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Abstract: The aggregate of various chemical substances useful for the functioning of the human body are
known as nutrients. Spirulina has been present in human nutrition since ancient times, but in recent years the
interest  in  it  has been particularly  increased due to the emergence of  numerous alternative methods of
nutrition.  This  study aimed to  compare the functional  and elemental  composition  as  well  as  the optical
properties of commercial Spirulina products available on the Bulgarian market. For this purpose, fluorescence
spectroscopy  in the ultraviolet  and visible  range,  fourier  transform infrared spectroscopy and inductively
coupled plasma optical emission spectroscopy were used. The basic components of the analyzed  Spirulina
samples are proteins (1657 and 1537 cm-1) and carbohydrates (1069 and 1054 cm-1) and no meaningful
differences between the IR spectra of the samples. Concentrations of important microelements Mg, Fe, Cu,
Zn, and Mn varies with the manufacturer. The highest levels for Mg (6.69 g kg -1) were measured in samples
from USA, while the Spirulina fabricated in Bulgaria exhibits the highest contents of Zn (242 mg kg -1) and Cu
(25.4  mg  kg-1).  All  samples  followed  the  tendency  Mg>Fe>Mn>Zn>Cu.  Making  use  of  a  fiber  optic
spectrometer  the  fluorescence  spectra  of  the  studied  samples  of  Spirulina platensis  for  an  excitation
wavelength of 380 nm were measured. In these spectra we observe three fluorescence maxima: at 465 nm –
nicotinamide  dinucleotide  phosphate,  640  nm  chlorophyll  a,  and  736  nm  due  to  similar  to  chlorophyll
pigments. A strong positive correlation between the contents of Zn and Cu on the one side and the second
fluorescence peak (λ=640 nm) for excitation wavelength at 380 nm. In contrast, a high negative correlation
for  Fe and the third fluorescence  maximum (λ= 736nm) is  observed for  all  excitation  wavelengths.  The
correlation dependencies were obtained with the least squares method with a significance level of p ≤ 0.05.
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1. INTRODUCTION

In  1827  P.J.Turpin  isolated  Spirulina from  a
freshwater sample, and in 1852 Stizenberger wrote
the  first  taxonomic  report.  These  photosynthetic
organisms were first considered algae, but in 1962
Stanier  and Van Neil  included blue-green algae in
the prokaryotic  kingdom and proposed that these
microorganisms be called cyanobacteria (1).

Based  on  the  cylindrical  arrangement  of  the
multicellular  trichomes,  there  are  two  types  of
filamentous  cyanobacteria: Arthrospira (Spirulina)
maxima and  (Spirulina)  platensis (2).  Their  main
photosynthetic  pigment  is  phycocyanin,  which  is
blue  in  color  (3),  they  also  contain  chlorophyll  a,
carotenoids  and  various  pigments  that  can  give
them a red or pink color (4).  Arthrospira (Spirulina)
platensis  is  a  natural  inhabitant  of  tropical  lakes
with  alkaline  waters  (pH>11),  these  conditions
restrict  the  growth  of  other  microorganisms  but
allow  its  cultivation  (5).  The  distribution  of
Arthrospira  platensis in  nature  is  not  limited  only
from lakes in Africa to Lake Texcoco in Mexico,  it
can  be  found  in  soil,  marine  and  fresh  water,
swamps  and  thermal  springs  (6).  Arthrospira
platensis is the most widely cultivated alga because
it is rich in protein (between 50 % and 70%) with a
high  biological  value  due  to  the  content  of  all
essential  fatty acids  (7,  8).  Long-chain fatty acids
are  dominant,  especially  palmitic  and  gamma
linoleic  acids  (9).  The  latter  is  of  particular
importance  in  the  treatment  of  chronic  diseases.
Spirulina contains polyunsaturated fatty acids such
as  eicosapentaenoic  acid  (EPA)  and
docosahexaenoic  acid  (10).  The  consumption  of
microalgae  by  vegetarians  is  extremely  valuable
due to the high content of vitamins of group B as
well as of type A, E, D, K (11). It is a source of the
minerals calcium, iron, selenium, and fluorine (11,
12) as well as large amounts of carotenoids such as
astaxanthin  and  zeaxanthin,  beta  carotene,
polyphenols, and chlorophyll (4).

The  huge  number  of  bioactive  compounds  in
Arthrospira  platensis makes  it  suitable  for  its
inclusion in foods and nutritional supplements (13).
There  are  data  that  microalgae  lower  LDL
cholesterol  and  blood  pressure  (14).  It  can  be
prescribed  to  patients  with  diabetes  because  it
reduces blood sugar levels (15), relieves mental and
physical  fatigue  of  the  body  (16),  increases
immunity,  and  can  be  used  as  a  probiotic  (17).
There  are  already  many  commercially  available
brands  of  health  foods made from cultured  algae
and  spirulina.  Phycocyanins,  which  are  now
extracted from Spirulina, are used as industrial and
food colorings (17).

As fluorescence measurements are far simpler and
less costly than chemical analysis of substances it is
of practical importance to establish the correlations
between  fluorescence  spectra  and  the  chemical
contents  of  commercially  available  Spirulina
samples  from  different  parts  in  the  world.  The
objective of this study is to investigate and compare
the  functional  and  elemental  composition  and
optical  characteristics  of  commercial  Spirulina
products available on the Bulgarian market.

2. MATERIALS AND METHODS

2.1. Samples Under Study
Three  commercially  available  Spirulina samples
were  purchased,  cultivated  in  bioreactors  in  USA,
China  (CHN)  and  Belgium  (BEL)  as  well  as
Spirulina/Arthrospira  platensis cultivated  in  a
bioreactor close to Varvara, Bulgaria (BGR).

Three  packages  from  each  tested  product  were
purchased. Measurements have been performed on
each of them. Average results from three replicates
of the experiment were presented.
The data for dietary and energy value expressed in
g/100g  for  Spirulina products  purchased  from the
Bulgarian  dietary  store  and  taken  from  the
producer's label are given in Table 1.  

Table 1: A main dietary and energy value of Spirulina*.

CHN BEL USA

Energy value, kcal 336 358 333

Fats , g/100g 1 6 5

Proteins, g/100g 65 65 56

Carbohydrates, g/100g 13.1 9.5 15
*The indicated table does not present data on Spirulina from a bioreactor in Bulgaria, since the latter is not
available in organic stores and it is in the process of certification and research of the indicated parameters.

466



Nikolova K et al., JOTCSA. 2023; 10(2): 465-474.  RESEARCH ARTICLE

2.2. Methods

2.2.1. Fluorescence measurements
The fluorescence characteristics  of  organic  matter
from  seaweeds  were  measured  using  an  Ocean
Optics QE65000 fiber optic spectrometer, an Ocean
optics  MonoScan 2000 fiber  optic  monochromator
and broadband Energetiq Laser driven light source
(190 nm to 2500 nm). The samples were excited at
wavelengths from 220 nm to 720 nm at a 10 nm
increment and a spectral  bandwidth of  around 15
nm. The sample is illuminated by a 1 mm core fiber
and fluorescence is captured by a receiving 1mm
core  fiber  oriented  at  45°  with  respect  to  the
excitation  fiber to minimize reflected and diffused
light.  Integration  time was  5  s.  The  experimental
set-up is shown in Figure 1. 

2.2.2. Excitation emission matrices (EEM)
At each excitation wavelength in the 220 nm to 720
nm the emission spectrum from 200 nm to 1000 nm
of each Spirulina/Arthrospira  sample was captured
which  permits  3D excitation  emission  plots  to  be
presented. These color coded 3D spectra for each
sample  are  presented  in  side  and  in  topographic
view  in  Figure  2.  In  these  figures  the  emission
spectrum is presented in the range of 400 - 800 nm.

2.2.3. Determination of the elements’ content
A sample of about 0.3 g is weighed on an analytical
balance in Teflon vessels for a microwave digestion
system and 10 mL of 67% HNO3 (Suprapur®) was
added.  Microwave  digestion  was  carried  out
according to the following procedure: 10 minutes to
reach 180 ºC and maintain this temperature for 10

minutes. After cooling solution was transferred into
a 25 mL volumetric flask and dilute to the mark with
deionized water. The blank sample was run through
the entire analytical  procedure.  The samples were
finally filtered through 0.45 μm cellulose membrane
filters (Millipore) and kept at 4 ºC.

The  content  of  Mg,  Fe,  Mn,  Cu,  and  Zn  was
measured by ICP-OES system ULTIMA 2, Jobin Yvon,
(Longjumeau,  France).  Мulti-element  standard
solution IV for ICP (TraceCERT®, Merck) was used to
prepare  diluted  working  standard  solutions  for
instrument calibration.

2.2.4. FT-IR spectra
The FT-IR spectra were recorded on a Thermo Fisher
Nicolet iS50 spectrometer equipped with a diamond
ATR  Accessory  and  are  presented  after  standard
ATR correction performed on the OMNIC software.
The IR spectra  were recorded  from 4000 cm−1 to
400  cm−1 with  an  average  of  64  scans  at  a
resolution  of  4  cm−1.  The  measurements  were
carried  out  directly  on  the  Spirulina powder
samples.

2.2.5.  Statistical analysis
Analysis  of  variance was used to compare means
with a significance level of p ≤ 0.05 by using SPSS
Statistic  22.  One-way  analysis  of  variance  and
Duncan’s  post  hoc  test  for  multiple  comparisons
based on the parameters studied were performed
for  all  samples  studied.  The  correlation
dependences were obtained with the least squares
method with a significance level of p ≤ 0.05.

Figure 1: Experimental set-up for measurement of 3D emission excitation matrices.

3. RESULTS AND DISCUSSION

The concentration  of  Mg,  Fe,  Mn,  Zn,  and  Cu  was
determined as elements performing specific functions
in the human body.  Since the human body  cannot
produce them on its own, it is necessary to take them
through food.

The concentrations  of  the elements  in  the samples
vary  depending  on  the  producers.  The  obtained
values  for  all  five  analyzed  elements  are  in  the
concentration  range  of  other  Spirulina products
described in the literature (3,  18-21).  Тhe following
trend  is  observed:  Mg > Fe > Mn > Zn > Cu.  As
expected, the content of Mg in the four products is
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the highest compared to the other elements, as it is a
macronutrient. It is noteworthy that the concentration
of Fe significantly exceeds the concentrations of the
other micronutrients. Table 2 lists the quantity of the
elements as measured in the samples.  The sample
from the Bulgarian reactor is the richest in Zn and Cu
while in the other samples these elements are found
in  significantly  lower  concentrations.  The  highest
concentration of Mg was observed in the USA sample.

The optical properties of  Spirulina were investigated
by fluorescence spectroscopy in the range of 220-720
nm  at  10  nm  increments.  The  excitation-emission
matrices  (EEM)  of  the studied samples  in  side and
topographic view are presented in Figure 2. It follows
from the analysis of the  Spirulina samples that their
optical properties strongly depend on the excitation
wavelength. A change was observed if the individual
fluorescence spectra around 410, 530, and 660 nm
excitation  wavelengths.  At  lower  excitation
wavelengths, the typical emission peaks around 650
nm  and  672  nm  associated  in  the  literature  with
Phycobilisomes were not observed. However, a peak
around 700 nm associated with the same substances
was seen. This means that their molecules were not
directly excited but had instead obtained energy from
the excited molecules  of  carotenoids  via resonance
transfer or re-absorption.

For excitation in the red part of the visible spectrum
from 640 nm to 660 nm range an emission peak in

the 710 nm and 715 nm due to Chlorophyll  a was
observed.  Similar  excitation  wavelengths  for
substances  as  Chlorophyll  a,  Chlorophyll  b,
Phycocyanin,  Phycoerythrin  have  been  reported  by
Cadondon et al. (22), Li et al. (23), Gobets et al. (24),
Karapetyan et al. (25), Akimoto et al. (26), Uebel et
al. (27).

Some  relations  were  established  between  the
observed spectra  and the content  of  the metals.  A
closer inspection of the 3D EEM plots reveals that the
fluorescence maxima were observed at an emission
wavelength around 735 nm – 736 nm for excitation
from 250 nm to 720nm.

However, the maxima and their relative height were
different.  Fig.  3a  shows  how  the  fluorescence
intensity  at  736  nm  changes  for  each  sample  as
excitation wavelength varied from 220 nm to 720 nm.

There were some peaks for excitation wavelengths of
380, 430, and 560 nm. The emission spectra of the
samples  for  each  of  these  three  excitation
wavelengths  were  shown  in  Fig.  3b)  to  3d).  The
emission  spectra  exhibited  maxima  at  three
wavelengths: 465, 640, and 736 nm were labeled as
I,  II,  and  III.  Due  to  the  Stokes’  shift,  fluorescence
emission is observed at wavelengths higher than the
excitation  wavelength.  Therefore,  for  560  nm
fluorescence is observed above 588 nm (Fig. 3d).

Table 2: Content of Mg, Mn, Fe, Zn and Cu in the four Spirulina samples (n=3, RSD=3-7%) and reference
values described in the literature*.

Elements BGR CHN BEL USA Refs. (3, 18-21)

Mg, g/kg 2.57d 2.76c 3.80b 6.69a 0.67  9.49

Mn, mg/kg 55.0b 55.4b 49.7c 141a 5  554

Fe, mg/kg 317d 868b 447c 1177a 195  6500
Zn, mg/kg 242a 18.0d 25.8c 35.4b 3.8  375
Cu, mg/kg 25.4a 3.97d 5.23c 11.9b 2.63  69.6

*Means in a row with a common superscript letter (a–d) differ (p < 0.05) as analyzed by one-way ANOVA.
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Figure 2: Excitation emission 3D and topographic presentations.
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Figure 3: Sections of the 3D EEM plots: a) Dependence on the excitation wavelength for emission at 736 nm;
Emission spectra for excitation at b) 380 nm; c) 430 nm; d) 560 nm.

The dependencies of the average intensity around
each of these maxima on the contents were plotted
for  each  element  for  each  of  the  maxima.  As
examples, the plot for Zn when excited at 430 nm
for maxima I (465 nm) and II (640) were shown in
fig 4a) and in Fig. 4b) – for Fe at 560 nm for maxima
II  and  III.  Two  basic  observations  for  all  samples
must be noted for the two plots in Fig. 4. First, for
Zn  from  Fig.  4a),  the  intensities  of  both  peaks
increased  with  the  content,  while  for  Fe,  the
intensities decreased with the Fe content. Second,
the intensity of the first maximum is higher than the
second.  These  observations  are  reversed  for  Fe
from  Fig.4b).  This  implies  positive  and  negative
correlation  between  fluorescence  intensity  and
content for the Spirulina samples of different origin.
There were some peaks for excitation wavelengths
of 380, 430, and 560 nm. The emission spectra of
the  samples  for  each  of  these  three  excitation
wavelengths  were  shown  in  Fig.  3b)  to  3d).  The
emission  spectra  exhibited  maxima  at  three
wavelengths: 465, 640, and 736 nm were labeled as
I, II, and III.

The correlation between the content of each metal
and the intensity of each maximum I, II, and III for
each excitation wavelength were obtained, and the
coefficient  r  was  calculated.  The  results  were
summarized in Table 3.

Zn and Cu exhibit a very high positive correlation
between  their  content  and  the  intensity  of  the
maxima  I  and  II  for  380  nm  excitation  and  for
maximum II at 560 nm. In contrast Fe exhibits very
high  negative  correlation  for  maximum  III  and  a
high correlation for maxima I and II for all excitation
wavelengths.  Mn  exhibits  at  best  a  moderate
negative  correlation  for  maximum  III  and  low  or
weak for the other maxima at any excitation. 

Figure 5 presents the FT-IR spectra of the Spirulina
samples.  The  peak  around  3290  cm−1  could  be
attributed to –OH and –NH groups (28-29). The C-H
stretching  vibrations  could  be found  around  2920
cm-1 (28). These signals could be assigned to lipid
and  protein  methylene  vibrations  (30).  The
adsorption  peaks  in  the  region  1700–1400  cm−1
could  be  assigned  to  –CO  stretches  aldehydes,
ketones, and carboxylate groups. (31-32, 28). These
vibrations could be attributed to functional groups
present  in  proteins  in  the  Spirulina sample  (31).
More  specifically,  these  signals  represent  the
vibrations  of  amides  I  and II,  from the  protein  in
Spirulina  powder  (30).  The  signals  in  the  region
1100-1000 cm-1 belong to functional groups in the
carbohydrate components in the samples (31-32).
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Figure 4: Plots of the average power at particular maxima vs. the content of a definite metal: a) Zn at 430

nm excitation for maxima I and II; Fe at 560 nm excitation for maxima II and III.

Table 3: Correlation coefficient between metal contents and maximum intensity.

380 nm excitation 430 nm excitation 560 nm excitation
Max I II III I II III I II III
Mg -0.38 -0.45 -0.65 -0.41 -0.43 -0.68 -0.45 -0.50
Mn -0.32 -0.35 -0.69 -0.31 -0.3 -0.66 -0.40 -0.61
Fe -0.78 -0.77 -0.98 -0.74 -0.71 -0.95 -0.82 -0.95
Zn 0.93 0.97 0.75 0.97 0.99 0.84 0.93 0.63
Cu 0.88 0.90 0.58 0.92 0.93 0.67 0.85 0.40

Positive: Very High: 0.9-1   High: 0.7-0.9   Moderate: 0.5-0.7  Low: 0.3-0.5  Very low: 0-0.3
Negative: Very High: 0.9-1   High: 0.7-0.9   Moderate: 0.5-0.7  Low: 0.3-0.5  Very low: 0-0.3
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BGR CHN
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Figure 5: FT-IR spectra of the different Spirulina samples.

4. CONCLUSION

All  investigated  samples have a  similar  functional
composition.  The resulting  signals  in  the different
regions  of  the  IR  spectrum  can  be  assigned  to
proteins,  and  carbohydrates.  Spirulina is  a  good
source  of  essential  elements  such  as  magnesium
and iron, a trend was observed: Mg > Fe > Mn > Zn
> Cu. Comparing the content of each element with
the intensity of the maxima for the most effective
excitations at 380, 430, and 560 nm show that the
presence of  Zn and Cu can be linked to the very
high  positive  correlation,  while  that  of  Fe  to  the
very high negative correlation with the intensity of
fluorescence maxima. 
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