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ABSTRACT 

In this study, Gaussian Process Regression (GPR) is utilised to accurately estimate fuel consumption. For this purpose, 

ten randomly determined flights performed by Boeing B737-800 twin-engine medium-haul narrow-bodied commercial 

aircraft are selected. In this context, actual flight data obtained from the Flight Data Recorder (FDR) is used to estimate 

fuel consumption during the climb-out phase. Different statistical tests, namely Root Mean Square Error (RMSE), 

coefficient of determination (R2), and Mean Absolute Error (MAE), are applied to evaluate the performance of the GPR 

in this paper. RMSE, R2, and MAE values for GPR is calculated to be 209.41, 0.99, and 111.38, respectively. As can be 

seen from the results of all statistical tests, the GPR model indicates successful performance. 
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1. INTRODUCTION 

While air transportation makes significant contributions to social and economic fields, the increase 

in fuel prices and environmental problems negatively affect the aviation industry. For these 

reasons, fuel consumption from aircraft are the main research subjects in many studies. Fuel 

consumption is the most crucial performance indicator in aviation due to both economic and 

environmental issues. To give an example, the cost of fuel is one of the biggest direct operating 

expenses for airlines. Due to these reasons, airlines make considerable efforts to decrease fuel 

consumption [1]. Moreover, aircraft emissions from fule consumption can have a variety of 

negative effects on air quality, climate change, and human health [2-4]. Because of the issues 

mentioned, determining the accurate and precise fuel consumption of an aircraft becomes crucial 

to minimize negative environmental effects, and also to offer better efficient aircraft operations. 

Furthermore different approach are being tested and researched to reduce the economic and 

environmental reasons through each phase of flight [5-7]. 

 

Several researchers conduct in-depth research on estimating or calculating the fuel flow of aircraft 

for various flight phases [8-12]. Luo et al. [13] construct fuel flow regression model based on 

Recurrent Neural Networks model. They utilize the actual quick access recorder (QAR) dataset 

while creating the model. According to the experimental findings, the model has a high level of 

accuracy in cruise phase. Baumann and Klingauf [14] employe Machine Learning Algorithms, 

which are Neural Networks and Decision Trees, to find the fuel consumption of the aircraft at 

different phases of flight. When these two models are compared, the Neural Networks model gives 

better results than the Decision Trees model. Baklacioglu [15] generates a neural network model 

using a genetic algorithm to estimate the fuel flow rate for different flight phases. It takes altitude 

and speed values into consideration when creating models. 

 

A significant portion of the fuel is consumed during the climb phase of the flight due to the high 

thrust applied, especially on short-haul flights. Because of these reasons, one of the flight phases 

where the aircraft is heaviest is the climb phase.As a result of this condition, increasing fuel use 

results in both an increase in emissions and economic loss [16]. When the studies for the climb-

out phase are examined, it is seen that many studies on the climb-out phase focus on emission 

values [17]. Chati and Balakrishnan [18] develop the GPR model to predict fuel consumption 

during the climb-out and approach phases. The authors state that this model provides more accurate 

fuel consumption and emission values around the airports. Liati et al. [19] examine the soot 
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characteristics of the CFM56-7B26 turbofan engine with different tests, including X-ray micro-

spectroscopy and transmission electron microscopy. For these tests, Jet A-1 and a biofuel fuels are 

used at ground idle and climb-out engine thrust values. The findings show that for all these types 

of fuel, soot reaction declines from ground idle to climb-out conditions. 

 

In this paper, a regression model is offered to predict fuel consumption during climb-out phase. 

The GPR model is selected to accurately estimate fuel consumption. In the GPR model, altitude 

(ALT), gross weight (GW), calibrated airspeed (CAS), total air temperature (TAT), flight path 

angle (FPA), and wind speed (WS) are independent variables and fuel consumption in the climb-

out phase (FFCO) is dependent variable. Thanks to the regression model created using these 

selected model variables, precise fuel consumption estimation can be made around the airports. 

Making accurate fuel consumption planning also causes a decrease in emission values. In addition, 

this paper can provide more correct flight trajectory planning and estimation in air traffic 

management. 

 

2. MATERIALS AND METHODOLOGY 

2.1. Materials 

This study presents ten international and domestic flights performed by Boeing B737-800 twin-

engined, medium-haul, narrow-bodied commercial aircraft. The departure airport is the same for 

all the flights (Istanbul Ataturk International Airport (LTBA)), while the destination airports are 

ten different international and national airports (denoted as F1 through F10). The flight between 

these city pairs is shown in Table 1. The same type of aircraft (but not one with the same tail 

number) carries out these flights. In this paper, it is important to point out that the CFM56-7B26, 

a high-bypass turbofan engine with a bypass ratio of 5.5, an overall pressure ratio of 32, is used as 

the turbofan engine. 

 

When it comes to fuel consumption during a flight, there are many factors that can have an effect 

on it. As observed in many studies, the fuel flow rate during a cruise flight is primarily influenced 

by the GW, ALT, and CAS. Also FPA influences the fuel consumption during descent and climb 

phases. In addition to these flight phases, the emissions resulting from the fuels burned during the 

climb-out and approach phases cause significant environmental impacts at the airports. Climb-out 

phase, which forms part of climb phase, is especially used in emission calculations and is included 

in the landing and take-off cycle (LTO cycle). The LTO consists of different operation modes. The 
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LTO cycle begins when the aircraft lands below 3000 feet. Finally, the LTO cycle ends with the 

climb-out phase up to 3000 ft above field elevation [20]. In this study, the climb-out phase starts 

at the end of the take-off phase and ends when the aircraft reaches 3000 feet. Within the scope of 

this study, the climb-out phase is examined in detail and the parameters affecting fuel consumption 

in the phase are determined. Therefore, actual FDR data sets are used for a more accurate analysis 

of the climb-out phase. Parameters affecting fuel consumption in the climb-out phase, which are 

ALT, GW, CAS, TAT, FPA, and WS, are taken into consideration to estimate fuel flow during 

climb-out. These performance parameter’s types, physical meanings, symbols, and units are 

identified in Table 2. Fuel consumption in the climb-out phase is denoted as FFCO. 

 

Table 1. Airports information 

Departure Airport Destination Airports ID 

Istanbul Ataturk International Airport 

(LTBA) 

Amsterdam Airport Schiphol (EHAM) F1 

Tbilisi International Airport (UGTB) F2 

Valencia Airport (LEVC) F3 

Adnan Menderes Airport (LTBJ) F4 

Koca Seyit Airport (LFTD) F5 

Manas International Airport (UAFM) F6 

Tenerife South Airport (GCTS) F7 

Cardak Airport (LTAY) F8 

Esenboğa Airport (LTAC) F9 

Dalaman Airport (LTBS) F10 

 

Table 2. Flight performance parameters' types, physical meanings, symbols, and units 

 

 

 

 

 

 

 

 

 

 

Physical meaning Symbol Unit 

Flight time TIME s 

Gross weight GW lbs 

Fuel flow of engine-1 FF1 lb/h 

Fuel flow of engine-2 FF2 lb/h 

Altitude ALT feet 

Flight path angle FPA ˚ 

Total air temperature TAT ˚C 

Calibrated airspeed CAS knot 

Wind speed WS knot 
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Figures 1-6 depict the change of performance parameters versus time during the climb-out phases 

for all flights. The ALT values for each flight are denoted as ALT-F1 through ALT-F10. For 

example, the ALT values of the first flight are shown as ALT-F1 in this study. Other flight 

performance parameters are also presented in the same way. When the altitude values are 

examined, it is seen that the altitudes values increases roughly linearly in Figure 1. The change in 

the GW values of the aircraft depends on the fuel consumption. As seen in Figure 2, the minimum 

and maximum values of the GW-F1, GW-F2, GW-F3, GW-F4, GW-F5, GW-F6, GW-F7, GW-

F8, GW-F9, and GW-F10 are found to be 155767 and 156155 lbs; 145333 and 145755 lbs; 153089 

and 153434 lbs; 133401 and 133755 lbs; 137163 and 137515 lbs; 169339 and 169755 lbs; 130229 

and 130556 lbs; 134089 and 134475 lbs; 129817 and 130155 lbs; 137370 and 137756 lbs, 

respectively. When it comes to the CAS values in Figure 3, similar fluctuations are observed in 

CAS values. The mean values of the CAS-F1, CAS-F2, CAS-F3, CAS-F4, CAS-F5, CAS-F6, 

CAS-F7, CAS-F8, CAS-F9, and CAS-F10 are found to be 186, 190, 202, 187, 189, 206, 184, 192, 

186, and 185 knots, respectively. There are significant differences between the TAT values when 

considering all flights. When a single flight is examined, the TAT values do not show any 

significant change, except for the TAT-F2 values in Figure 4. The TAT values in all flights range 

from a low of 1 °C (TAT-F3) to a high of 22 °C (TAT-F1). The FPA values are one of the 

parameters that has the significant impacts on an aircraft's fuel consumption. The first few seconds 

following the end of the take-off phase see naturally higher the FPA values.  Figure 5 indicate the 

variation of the FPA values versus times during the climb-out phase in the study. It is observed 

that mean values of the FPA-F1, FPA-F2, FPA-F3, FPA-F4, FPA-F5, FPA-F6, FPA-F7, FPA-F8, 

FPA-F9, and FPA-F10 are 6, 5, 7, 6, 7, 5, 7, 6, 7, and 5°, respectively. The WS values, which are 

one of the atmospheric parameters, fluctuate between a minimum of 3 knots and a maximum of 

49 knots among all flights in Figure 6. 
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Figure 1. Variation of ALT values during climb-out phases 

 

 

Figure 2. Variation of GW values during climb-out phases 
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Figure 3. Variation of CAS values during climb-out phases 

 

 

Figure 4. Variation of TAT values during climb-out phases 
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Figure 5. Variation of FPA values during climb-out phases 

 

 

Figure 6. Variation of WS values during climb-out phases 
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2.2. Methodology 

A powerful tool that can be thought of as a general regression model, GPR is used across a wide 

range of disciplines. In this paper, a Gaussian Process Regression (GPR) model is used for 

predicting the FFCO values. It is necessary to describe a regression model before explaining the 

Gaussian Process Regression. In regression, ith observation's (yi) output is considered to be a 

function of the variables (xi) input, plus some noise (Ԑi),  

 

𝑦𝑖 = 𝑓(𝑥𝑖) + Ԑ𝑖                                                                                                                                              (1) 

 

The input parameters and their corresponding given outputs are used to predict the basic regression 

function 𝑓(𝑥𝑖). After the regression model is created, a new output value is found that corresponds 

to a new input value. For this reason, regression models are used in many areas[21-23]. For the 

purposes of GPR, it is assumed that the regression function 𝑓(𝑥) is derived from a Gaussian 

Process (GP) with a zero mean function and the covariance/kernel function 𝑘(𝑥, 𝑥′), 

 

𝑓(𝑥)~𝐺𝑃(0, 𝑘(𝑥, 𝑥′))                                                                                                                                 (2) 

 

It is also considered that the noise Ԑ𝑖 has a Gaussian distribution. The function  𝑘(𝑥, 𝑥′) is known 

as a kernel function. The covariance between the regression model values 𝑓(𝑥) and 𝑓(𝑥′) at the 

two inputs 𝑥 and 𝑥′ is represented by this function. 

 

3. STATISTICAL PERFORMANCE METRICS 

The predicted values should be compared to the actual flight data in order to assess the 

performance of the GPR model. For the assessment, this paper applies three different statistical 

performance metrics[24-25]. Mean Absolute Error (MAE) indicator is generally employed to show 

the actual situations of the estimated errors. 

 

𝑀𝐴𝐸 =
1

𝑆
∑ |𝑧𝑖 − �̂�𝑖|

𝑆

𝑖=1

                                                                                                                                (3) 

 

where S represents the total number of estimations. The predicted values from the GPR model are 

denoted by �̂�𝒊, and 𝒛𝒊 stands for the actual values. The following indicators can also be described 

using these terms. 
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Another widely used indicator to show the difference between estimated and actual values is the 

Root Mean Square Error (RMSE). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑆
∑(𝑧𝑖 − �̂�𝑖)2

𝑆

𝑖=1

                                                                                                                        (4) 

 

Last important indicator used to predict actual values is Coefficient of Determination (R2). 

 

𝑅2 = 1 −
∑ (𝑧𝑖 − �̂�𝑖)2𝑆

𝑖=1

∑ (𝑧𝑖 − 𝑧̅)2𝑆
𝑖=1

                                                                                                                            (5) 

 

where �̅� is the mean of the actual values. 

 

4. RESULTS AND DISCUSSION 

The Boeing 737-800, a twin-engine, narrow body commercial airliner that is extensively used in 

the aviation sector, is chosen for this research. The actual flight data used in the study are obtained 

from the FDR data set. The GPR model is used to estimate the fuel consumption, which is only 

taken into account during the climb-out phase. In order to make an effective analysis and 

comparison, GW, ALT, FF, TAT, CAS, FPA and WS parameters are selected. As seen in Figure 

7, the values of FFCO are examined, and it is found that the minimum and maximum values of the 

of FFCO-F1, FFCO-F2, FFCO-F3, FFCO-F4, FFCO-F5, FFCO-F6, FFCO-F7, FFCO-F8, FFCO-

F9, and FFCO-F10 are 14688 and 16672 lb/h; 13120 and 15904 lb/h; 7680 and 20416 lb/h; 14336 

and 16800 lb/h; 14528 and 16512 lb/h; 10688 and 18176 lb/h; 13440 and 16224 lb/h; 9984 and 

16800lb/h; 14464 and16960 lb/h; 13248 and 15616 lb/h, respectively. The flight with the highest 

mean FFCO value is F1 flight. The mean value for FFCO-F1 is calculated to be 15472 lb/h. For 

all flights, variation values of FFCO versus time are given in Figure 8. When the Figure 8 is 

examined, it is seen that the fuel consumption approximately is high in the first 30 seconds, and 

this fuel consumption decreases rapidly in the other time intervals. The change in FFCO values of 

flights F3, F6, and F8 is greater than that of other flights. The main reason for these differences is 

the change in the throttle resolver angle. The flight with the highest mean FFCO value is F1 flight. 

The mean value for FFCO-F1 is calculated to be 15472 lb/h. 

 



Int J Energy Studies                                                                                                2022; 7(2): 179-194 

189 
 

 

Figure 7. The variation of the actual FFCO values during climb-out phases 

 

 

Figure 8. Variation of FFCO values during climb-out phases 
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The climb-out phase determined within the scope of this study is the phase up to 3000 feet above 

the altitude where the take-off phase ends. When the FDR dataset is examined, it is seen that FFCO 

values change depending on many parameters. In the GPR model, GW, ALT, TAT, CAS, FPA 

and WS are the independent variables, and FFCO is the dependent variable. For the climb-out 

phase, the variation between the estimated FFCO values and actual FFCO values is shown in 

Figure 9. The predicted response for the GPR model produces successful results. The residual 

values for the GPR model are demonstrated in Figure 10. The residuals values for the GPR model 

fluctuate between a minimum of -1952 lb/h to a maximum of 1567 lb/h. 

 

 

Figure 9. The predicted FFCO values against actual FFCO values  
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Figure 10. The distribution of prediction errors for GPR model 

 

Table 3. The results of the statistical tests and kernel function type. 

 

 

 

 

 

Finally, the regression model is evaluated using statistical tests in this study. For this purpose, 

different statistical tests, which have RMSE, MAE, and R2, are employed to show the performance 

of the GPR model. The performance and accuracy of the model increase as the RMSE and MAE 

values approach zero. In other words, these statistical tests values are asked to be low value in 

studies. Table 3 presents the results of the statistical tests and kernel function type. Considering 

the RMSE test for validation, it is seen that the RMSE value for the GPR is 209.41. MAE value 

for GPR is calculated to be 111.38. The R2 value of a model is close to one, which means that the 

model has a high performance. As can be seen from Table 3, R2 value of the GPR is 0.99. As 

apparent from the outcome of the statistical tests given in Table 3, GPR model exhibits great 

performance for the estimation of FFCO. 

 

5. CONCLUSIONS 

This research focuses on ten different flights performed by Boeing B737-800 twin-engined, 

medium-haul, narrow-bodied commercial aircraft. The FDR data sets from these flights are used 

to investigate fuel consumption during the climb-out phase. By utilizing these actual data sets, the 

 Statistical Test Kernel Function 

 RMSE 209.41  

Gaussian Process Regression R2 0.99 Squared Exponential 

 MAE 111.38  
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Gaussian Process Regression model is performed to estimate FFCO during climb-out phase. As a 

result of reviewing the literature, FFCO, GW, ALT, TAT, CAS, FPA, and WS are selected as 

model parameters. Within the scope of this study, the climb-out is phase examined. The main 

reason for choosing the climb-out phase is the high fuel consumption and the resulting increased 

emission values. Many statistical tests, that are RMSE, MAE, and R2, are utilized to illustrate the 

performance of the GPR model. When all statistical tests are examined, it is seen that the GPR 

model gives successful result. Thanks to this regression model created, the fuel consumption 

around the airports and the resulting emission values can be calculated accurately. This research 

has some limitations. Choosing the climb-out phase for the regression model is one of the 

limitations. Another important limitation is that six different independent variables are determined 

for the regression model. A few recommendations for the literature can be made in light of the 

limitations of the present study. Using different aircraft types and more real flight data, the fuel 

consumption in the climb-out phase can be estimated. 
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