𝑓,∗
−𝑖. 𝑛𝛼+3

𝑓,∗

𝑛𝛼+3
𝑓,∗

−𝑛𝛼
𝑓,∗
− 𝑖. 𝑛𝛼−1

𝑓,∗
−𝑛𝛼+1

𝑓,∗
− 𝑖. 𝑛𝛼

𝑓,∗
−𝑛𝛼+2

𝑓,∗
− 𝑖. 𝑛𝛼+1

𝑓,∗
−𝑖. 𝑛𝛼+2

𝑓,∗

𝑛𝛼+2
𝑓,∗

−𝑛𝛼−1
𝑓,∗

− 𝑖. 𝑛𝛼−2
𝑓,∗

−𝑛𝛼
𝑓,∗
− 𝑖. 𝑛𝛼−1

𝑓,∗
−𝑛𝛼+1

𝑓,∗
− 𝑖. 𝑛𝛼

𝑓,∗
−𝑖. 𝑛𝛼+1

𝑓,∗

𝑛𝛼+1
𝑓,∗

   𝑛𝛼−2
𝑓,∗

− 𝑖. 𝑛𝛼−3
𝑓,∗

−𝑛𝛼−1
𝑓,∗

− 𝑖. 𝑛𝛼−2
𝑓,∗

−𝑛𝛼
𝑓,∗
− 𝑖. 𝑛𝛼−1

𝑓,∗
−𝑖. 𝑛𝛼

𝑓,∗

𝑛𝛼
𝑓,∗

−𝑛𝛼−3
𝑓,∗

− 𝑖. 𝑛𝛼−4
𝑓,∗

   𝑛𝛼−2
𝑓,∗

− 𝑖. 𝑛𝛼−3
𝑓,∗

−𝑛𝛼−1
𝑓,∗

− 𝑖. 𝑛𝛼−2
𝑓,∗

−𝑖. 𝑛𝛼−1
𝑓,∗

]
 
 
 
 
 
 

.

  

It is significant to remember that det𝑁𝑐 = −𝑖. 

It is clear that each of the eigenvalues of the matrix 𝑁𝑐  are distinct. Let {𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5}  be the 

sets of the eigenvalues of the matrix 𝑁𝑐 and let 𝑊𝑐  be 5 × 5 Vandermonde matrices as below: 𝑊𝑐 =

[
 
 
 
 
(𝜂1)

4 (𝜂2)
4 (𝜂3)

4 (𝜂4)
4 (𝜂5)

4

(𝜂1)
3 (𝜂2)

3 (𝜂3)
3 (𝜂4)

3 (𝜂5)
3

(𝜂1)
2 (𝜂2)

2 (𝜂3)
2 (𝜂4)

2 (𝜂5)
2

  𝜂1   𝜂2   𝜂3   𝜂4   𝜂5
  1   1   1   1   1 ]

 
 
 
 

.

  

Assume that 𝑊𝑙,𝑗
𝑐  is a 5 × 5  matrix created from the Vandermonde matrix 𝑊𝑐   by exchanging 

the 𝑗th column of 𝑊𝑐  by 𝑈𝑐, where, 𝑈𝑐 is a 5 × 1  matrix as below:  
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𝑈𝑐 =

[
 
 
 
 
 
(𝜂1)

𝛼+5−𝑙

(𝜂2)
𝛼+5−𝑙

(𝜂3)
𝛼+5−𝑙

(𝜂4)
𝛼+5−𝑙

(𝜂5)
𝛼+5−𝑙]

 
 
 
 
 

.

  

Theorem 1. For 𝛼 ≥ 4 , 

𝑛𝑙,𝑗
𝑐,𝛼 =

det𝑊𝑙,𝑗
𝑐

det𝑊𝑐 ,  

where (𝑁𝑐)𝛼 = [𝑛𝑙,𝑗
𝑐,𝛼].  

Proof. The matrix 𝑁𝑐 may be diagonalized since {𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5} are distinct. Let 𝐾5 =

(𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5), then we easily see that 𝑁𝑐𝑊𝑐 = 𝑊𝑐𝐾5. Since det𝑊𝑐 ≠ 0 , the matrix 𝑊𝑐  is 

invertible. Thus we may write (𝑊𝑐)−1𝑁𝑐𝑊𝑐 = 𝐾5. Consequently, the matrix 𝑁𝑐 is similar to 𝐾5; and 

we find (𝑁𝑐)𝛼𝑊𝑐 = 𝑊𝑐(𝐾5)
𝛼  for 𝛼 ≥ 4. The resulting linear system of equations is as follows: 

{
 
 

 
 𝑛𝑙,1

𝑐,𝛼(𝜂1)
4 + 𝑛𝑙,2

𝑐,𝛼(𝜂1)
3 +⋯+ 𝑛𝑙,5

𝑐,𝛼 = (𝜂1)
𝛼+5−𝑙

𝑛𝑙,1
𝑐,𝛼(𝜂2)

4 + 𝑛𝑙,2
𝑐,𝛼(𝜂2)

3 +⋯+ 𝑛𝑙,5
𝑐,𝛼 = (𝜂2)

𝛼+5−𝑙

⋮
𝑛𝑙,1
𝑐,𝛼(𝜂5)

4 + 𝑛𝑙,2
𝑐,𝛼(𝜂5)

3 +⋯+ 𝑛𝑙,5
𝑐,𝛼 = (𝜂5)

𝛼+5−𝑙

  

As a result, for each 𝑙, 𝑗 = 1,2,… ,5, we get 𝑛𝑙,𝑗
𝑐,𝛼

 as below 

𝑛𝑙,𝑗
𝑐,𝛼 =

det𝑊𝑙,𝑗
𝑐

det𝑊𝑐 .  

Corollary 1. Let 𝑛𝛼
𝑓,∗

  be the 𝛼th the complex-type Narayana-Fibonacci number for 𝛼 ≥ 4. Then 

𝑛𝛼
𝑓,∗
=

det𝑊5,1
𝑐

det𝑊𝑐   

 and 

𝑛𝛼
𝑓,∗
= −

det𝑊4,5
𝑐

𝑖.det𝑊𝑐.  

Assume that 𝐶(𝑐1, 𝑐2, … , 𝑐𝑣) is a 𝑣 × 𝑣 companion matrix as below: 

𝐶(𝑐1, 𝑐2, … , 𝑐𝑣) = [

𝑐1 𝑐2 ⋯ 𝑐𝑣
1 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0

].  

Theorem 2. (Chen and Louck, 1996). The following formula can be used to determine the (𝑙, 𝑗) 

entry  𝑐𝑙,𝑗
(𝛼)(𝑐1, 𝑐2, … , 𝑐𝑣) in the matrix  𝐶𝛼(𝑐1, 𝑐2, … , 𝑐𝑣): 

    𝑐𝑙,𝑗
(𝛼)(𝑐1, 𝑐2, … , 𝑐𝑣) = ∑

𝑡𝑗+𝑡𝑗+1+⋯+𝑡𝑣

𝑡1+𝑡2+⋯+𝑡𝑣
×(𝑡1,𝑡2 ,…,𝑡𝑣)

(
𝑡1 +⋯+ 𝑡𝑣
    𝑡1, … , 𝑡𝑣

) 𝑐1
𝑡1⋯𝑐𝑣

𝑡𝑣                                                                                          (2)  

where (
𝑡1 +⋯+ 𝑡𝑣
   𝑡1, … , 𝑡𝑣

) =
(𝑡1+⋯+𝑡𝑣)!

𝑡1!⋯𝑡𝑣!
 represents a multinomial coefficient, the coefficients in 

equation (2) are defined as being  1 if 𝛼 = 𝑙 − 𝑗, and the summing is over nonnegative integers 

satisfying 𝑡1 + 2𝑡2 +⋯+ 𝑣𝑡𝑣 = 𝛼 − 𝑙 + 𝑗. 

In this section, we look into a combinatorial representation of the complex-type Narayana-

Fibonacci numbers. 
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Corollary 2. Suppose that 𝑛𝛼
𝑓,∗

 is the 𝛼th the complex-type Narayana-Fibonacci number. Then 

i.  

𝑛𝛼
𝑓,∗
= ∑(𝑡1,𝑡2…,𝑡5) (

𝑡1 +⋯+ 𝑡5
    𝑡1, … , 𝑡5

) (2𝑖)𝑡1(−1)𝑡4(−𝑖)𝑡5  

where 𝑡1 + 2𝑡2 +⋯+ 5𝑡5 = 𝛼 − 4 is the sum of non-negative numbers. 

ii.  

𝑛𝛼
𝑓,∗
= −

1

𝑖
∑(𝑡1,𝑡2…,𝑡5)

𝑡5

𝑡1+𝑡2+⋯+𝑡5
× (

𝑡1 +⋯+ 𝑡5
     𝑡1, … , 𝑡5

) (2𝑖)𝑡1(−1)𝑡4(−𝑖)𝑡5  

where 𝑡1 + 2𝑡2 +⋯+ 5𝑡5 = 𝛼 + 1  is the sum of non-negative numbers.  

Proof. In Theorem 2, if we chose 𝑙 = 5, 𝑗 = 1, 𝑐1 = 2𝑖,  𝑐4 = −1 and 𝑐5 = −𝑖 for the case i., 𝑙 =

4, 𝑗 = 5, 𝑐1 = 2𝑖,  𝑐4 = −1 and 𝑐5 = −𝑖 for the case ii., so we can immediately view the outcomes 

from (𝑁𝑐)𝛼.  

We are now focusing on the permanental representations of the complex-type Narayana-

Fibonacci numbers. 

Definition 1. If the 𝑘𝑡ℎ column (resp. row) of a 𝑢 × 𝑣 real matrix 𝐴 = [𝑎𝑖,𝑗] includes precisely 

two non-zero entries, the 𝑘𝑡ℎ column (resp. row) is said to be a contractible matrix.  

According to Brualdi and Gibson’s findings in citation (Brualdi and Gibson, 1977), if 𝐴 is a real 

matrix of order 𝛼 > 1  and 𝐵 is a contraction of 𝐴, 𝑝𝑒𝑟(𝐴) = 𝑝𝑒𝑟(𝐵). 

Let 𝐹𝑟 = [𝑓𝑙,𝑗
(𝑟)] be the 𝑟 × 𝑟 super-diagonal matrix, defined by 

𝐹𝑟 =

                                     (5)th
↓
                  

[
 
 
 
 
 
 
 
 
 
2𝑖 0 0 −1 −𝑖    0   ⋯    0   0   0
1 2𝑖 0    0 −1 −𝑖    0    ⋯   0   0
0 1 2𝑖    0    0 −1 −𝑖    0   ⋯   0
⋮ ⋱ ⋱    ⋱    ⋱    ⋱    ⋱    ⋱    ⋱    ⋮
0 ⋯ 0    1    2𝑖    0    0 −1 −𝑖    0
0 0 ⋯    0    1    2𝑖    0    0 −1 −𝑖
0 0 0   ⋯    0    1    2𝑖    0    0 −1
0 0 0    0   ⋯    0    1    2𝑖    0    0
0 0 0    0    0    ⋯    0    1    2𝑖    0
0 0 0    0    0     0    ⋯    0    1    2𝑖]

 
 
 
 
 
 
 
 
 

.

  

For the complex-type Narayana-Fibonacci numbers, we can then provide a permanental 

representation. 

Theorem 3. For 𝑟 ⩾ 5, 

𝑝𝑒𝑟𝐹𝑟 = 𝑛𝑟+4
𝑓,∗
.  

Proof. Assuming that the equation is valid for 𝑟 ⩾ 5, we now demonstrate that it is also valid for 

𝑟 + 1. When we expand the 𝑝𝑒𝑟𝐹𝑟 by the Laplace expansion of the permanent with regard to the first 

row, we reach 

𝑝𝑒𝑟𝐹𝑟+1 = 2𝑖. 𝑝𝑒𝑟𝐹𝑟 − 𝑝𝑒𝑟𝐹𝑟−3 − 𝑖. 𝑝𝑒𝑟𝐹𝑟−4.  

Since 𝑝𝑒𝑟𝐹𝑟 = 𝑛𝑟+4
𝑓,∗

, 𝑝𝑒𝑟𝐹𝑟−3 = 𝑛𝑟+1
𝑓,∗
 and 𝑝𝑒𝑟𝐹𝑟−4 = 𝑛𝑟

𝑓,∗
, from definition of the complex-type 

Narayana-Fibonacci number 𝑛𝑘
𝑓,∗

 It is obvious that 

𝑝𝑒𝑟𝐹𝑟+1 = 𝑛𝑟+5
𝑓,∗
.  

Thus, the evidence is conclusive.  

Define the 𝑟 × 𝑟 matrix 𝐺𝑟 = [𝑔𝑙,𝑗
(𝑟)] as shown: 
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𝑔𝑙,𝑗
(𝑟)
=

{
 
 

 
 
   2𝑖 if 𝑙 = 𝑗 = 𝜆     for 1 ≤ 𝜆 ≤ 𝑟,

−2𝑖 if 𝑙 = 𝑗 = 𝑟 − 3,

−𝑖 if 𝑙 = 𝜆 + 4  and   𝑗 = 𝜆   for 1 ≤ 𝜆 ≤ 𝑟 − 4,

−1 if 𝑙 = 𝜆 + 3  and  𝑗 = 𝜆    for 1 ≤ 𝜆 ≤ 𝑟,

   1 if 𝑙 = 𝜆 − 1  and 𝑗 = 𝜆     for 2 ≤ 𝜆 ≤ 𝑟,
   0 otherwise.

  

Suppose that the 𝑟 × 𝑟 matrix 𝑃𝑟 = [𝑝𝑙,𝑗
(𝑟)]  is indicated by 

𝑃𝑟 =

[
 
 
 
 
 
1 ⋯ 1 0 ⋯ 0
1
0
⋮ 𝐺𝑟−1
0
0 ]

 
 
 
 
 

                                   (𝑟−4)th
                                        ↓                                

                

,

 

where 𝑟 > 5. The next intriguing findings are as follows. 

Theorem 4. Let 𝑛𝑟
𝑓,∗

 be the 𝑟th the complex-type Narayana-Fibonacci number. Then 

(i). For 𝑟 ⩾ 5, 

𝑝𝑒𝑟𝐺𝑟 = 𝑛𝑟
𝑓,∗
.  

(ii). For 𝑟 > 5, 

𝑝𝑒𝑟𝑃𝑟 = ∑
𝑟−1
𝛽=0 𝑛𝛽

𝑓,∗
.  

Proof. The induction method will be used to 𝑟. 

(i). Suppose that 𝑝𝑒𝑟𝐺𝑟 = 𝑛𝑟
𝑓,∗

 for 𝑟 ⩾ 5. We examine the case 𝑟 + 1. When the matrix 𝐺𝑟  is 

defined by expanding the 𝑝𝑒𝑟𝐺𝑟 by the permanent Laplace expansion with regard to the first row, we 

are left with 

𝑝𝑒𝑟𝐺𝑟+1 = 2𝑖. 𝑝𝑒𝑟𝐺𝑟 − 𝑝𝑒𝑟𝐺𝑟−3 − 𝑖. 𝑝𝑒𝑟𝐺𝑟−4 = 2𝑖. 𝑛𝑟
𝑓,∗
− 𝑛𝑟−3

𝑓,∗
− 𝑖. 𝑛𝑟−4

𝑓,∗
. 

So the result holds. 

(ii). If we expand the 𝑝𝑒𝑟𝑃𝑟 by the permanent’s Laplace expansion with regard to the first row, 

we get 

𝑝𝑒𝑟𝑃𝑟 = 𝑝𝑒𝑟𝑃𝑟−1 + 𝑝𝑒𝑟𝐺𝑟−1.  

The proof is evident by the conclusion of part (i) of Theorem 4.  

If there is an 𝑘 × 𝑘 (1,−1)-matrix 𝑄 such that 𝑝𝑒𝑟𝐷 = det(𝐷 ∘ 𝑄), where 𝐷 ∘ 𝑄 stands for the 

Hadamard product of 𝐷 and 𝑄, then the matrix 𝐷 is said to be convertible. 

Let 𝑟 > 5, and let 𝐿 be the 𝑟 × 𝑟 matrix, defined by 

𝐿 =

[
 
 
 
 
 
 1  1 1  ⋯  1 1
−1  1 1  ⋯  1 1
 1 −1 1  ⋯  1 1
 ⋮  ⋱ ⋱  ⋱  ⋮ ⋮
 1  ⋯ 1 −1  1 1
 1  ⋯ 1  1 −1 1]

 
 
 
 
 

.

  

Corollary 3. For 𝑟 > 5, 

det(𝐹𝑟 ∘ 𝐿) = 𝑛𝑟+4
𝑓,∗
,  

det(𝐺𝑟 ∘ 𝐿) = 𝑛𝑟
𝑓,∗

  

and 
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det(𝑃𝑟 ∘ 𝐿) = ∑

𝑟−1

𝛽=0

𝑛𝛽
𝑓,∗
. 

Proof. Since 𝑝𝑒𝑟𝐹𝑟 = det(𝐹𝑟 ∘ 𝐿) = 𝑛𝑟+4
𝑓,∗

, 𝑝𝑒𝑟𝐺𝑟 = det(𝐺𝑟 ∘ 𝐿) = 𝑛𝑟
𝑓,∗

 and 𝑝𝑒𝑟𝑃𝑟 =

det(𝑃𝑟 ∘ 𝐿) = ∑
𝑟−1
𝛽=0 𝑛𝛽

𝑓,∗
 , the conclusions are clear from Theorems 3 and 4.  

We can observe that the generating function of complex-type Narayana-Fibonacci numbers 𝑛𝑘
𝑓,∗

 

is 

𝑔𝑛
∗(𝑥) =

𝑥4

1 − 2𝑖. 𝑥 + 𝑥4 + 𝑖. 𝑥5
. 

Theorem 5. The exponential representation for the complex-type Narayana-Fibonacci numbers 

is as follows: 

𝑔𝑛
∗(𝑥) = 𝑥4exp (∑

𝑥𝑛

𝑛
(2𝑖 − 𝑥3 − 𝑥4)𝑛

∞

𝑛=1

). 

 Proof. It is obvious that 

ln
𝑔𝑛
∗(𝑥)

𝑥4
= −ln(1 − 2𝑖. 𝑥 + 𝑥4 + 𝑖. 𝑥5). 

By using the function ln𝑥, we can derive the relationship: 

−ln(1 − 2𝑖. 𝑥 + 𝑥4 + 𝑖. 𝑥5) = −[−𝑥(2𝑖 − 𝑥3 − 𝑥4) − 

                                          
1

2
𝑥2(2𝑖 − 𝑥3 − 𝑥4)2 −⋯−        

1

𝑛
𝑥𝑛(2𝑖 − 𝑥3 − 𝑥4)n]. 

 

Therefore, we obtain 

ln
𝑔𝑛
∗(𝑥)

𝑥4
= exp (∑

𝑥𝑛

𝑛
(2𝑖 − 𝑥3 − 𝑥4)𝑛

∞

𝑛=1

). 

Thus, we have reached conclusion.  

The sums of complex-type Narayana-Fibonacci numbers are now being considered. 

Let  

𝑆𝑟 =∑

𝑟

𝑘=0

𝑛𝑘
𝑓,∗

 

for 𝑟 ≥ 1, let 𝑀𝑟 be the (6) × (6)  matrix as follows: 

𝑀𝑟 =

[
 
 
 
 
1 0 ⋯ 0
1
0 𝑁𝑐

⋮
0 ]

 
 
 
 

.

 

Then it can be shown by induction that 

(𝑀𝑟)
𝛼 =

[
 
 
 
 
1 0 ⋯ 0
𝑆𝑟+4
𝑆𝑟+3 (𝑁𝑐)𝛼

⋮
𝑆𝑟−1 ]

 
 
 
 

.
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CONCLUSION 

We defined the complex-type Narayana-Fibonacci numbers in this study and found their 

generating matrix. Then, for the complex-type Narayana-Fibonacci numbers, we came up with the 

Binet formula. Additionally, we obtained their numerous qualities, including their sums, combinatorial 

representation, permanental representation, determinantal representation, and exponential 

representation. 
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