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ABSTRACT
Background and Aims: BCR-ABL tyrosine kinase inhibitors (TKIs) are used for the treatment of chronic myeloid leukemia and
are commonly involved in clinically significant drug–drug interactions (DDIs). In this study, we aimed to evaluate the consensus
of DDI checking databases for interactions involving BCR-ABL TKIs.
Methods: We checked DDIs of 100 drugs with six BCR-ABL TKIs—dasatinib, imatinib, nilotinib, ponatinib, bosutinib, and
asciminib—in two subscription-based databases (UpToDate and Micromedex) and two open-access databases (Drugs.com and
Medscape). Databases were compared in terms of severity ratings, literature support ratings, and general interaction mechanism
definitions using Fleiss’ and Cohen’s kappa statistics.
Results: A total of 410 interactions were found. Nilotinib was the most interacted TKI, with 88 interactions. Drugs.com detected
the highest number of interactions (n = 355). The overall agreement levels of databases for the severity ratings and general
mechanisms were calculated as 0.13 (p = 0) and 0.28 (p = 0), respectively. The Micromedex- UpToDate pair showed the highest
agreement level in terms of severity ratings and general mechanism definitions, with kappa values of 0.23 and 0.45, respectively.
Conclusion: The differences among databases for DDIs involving BCR-ABL TKIs were statistically significant. Therefore,
healthcare practitioners should check DDIs in multiple databases.

Keywords: Drug-drug interactions, chronic myeloid leukemia, tyrosine kinase inhibitors, TKIs, CML

INTRODUCTION

Chronic myeloid leukemia (CML) is a rare malignancy rep-
resented by BCR-ABL1 gene translocation. The Philadelphia
chromosome is a cytogenetic feature of CML (Osman, &
Deininger, 2021). Tyrosine kinase inhibitors (TKIs) are used
to treat CML. Imatinib, dasatinib, and nilotinib are the first-
line treatment options (Hsieh, Kirschner & Copland, 2021).
Bosutinib, ponatinib, and asciminib are the newer TKI options
for the treatment of this disease (Kennedy & Hobbs, 2018;
Deeks, 2022).

Drug–drug interactions (DDIs) occur because of pharmaco-
dynamic and pharmacokinetic mechanisms as well as pharma-
ceutical incompatibilities (Corrie & Hardman, 2011). TKIs are
orally administered, target-specific weak bases with bioavail-
ability problems (van Leeuwen, van Gelder, Mathĳssen & Jans-
man, 2014). The increments in gastric pH by acid-suppressive
drugs, such as proton pump inhibitors (PPIs), may result in poor

therapy response due to the lack of bioavailability of TKIs (van
Leeuwen et al., 2017). TKIs are metabolized by the cytochrome
P450 enzyme system (CYP450), which puts them into the tar-
get of DDIs (van Leeuwen, van Gelder, Mathĳssen & Jansman,
2014).

Patients with cancer often require complex treatment
schemes, resulting in a higher prevalence of DDI, leading to
DDI-related adverse events (Riechelmann & Del Giglio, 2009).
A study on patients with cancer who used oral anticancer drug
therapy found that 46% of them were exposed to potential DDIs.
In this patient group, interactions that affect the nervous sys-
tem, gastrointestinal tract, and QT interval were common (van
Leeuwen et al., 2013).

DDI checking databases help health professionals identify
potential DDIs; however, differences in detected DDIs and pro-
vided information were noted among DDI checking databases
(Suriyapakorn et al., 2019). DDI checking databases show dif-
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ferent levels of scope, consistency, and completeness (Patel&
Beckett, 2016). In a study that compared nine DDI checking
databases for oral oncolytic-involving DDIs, Lexicomp and
Drugs.com showed the highest performance (Marcath et al.,
2018).

This study focused on BCR-ABL TKI-involving DDIs and
the compatibility of DDI checking databases in terms of sever-
ity ratings, literature support ratings, and general interaction
mechanism definitions.

METHODS

Drug selection

The following BCR-ABL TKIs were used to treat CML:
imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asci-
minib (Cancer.org, 2022). Four widely available DDI check-
ing databases were included. According to the DDI sections
of the drug information of these TKIs in these databases,
100 drugs were manually chosen. Except for transdermal fen-
tanyl, all chosen drugs can be administered orally (Drugs.com,
2022; UpToDate Interactions, 2022; Medscape, 2022; IBM Mi-
comedex, 2022). The selected drugs are classified according to
the Anatomical Therapeutic Chemical Classification/Defined
Daily Doses index system in Table 1 (WHO ATC/DDD In-
dex, 2022). Orally administered drugs were chosen because
they can be prescribed for acute or chronic diseases in outpa-
tient settings, which could cause difficulties in identifying and
monitoring interactions.

DDI Checking Databases

Two subscription-based (UpToDate and Micromedex) and
two open-access (Drugs.com and Medscape) DDI checking
databases were included. All databases provided information
about the severity, mechanism, and management of the interac-
tions. Only UpToDate and Micromedex provided information
about the literature support of the interactions. Severity and lit-
erature support classifications of interactions are listed in Table
2.

Statistical analysis

The severity ratings, literature support ratings, and proposed
mechanisms of these interactions assigned by databases were
noted. Summary statistics were used to categorize DDIs ac-
cording to severity ratings and general mechanisms. Severity
ratings and general mechanisms were analyzed using Cohen’s
kappa and Fleiss’ kappa statistics. The literature support rat-
ings of UpToDate and Micromedex were compared using Co-
hen’s kappa formula. The agreement levels of databases were
evaluated using the Landis and Koch agreement classification
(Landis & Koch, 1977).

RESULTS

After analyzing 100 drugs with six TKIs, 410 DDIs were found.
Nilotinib was the most interacted TKI, with 88 (21%) interac-
tions. Dasatinib constituted 20% of DDIs with 83 interactions.
The least interacted TKI was asciminib, with 50 interactions
(Figure 1).

None of the DDI checking databases detected all interac-
tions. Drugs.com and Micromedex detected the highest and
lowest number of interactions, with 355 and 164 interactions,
respectively. The distribution of severity ratings differed among
databases. The highest number of contraindicated interactions
was detected by UpToDate, with 22 interactions. Moderate
severity level was the most common severity rating among
all databases (Figure 2).

The mechanisms of interactions were categorized according
to the literature definitions (Cascorbi, 2012). The number of
pharmacokinetic interactions was higher than other mechanism
categories among databases. Of the 355 interactions detected
by Drugs.com, 239 originated from pharmacokinetic mecha-
nisms. The pharmacodynamic mechanism was the second most
common DDI general mechanism. Drugs.com and UpToDate
reported the highest pharmacodynamic DDIs, with 110 and
81 interactions, respectively. Some interactions were explained
by the combination of pharmacodynamic and pharmacokinetic
mechanisms. The highest number of this combination of mech-
anisms was detected by Medscape, with 30 interactions (Figure
3).

Some interactions with contraindicated severity warnings
are listed in Table 3. The combinations of dasatinib and acid-
suppressive drugs, such as PPIs and famotidine, were labeled
as contraindicated by UpToDate. The proposed mechanism was
gastric pH elevation with a result of a decrease in the dasatinib
effect (UpToDate Interactions, 2022). Dasatinib, nilotinib, and
bosutinib combinations with azole antifungals were listed as
contraindicated DDIs. The CYP3A4 inhibition and additive
QTc prolongation effects of azole antifungals cause increases
in the TKI blood levels and arrhythmia. Additionally, the pro-
posed mechanism for the nilotinib and posaconazole interaction
in Medscape was described as CYP3A4 and p-glycoprotein in-
hibition, which differed from other databases. The combination
of nilotinib and sotalol causes QTc prolongation, and this com-
bination comes with a contraindicated warning in the UpToDate
and Medscape DDI checking databases (Drugs.com, 2022; Up-
ToDate Interactions, 2022; Medscape, 2022; IBM Solutions,
2022).

Fleiss’ kappa statistic was used to evaluate the agreement
level of DDI checking databases for categorizing the severity
warnings of BCR-ABL TKI-involving interactions. The overall
Fleiss kappa values of the four databases in terms of severity
ratings and general mechanisms were 0.13 (p = 0; standard
error [SE], 0.013; 95% confidence interval [CI], 0.10–0.15)
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Table 1. Classifications of selected drugs according to the Anatomical Therapeutic Chemical Classification/Defined Daily Doses index system
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Table 1. Classifications of selected drugs according to the Anatomical Therapeutic Chemical 
Classification/Defined Daily Doses index system 
 

Anatomical Therapeutic Chemical Classification/Defined Daily Doses drug classes of the selected drugs 
N05, psycholeptics: alprazolam, aripiprazole, buspirone, chlorpromazine, clozapine, haloperidol, hydroxyzine, 
olanzapine, quetiapine, ramelteon, and risperidone 
N06, psychoanaleptics: amitriptyline, donepezil, duloxetine, escitalopram, fluoxetine, imipramine, paroxetine, 
sertraline, and venlafaxine 
A02, drugs for acid-related disorders: calcium carbonate, esomeprazole, famotidine, lansoprazole, 
magnesium carbonate, omeprazole, pantoprazole, rabeprazole, and sodium bicarbonate 
J01, antibacterials for systemic use: azithromycin, ciprofloxacin, clarithromycin, doxycycline, levofloxacin, 
metronidazole, moxifloxacin, and sulfamethoxazole 
B01, antithrombotic agents: apixaban, aspirin, clopidogrel, dabigatran, prasugrel, rivaroxaban, and warfarin 
N02, analgesics: codeine, fentanyl, morphine, oxycodone, paracetamol, and tramadol 
C08, calcium channel blockers: amlodipine, diltiazem, felodipine, nifedipine, and verapamil 
C10, lipid-modifying agents: atorvastatin, fluvastatin, gemfibrozil, rosuvastatin, and simvastatin 
C07, beta-blocking agents: carvedilol, metoprolol, nebivolol, and sotalol 
M01, anti-inflammatory and antirheumatic products: diclofenac, ibuprofen, and naproxen 
N03, antiepileptics: carbamazepine, phenobarbital, and phenytoin 
A04, antiemetics and antinauseants: aprepitant, granisetron, and ondansetron 
J02, antimycotics for systemic use: fluconazole, posaconazole, and voriconazole 
G04, urologicals: alfuzosin, silodosine, and solifenacin 
A10, drugs used in diabetes: metformin and repaglinide 
R03, drugs for obstructive airway diseases: montelukast and theophylline 
J04, antimycobacterials: isoniazid and rifampicin,  
C01, cardiac therapy: amiodarone and ranolazine 
C09, agents acting on the renin–angiotensin system: captopril and losartan 
H02, corticosteroids for systemic use: dexamethasone and methylprednisolone 
R05, cough and cold preparations: hydrocodone 
A12, mineral supplements: potassium bicarbonate 
C03, diuretics: spironolactone 
M04, antigout preparations: colchicine 
J05, antivirals for systemic use: tenofovir 
H03, thyroid therapy: levothyroxine 
R06, antihistamines for systemic use: cetirizine 
A03, drugs for functional gastrointestınal disorders: metoclopramide 
G03, sex hormones and modulators of the genital system: megestrol 

 

  
Table 2. Severity and literature support classifications of databases
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Table 2. Severity and literature support classifications of databases 
 

Databases Classifications 

 Severity classifications 

UpToDate No interaction between drugs (A), minor (B), moderate (C), major (D), and 
major (X)  

Micromedex Minor, moderate, major, and contraindicated 

Drugs.com Minor, moderate, major, and major-contraindicated 

Medscape Minor, monitor closely, serious, and contraindicated 

 Literature support classifications 

UpToDate Poor, fair, good, and excellent 

Micromedex Fair, good, and excellent 
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Figure 1. Distribution of drug–drug interactions according to the tyrosine kinase inhibitor type.

Figure 2. Distribution of the severity ratings and general mechanisms of drug–drug interactions according to the databases.

Figure 3. Distribution of the severity ratings and general mechanisms of drug–drug interactions according to the databases.

35



İstanbul Journal of Pharmacy

Table 3. Examples of the contraindicated drug–drug interactions with BCR-ABL tyrosine kinase inhibitors (Drugs.com, 2022;
UpToDate Interactions, 2022; Medscape, 2022; IBM Solutions, 2022)

TKI + interacting drug Databases (severity 
and LS) 

Mechanism Clinical effect 

Dasatinib + PPIs*/famotidine U: Major (X) 
LS: Good 
Mi: Major 
LS: Fair 
D: Major 
Me: Major 

(Consensus) 
Gastric pH ↑ 

(Consensus) 
Dasatinib effect ↓ 

Dasatinib + fluconazole U: Moderate (C) 
LS:Fair 
Mi: Contraind. 
LS: Fair 
D: Moderate 
Me: Monitor 
closely 

CYP3A4 inhibition and QTc 
prolongation 
CYP3A4 inhibition 
 
 
CYP3A4 inhibition 
CYP3A4 inhibition and QTc 
prolongation 

Dasatinib level ↑ and 
QTTc ↑ 
Dasatinib level ↑ 
 
Dasatinib level ↑ 
Dasatinib level ↑ 

Dasatinib + posaconazole U: Major (X) 
LS:Fair 
Mi: Contraind. 
LS: Fair 
D: Major 
Me: Monitor 
closely 

CYP3A4 inhibition and QTc 
prolongation 
 
CYP3A4 inhibition 
 
CYP3A4 inhibition 
CYP3A4 inhibition 

Dasatinib level ↑ and 
QTc ↑ 
Dasatinib level ↑ 
 
 
Dasatinib level ↑ 
Dasatinib level ↑ 

Nilotinib + fluconazole U:Moderate (C) 
LS: Fair 
Mi:Contraind. 
LS: Fair 
D: Major 
Me: Serious 

QTc prolongation by a QT-
prolonging moderate CYP3A4 
inhibitor drug 
CYP3A4 inhibition and QTc 
prolongation 
 
QTc prolongation 
CYP3A4 inhibition and QTc 
prolongation 

QTc ↑ 
 
Nilotinib level ↑ and 
QTc ↑ 
QTc ↑ 
 
Nilotinib level ↑ and 
QTc ↑ 

Nilotinib + posaconazole U: Major (X) 
LS: Fair 
Mi: Contraind. 
LS :Fair 
D: Major 
Me: Monitor 
closely 

CYP3A4 inhibition 
 
CYP3A4 inhibition 
 
QTc prolongation 
CYP3A4 and p-glycoprotein 
inhibition 

Nilotinib level ↑ 
 
Nilotinib level ↑ 
 
QTc ↑ 
Nilotinib level ↑ 

Bosutinib + posaconazole/voriconazole U: Major (X) 
LS: Good 
Mi: Major 
LS: Fair 
D: Major 
Me: Serious 

(Consensus) 
CYP3A4 inhibition 
 

(Consensus) 
Bosutinib level↑ 
 

Bosutinib + clarithromycin U: Major (X) 
LS: Good 
Mi: Major 
LS: Fair 
D: Major 
Me: Serious 

CYP3A4 inhibition and QTc 
prolongation 
CYP3A4 inhibition 
 
 
CYP3A4 inhibition 
CYP3A4 inhibition 

Bosutinib level ↑ and 
QTc ↑ 
Bosutinib level ↑ 
 
 
Bosutinib level ↑ 
Bosutinib level ↑ 

Nilotinib + sotalol U: Major (X) 
LS: Fair 
Mi: Major 
LS: Fair 
D: Major 
Me: Contraind. 

(Consensus) 
QTc prolongation 
 

(Consensus) 
QTc ↑ 
 
 

Nilotinib + colchicine U: Major (D) 
LS: Good 
Mi: Contraind. 
LS: Fair 
D: Major 

CYP3A4 and p-glycoprotein 
inhibition 
 
CYP3A4 and p-glycoprotein 
inhibition 
 
P-glycoprotein inhibition 

Colchicine level ↑ 
 
Colchicine level ↑ 
 
Colchicine level ↑ 

Nilotinib + Amiodarone U: Major (X) 
LS: Fair 
Mi: Major 
LS: Fair 
D: Major 
Me: Serious 

QTc prolongation 
 
QTc prolongation and CYP3A, 
CYP2C8, and p-glycoprotein 
inhibition 
QTc prolongation 
QTc prolongation and CYP3A4 
and p-glycoprotein inhibition 

QTc ↑ 
 
QTc ↑ and ↑ levels of 
both drugs 
QTc ↑ 
QTc ↑ and ↑ levels of 
both drugs  

Abbreviations: TKI, tyrosine kinase inhibitor; LS, literature support ratings; U, UpToDate; Mi, Micromedex; D, Drugs.com; Me,  
Medscape; CYP3A4, cytochrome P450 3A4 enzyme; PPI, proton pump inhibitors; Contraind, contraindicated. 
*Lansoprazole, pantoprazole, omeprazole, esomeprazole, and rabeprazole. 
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Table 4. Kappa values of databases for the severity ratings, literature support ratings, and general mechanisms of drug–drug
interactions in binary combinations
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Table 4. Kappa values of databases for the severity ratings, literature support ratings, and 
general mechanisms of drug–drug interactions in binary combinations 
 

Database pairs Kappa value Agreement level Standard error 95% CI 

Severity rating agreements     

Micromedex–UpToDate 0.23 Fair 0.025 0.179–0.278 

Micromedex–Medscape 0.22 Fair 0.027 0.170–0.277 

Micromedex–Drugs.com 0.19 Slight 0.022 0.142–0.227 

UpToDate–Drugs.com 0.11 Slight 0.027 0.066–0.172 

Drugs.com–Medscape 0.1 Slight 0.031 0.038–0.158 

UpToDate–Medscape 0.09 Slight 0.031 0.030–0.115 

Literature support rating agreements     

Micromedex–UpToDate  0.25 Fair 0.032 0.183–0.307 

General mechanism agreements     

Micromedex–UpToDate 0.45 Moderate 0.035 0.382–0.519 

Micromedex–Medscape 0.37 Fair 0.036 0.302–0.423 

UpToDate–Drugs.com 0.36 Fair 0.033 0.291–0.421 

Micromedex–Drugs.com 0.25 Fair 0.026 0.198–0.301 

UpToDate–Medscape 0.22 Fair 0.038 0.143–0.292 

Drugs.com–Medscape 0.16 Slight 0.031 0.096–0.218 

 Abbreviation: CI, confidence interval. 

 
 and 0.28 (p = 0; SE, 0.014; 95% CI, 0.25–0.30). According to

the agreement level classification, the kappa level of severity
ratings indicated that the databases showed a slight agreement
level. The kappa value for the general mechanisms of inter-
actions, that is, 0.28, indicated a fair agreement level among
databases.

Databases were compared in binary combinations to identify
the severity and literature support agreement levels of database
pairs. UpToDate and Micromedex showed a fair agreement level
in terms of severity and literature support ratings, with kappa
values of 0.23 and 0.25, respectively. The other database pairs
showed slight agreement in terms of severity classifications.
The lowest agreement level among database pairs was identi-
fied in the UpToDate–Medscape databases, with a kappa value
of 0.09. The Micromedex–UpToDate database pair showed the
highest agreement level among database pairs, with a kappa
value of 0.45 in terms of general mechanism agreements. The
Drugs.com–Medscape database pair showed the lowest agree-
ment level, with a kappa value of 0.16, and the other database
pairs showed fair agreement levels (Table 4).

DISCUSSION

This study demonstrated that databases had a
slight agreement level regarding BCR-ABL TKI-
involving DDIs in terms of severity ratings. Only
two database pairs—Micromedex–UpToDate and Mi-
cromedex–Medscape—showed a fair agreement level, and the
other database pairs slightly agreed on the severity ratings
of interactions. Micromedex and UpToDate showed a fair
agreement level in terms of literature support ratings.

The proposed mechanisms attracted to DDIs were also com-
monly different among databases. The overall kappa value for
the general mechanism compatibility of the databases was 0.28,
with a fair agreement level. The highest agreement level was
observed between Micromedex and UpToDate, with a kappa
value of 0.45, which indicated a moderate agreement level.
Drugs.com and Medscape, two open-access databases, were
slightly compatible in terms of the general mechanism expla-
nation of DDIs, which was the lowest agreement level among
database pairs.

In a study that compared DDI checking databases for bipolar
medication-involving DDIs, databases showed a slight agree-
ment level in terms of severity ratings (Monteith, Glenn, Gitlin
M & Bauer, 2020). In another study that evaluated the sensi-
tivity of five databases on oral oncolytic-involving DDIs, the
databases showed a significant difference, and Lexi-Interact
and Drugs.com had the highest sensitivity (95%) (Bossaer &
Thomas, 2017).

Polypharmacy has increased among elderly patients in re-
cent decades (Haider, Johnell, Thorslund & Fastbom, 2007).
Comorbidities and polypharmacy are related to the number
of DDIs among these patients (Hohl, Dankoff, Colacone &
Afilalo, 2001). DDIs are related to hospital visits and hospital-
izations. DDI checking databases help health practitioners to
check interactions between multiple drugs (Vonbach, Dubied,
Krähenbühl & Beer, 2008). However, the information provided
by these databases about interactions and their ability to detect
interactions is variable (Reis & Cassiani, 2010). In our study,
none of the databases detected all interactions, and the infor-
mation provided by the databases differed. Drugs.com detected
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355 interactions, which made it the most detecting database in
our study.

CML is a hematological disorder with a median age of 55
years that presents with a mutation resulting in an active BCR-
ABL1 tyrosine kinase. Before the discovery of BCR-ABL TKIs,
the treatment options for CML were busulfan and hydroxyurea,
with major cytotoxic complications (An et al., 2010). After the
introduction of TKIs for the treatment of CML, patients’ life
expectancies reached near the normal range (Luskin & DeAn-
gelo, 2018). TKIs are often involved in DDIs with different
mechanisms (van Leeuwen et al., 2014).

Because of the older age of patients with CML, comorbidities
are common, with an incidence of 55.5% (Saydam et al., 2022).
Drugs used to treat comorbidities and TKIs may interact and
change the TKI efficacy (Luskin & DeAngelo, 2018). Gastric
pH-changing drugs, CYP3A4 inhibition or induction, drugs
with a changing effect on p-glycoprotein and other transport
activities, and combination with QTc prolongations change the
effect of TKIs (van Leeuwen et al., 2014). In a study that
evaluated the TKI-related DDIs in 105 patients with CML,
159 DDIs were detected (Osorio et al., 2018).

Some interactions in our study with contraindicated warnings
were listed. All databases listed interactions with dasatinib and
acid-suppressive drugs. There was a consensus on the proposed
mechanism for this interaction, which was explained by the de-
crease in the dasatinib effect due to the gastric pH elevation.
UpToDate rated this group of interactions with a good docu-
mentation level, whereas Micromedex considered the literature
support level as fair (Drugs.com, 2022; UpToDate Interactions,
2022; Medscape, 2022; IBM Micromedex, 2022).

The nilotinib–posaconazole interaction was found in all
databases. UpToDate and Micromedex showed a contraindi-
cated warning with a CYP3A4 inhibition-related mechanism
(UpToDate Interactions, 2022; IBM Micromedex, 2022). Med-
scape also reported an increase in the nilotinib blood levels due
to p-glycoprotein inhibition (Medscape, 2022). On the other
hand, the proposed mechanism of this interaction was shown
as QTc prolongation due to the combining of two drugs with
a QTc prolongation effect in Drugs.com with a major severity
warning (Drugs.com, 2022).

CONCLUSION

CML is a hematological malignancy treated with BCR-ABL
TKIs. These drugs are often involved in DDIs because of their
chemical structures and metabolic pathways. Databases are im-
portant tools for detecting and understanding DDIs; however,
significant differences in severity ratings, literature support lev-
els, and the proposed mechanisms are noted among databases.
In our study, databases, at most, showed slight agreement in
terms of severity ratings and fair agreement in terms of gen-
eral mechanisms. The significant differences among databases

are concerning, and these disparities should be resolved in the
future to provide better healthcare to patients with CML. We
recommend using multiple DDI databases to evaluate BCR-
ABL TKI-involving DDIs.
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