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Abstract 

Regression analysis is used to analyze many cases in real life. The type of data 

obtained varies according to the type of cases and the variable to be studied. For 

example, in the most widely used linear regression analysis, the dependent variable 

must be continuous. Otherwise, the desired results will have a high standard error 

and will be inconsistent. Alternative regression techniques have been developed 

according to the types of dependent variable. Two of them are Poisson and Negative 

Binomial Regression, which are frequently used in case of discrete dependent 

variables. However, the fact that the dependent variable is discrete does not mean 

that correct results will be obtained by applying the aforementioned models. 

Because besides the type of dependent variable, the parameters of the relevant 

models have been developed and various sub-models have emerged according to its 

distribution and spread. In this study, a data set containing real data such as HDI, 

GDP and credit score, which has an crucially important place in the field of finance, 

was used and the results were compared and interpreted using AIC, RMSE and 

MAE metrics by applying Poisson, Negative Binomial Regression and their zero-

truncated models according to the characteristics of the data set. The empirical 

results can be interpreted as the negative binomial regression model gives better 

results when the dependent variable has insufficient distribution, but Poisson 

regression produces more meaningful results when the assumptions are at the limit. 

In addition, it was examined whether the number of zeros in the data set is sufficient 

to go to the Zero Truncated models. As a result, it has been revealed that the 

Negative Binomial distribution cannot always be used in cases where analysis will 

be made with Poisson regression, even though there is over- or under-distribution 

according to the assumptions. 
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1. INTRODUCTION 

Regression analysis is a statistical analysis method that has been used and studied for a long 

time, thanks to its consistency and easy interpretability. With the increase in the importance of 

data, the increase in access to information and data all over the sectors in the world, statistical 

analysis techniques, which have become more valuable due to the competitive environment, 

have started to be used with advanced estimators or reinterpreted with high-developed 

parameters. Others are being replaced by machine learning models that are more suitable for the 

real world and do not require assumptions. 

Classical linear regression analysis focuses on establishing a connection between the target 

variable and the features and revealing the properties of this connection. Here, the structure of 

the target variable is vital for choosing the right regression analysis. Because it is inevitable to 

obtain inconsistent, biased, ineffective and high standard error results as a result of wrong 

model selection, and there are many assumptions such as normality, homoscedasticity, 

multicollinearity and linearity that can hinder the analysis in classical linear regression analysis. 

Looking at real-life data, the most common type of response variable is the continuous variable. 

However, a lot of work has been done on data sets with discrete response variable. There are 

also target variables of the count data type, which is a subtype of the discrete type. Count data 

regression models can produce convincing results when the response variable is the number of 

times a case occurs. Some alternative models based on poisson and negative binomial 

distributions, which are more suitable for count data, have been proposed. 

Poisson regression (PR) and negative binomial regression (NBR) models are used in many 

fields such as management and organization, traffic, biology, finance, medicine, actuarial. 

However, even if the case of interest never happened, some problems occurred in the use of the 

regression methods in question and the desired consistent results could not be produced. The 

reason for this situation is that there is overdispersion in the data due to the large number of 

zeros and the variance grows. In such a case, classical PR and NBR models may not be 

sufficient for count data modeling. As an alternative, zero-truncated methods have been 

developed for this purpose. Zero-Truncated Poisson Regression (ZPR) and Zero-Truncated 

Negative Binomial Regression (ZNBR) have been proposed to deal with this problem in the 

presence of extreme zeros. 

 

 

2. LITERATURE REVIEW 

 

One of the most useful and easy methods in the analysis of count data is the Poisson 

Regression model, which is one of the generalized linear models. While constructing the 

Poisson regression model, the poisson distribution is used to determine the probabilities of the 

data. One of the important features of the distribution in question is that the mean of the result 

obtained is equal to its variance. However, it is observed that the variance exceeds the mean in 

the applications performed in general. This situation is defined as overdispersion. In these 

cases, negative binomial regression models work. (Kabacoff, 2015). The most important 
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difference between the classical regression model and the poisson regression model is that in 

the poisson distribution created for the dependent variable in the poisson regression model, the 

values consist of non-negative data. However, it fits a discrete distribution. 

Graff et al. (2020), created two different poisson regression models to predict the 

effectiveness of forest fires between one and five days. It has been observed that the created 

regression models give more accurate results than permanent models in predicting fires. 

Gao et al. (2021), in the study titled “Dispersion modeling of outstanding claims with double 

Poisson regression models”, it is aimed to develop a new distribution structure in the double 

Poisson chain ladder model by ignoring the existing limitations of the extremely dispersed 

Poisson chain-ladder models, which are frequently used for compensation provisions in 

insurance. It is concluded that the proposed method is much more flexible than the currently 

used methods. 

Benz et al. (2021), in the study titled "Estimating the change in soccer's home advantage 

during the Covid-19 pandemic using bivariate Poisson regression", it was investigated how the 

matches played without fans affect the home team in an environment where the home team has 

a great advantage in the matches played with spectators. For this purpose, bivariate Poisson 

regression models were used by taking data from 17 different leagues. As a result of the 

research, it is seen that the findings are mixed, the advantage disappears in some leagues, and 

the advantage increases in others. 

In the study titled "Households' Access to Communication and Information Technologies: A 

Poisson Regression Analysis" prepared by Ercan (2021), it is aimed to investigate the factors 

that will affect the number of information and communication technology tools in households 

with the Poisson regression model. In the study, it was concluded that factors such as the city of 

residence, the difficulty of accessing schools, income status, and the number of students affect 

the number of technological devices. 

Vicuña et al. (2021), in the study titled "Forecasting the 2020 COVID-19 Epidemic: A 

Multivariate Quasi-Poisson Regression to Model the Evolution of New Cases in Chile", it is 

aimed to analyze the situation of Covid-19 in Chile, to prevent its spread and to analyze the 

alternative ways that may be necessary in order to pass the process with the least possible 

damage. According to the results, the spread of the disease was expected to be higher, but 

contrary to expectations, it was seen that the rate of spread decreased in the future thanks to the 

quarantine policies implemented in the country. 

İşçi et al. (2021), in the study titled "Comparison of Some Count Models in Case of 

Excessive Zeros: An Application", it was stated that multi-zero poisson regression and poisson 

hurdle regression models were used in case the census data had multiple zeros, and negative 

binomial regression and negative binomial hurdle regression models were used in case of 

overdispersion. Comparisons of these models were made using a sample data set. 

Models except the classical models should be considered as powerful alternatives for 

modelling count and give better insights to the researchers in applying statistics on working 

similar data structures Yıldırım et al. (2022). 

There are cases where the dependent variable is discrete but not categorical. Such situations 
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are called count data. Count data is among the generalized linear models in practice. There are 

many models that give precise properties of counting results. However, the Poisson regression 

is considered the starting point for many analyzes. The Poisson regression model is the most 

commonly used and simplest method for counting data. In the Poisson regression model, the 

link function connecting the linear structure of the independent variables to the expected value 

of the dependent variable is logarithmic. With this model, the probability of counting is 

determined by the Poisson distribution. The most distinctive feature of the model is that the 

conditional mean of the result is equal to the conditional variance (Deniz, 2005). However, in 

practice, sometimes the conditional variance may exceed the conditional mean. 

In the Poisson distribution, when the variance is greater than the mean, it is called 

overdispersion, and when the variance is less than the mean, it is called underdispersion (Cox, 

1983). In the case of overdispersion in the dependent variable, two paths are generally 

followed. The first is by estimating a propagation parameter (α) with it the test statistics and 

correcting for the residuals. The second is the application of the negative binomial regression 

model, which is one of the methods that eliminates the effect of overdispersion (Hilbe 2007). In 

practice, we see that the negative binomial regression model is widely used, while the 

generalized Poisson regression model and the Poisson quasi-Lindley regression model are also 

used. In the data set, the goodness-of-fit statistic of deviance is widely used to determine 

whether there is overdispersion. 

Count regression models have been used in many fields from past to present. King (1988) 

analyzed the party change behavior of members of the House of Representatives in the United 

States between 1802 and 1876. The number of members of the House of Representatives who 

changed parties in a year was used as the independent variable. 

Michener and Tighe (1992) examined fatal accidents on highways in the United States. 

Using the Poisson regression model, Khalat et al. (1997) the differences in fertility levels in 

Beirut during the war, Burg et al. (1998) examined the rise of male and female academics in the 

academic labor market. 

Şahin (2002) applied Poisson regression for the determinants of strikes in Turkey for the 

1964-1998 period and Arısoy and Yaprak (2016) for the 1984-2015 period. Memiş and Önder 

(2018) compared artificial data with Poisson regression estimation methods. 

Data obtained by count generally do not show normal distribution and have a structure 

starting from 0 and consisting of positive values (Zorn, 1996; Cameron & Travedi, 1998). 

Since the dependent variable obtained based on the count does not show a normal 

distribution, applying linear regression to this type of data causes some statistical problems. The 

application of linear regression methods to such data may result in biased parameter estimates. 

The use of methods that do not destroy the original structure of the data eliminates this 

problem. The dependent variable obtained by count shows the Poisson distribution and Poisson 

regression is used in its modeling (Ridout et al., 1998). 

The most basic feature of the Poisson distribution is that the variance and the mean are 

equal. In practice, this feature is not always possible (Frome, 1983; Rose et al., 2006). When 

this equality is not achieved, there are two situations. These; If the variance is greater than the 
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mean, it is called overdispersion, and if the variance is less than the mean, it is called 

underdispersion (Banik & Kibria, 2008; Jansakul & Hinde, 2009). 

There may be various causes of overspread. Some of these are many zero values or 

unobserved heterogeneity (Rose et al., 2006). 

In case of overdispersion, applying Poisson regression leads to biased parameter estimates 

(Cox, 1983). To avoid this and to obtain more accurate results, negative binomial (Negative 

Binomial = NB) or generalized Poisson (Generalized Poisson = GP) regression is used (Sileshi, 

2008). 

While NB takes into account overdispersion, GP is an alternative method to Poisson 

regression that considers over- and under-dispersion. The existence of zero values in the 

dependent variable and the intensity of these zero values should be taken into account when 

modeling the dependent variable. If there is more zero density than expected in the dataset, this 

is called zero value weight (Zero Inflation=ZI) (Lachenbruch, 2002). In this case, it is 

recommended to use zero value-weighted regression models for modeling such dependent 

variables (Khoshgoftaar et al., 2005). In this case, the methods that can be used are zero-

weighted Poisson (Zero Inflated Poisson=ZIP), zero-weighted negative binomial (Zero Inflated 

Negative Binomial=ZINB) and Hurdle models (Cameron and Trivedi, 1998; Hall, 2000; 

Minami et al., 2007). 

In this study, Poisson regression, which is frequently preferred in cases where the dependent 

variable consists of count data, and negative binomial regression models, which are a 

generalization of Poisson models, and zero-truncated types of these models were applied. It has 

been tried to be explained in detail with an example set. Human Development Index and Credit 

Scoring, which are important macro indicators frequently used in finance, were included in the 

study as independent variables, and Gross Domestic Product as dependent variables. Model 

analyzes were made with the open-source Python program. AIC, RMSE, and MAE values for 

all models were obtained and interpreted. 

 

 

3. MATERIAL AND METHOD 

 

3.1.Poisson Distribution and Regression Model 

 

The Poisson distribution models the dependent count variable 𝑦 with the formula (Field, 

2009): 

         𝑒-𝜇 𝜇𝑦 

𝑃((𝑌 = 𝑦|𝜇) =                                              (3.2) 

            𝑦! 

 

where 𝜇 is the mean of the distribution and y is the counting variable expressing the 
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frequency or rate desired to occur (𝜇 > 0, 𝑦 = 0, 1, 2, … ). In log-linear versions of the model, 

the mean is shown as: 

            𝜇𝑖 = 𝑒𝑥𝑝(𝒙𝒊′𝛽𝑗) (3.2) 

  

 
 

      = 𝑒𝑥𝑝(𝑥1𝑖 𝛽1)𝑒𝑥𝑝(𝑥2𝑖 𝛽2) ⋯ 𝑒𝑥𝑝(𝑥𝑘𝑖𝛽𝑘 ) (2.3) 
 

As can be seen from Eq. (3.3), in Poisson regression, models are created with the assumption 

that 𝜇 parameter is determined by a series of 𝑥𝑖variables. Hence, the 𝜇 parameter can be 

represented as an exponential mean function: 

 

  𝐸(𝑦𝑖⁄𝑥𝑖) = 𝜇𝑖 = 𝑒𝑥𝑖𝛽𝑗 (3.4) 

  𝜇𝑖 = 𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘) (3.5) 

𝜇𝑖 = 𝜇(𝒙𝒊′𝛽) (3.6) 

 

Here, the regression coefficients 𝛽1, 𝛽2, ⋯, 𝛽𝑘 are unknown parameters to be estimated using 

the data set. If the natural logarithm of Eq. (3.2) is taken, a linear shape of the conditional mean 

according to the 𝑥𝑖variables is obtained. Although the dependent variable is a discrete random 

variable, Poisson regression models are nonlinear models due to their functional form as can be 

seen in Eq. (3.4). 

 

Regression coefficients are estimated using the maximum likelihood method. The logarithm 

of the likelihood function is (Field, 2009): 
   𝑛    𝑛  𝑛 

 𝑙𝑛[𝐿(𝑦, 𝛽)] = ∑ 𝑦𝑖 𝑙𝑛[𝜇(𝒙′𝛽)] − ∑ 𝜇(𝒙′𝛽) − ∑ 𝑙𝑛(𝑦𝑖 !) 
𝒊 𝒊 

    𝑖=1    𝑖=1   𝑖=1 

 

(3.7) 

 

With the solution obtained by taking the differential of Eq. (3.7) with respect to the 𝛽 

parameter, the Poisson maximum likelihood estimators �̂�𝒊  are calculated using the following 

equation: 
𝑛 

∑(𝑦𝑖 − 𝑒𝑥𝑝(𝒙′𝛽))𝑥𝑖 = 0 

𝒊 

𝑖=1 

(3.8) 

 

Likelihood equations are created by taking derivatives according to each regression 

coefficient and equating the result to zero. Doing so leads to the emergence of a set of nonlinear 

equations that accept no closed form solution. For this reason, iterative algorithms such as 

Newton-Raphson are used to find regression coefficients that maximize likelihood. It is seen that 

Fisher iteration method is used frequently in the literature. 

One of the consequences of not finding an analytical solution for  �̂�  is the difficulty of 

obtaining exact distribution results for �̂�  estimators. There are several ways to infer for �̂�.  First, 
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consider �̂�  as the estimator that maximizes Eq. (3.7) and maximum likelihood theory should be 

applied. Second, the estimator �̂�  must be considered as defined by Eq. (3.8). These equations 

have a similar interpretation to Ordinary Least Squares (OLS) estimators. Therefore, the 

unweighted residuals (𝑦𝑖 − 𝜇𝑖) are orthogonal to the estimators. Therefore, as for OLS, it is 

possible to perform the inference only under assumptions about the mean and possibly variance. 

This is a generalized linear models approach. Third, since Eq. (3.6) implies the equation 

𝐸(𝑦𝑖 − 𝑒𝑥𝑝(𝒙′𝛽))𝑥𝑖 = 0, an estimator can be defined that is the solution of the moment condition 

in the sample. This estimator is also the solution of Eq. (3.8). This approach is the moment-

based models approach (Cameron and Trivedi, 2013:23). 

 

3.2.Negative Binomial Regression Model 

 

The Poisson regression model is used when the mean of the distribution is equal to its 

variance. However, this situation is rarely encountered in practice. Negative Binomial 

regression model is used, which ensures the efficiency of parameter estimations, as a result of 

overdispersion when the variance of the distribution is greater than the mean of the distribution 

(Agresti, 2007: 81). Counting variables in applications do not show normal distribution, as they 

usually have variance greater or less than the mean. In such cases, Negative Binomial 

regression should be applied instead of Poisson regression model or test statistics and residuals 

should be corrected with the spread parameter. Negative Binomial regression is a generalization 

of Poisson's regression, in which the variance is equal to the mean calculated by the Poisson 

model, loosening the constraining assumption. This model is based on a Poisson-Gamma mixed 

distribution. For the Negative Binomial model, the variance is given by Eq. (3.9). 

 

𝑟𝑠 = 1 −
6∑ 𝑑𝑖

2
𝑛

𝑖=0

𝑛(𝑛2−1)
                 (3.9) 

 

According to this model, the Negative Binomial regression model is expressed as in Eq. 

(3.10). 

 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖)=𝜆𝑖 + 𝛼𝜆𝑖2            (3.10) 

 

In this model, 𝛽1,𝛽2,…,𝛽𝑘 represent unknown parameters. 

 

𝜆𝑖=exp(ln(𝑡𝑖)𝛽1𝑖𝑥1𝑖+𝛽2𝑖𝑥2𝑖,…,𝛽𝑘𝑖𝑥𝑘𝑖)          (3.11) 
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3.3.Akaike Information Criterion 

 

 

The criterion proposed by Akaike and widely used in comparing different models is defined 

as the Akaike information criterion. Akaike information criterion is expressed as; 

 

𝐴𝐼𝐶 =  2𝑘 − 2𝑙n(L)                           (3.12) 

  

In this equation, L is the maximum value of the log likelihood function; k represents the 

number of explanatory variables. Among the existing models, the model with the smallest 

AIC value calculated by Eq. (3.12) is selected as the appropriate model (Akaike, 1973). 

 

 

4. FINDINGS AND DISCUSSION 

 

In this study, it is aimed to examine the factors affecting the 2011-2020 volatility of GDP 

through counting models. In the study, the data set was obtained by taking the GDP average of 

the years in question and counting the years that were 10% below and above the average. As 

the attributes affecting this variable, the scores given to the countries by the Fitch Credit Rating 

Agency in the same years and the human development index (HDI) of the countries were used. 

While creating the dataset, 10 data of 90 countries between the years 2011-2020 were used for 

this purpose. AIC, RMSE and MAE metrics of Poisson Regression, Negative Binomial 

Regression, Zero Truncated Poisson Regression and Zero Truncated Negative Binomial 

Regression models were compared. Generalized linear models were used in Poisson and 

Negative Binomial Regression analysis. 

 

Fitch Credit Rating denotes credit scores in letters. Credit scores have numerical equivalents 

in the literature (Genc and Basar, 2019). In Table 1, their equivalents transformed to numerical 

data are given. 

 

Table 1. Credit Scoring Transformation Table 

Credit Ratings 

      
TE S&P Moody's Fitch DBRS Description 

100 AAA Aaa AAA AAA Prime 

95 AA+ Aa1 AA+ AA (high) High grade 

90 AA Aa2 AA AA 

85 AA- Aa3 AA- AA (low) 
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80 A+ A1 A+ A (high) Upper medium grade 

75 A A2 A A 

70 A- A3 A- A (low) 

65 BBB+ Baa1 BBB+ BBB (high) Lower medium grade 

60 BBB Baa2 BBB BBB 

55 BBB- Baa3 BBB- BBB (low) 

50 BB+ Ba1 BB+ BB (high) Non-investment grade 

45 BB Ba2 BB BB speculative 

40 BB- Ba3 BB- BB (low)   

35 B+ B1 B+ B (high) Highly speculative 

30 B B2 B B 

25 B- B3 B- B (low) 

20 CCC+ Caa1 CCC CCC (high) Substantial risks 

15 CCC Caa2 CCC Extremely speculative 

10 CCC- Caa3 CCC (low) In default with little 

5 CC Ca CC prospect for recovery 

5 C C C   

0 D / DDD D In default 

/ DD   

  D   

  RD   

  WD     

 

 

The histogram graph of the GDP deviation numbers, which is the dependent variable, is 

given in the Figure 1. 
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Figure 1. Count of Deviance Frequencies 

 

Frequencies, Relative Frequencies and Poisson probability values for GDP deviation are 

given in the Table 2. 

 

 

Table 2. GDP Deviance Frequencies Values 

 

GDP 

Deviation 

X=x 

Frequency 

fx 
xfx 

Relative 

Frequency 

   fx/n 

ʎ=Weighted 

Mean 

Poisson 

Probability 

0 28 0 0.31 2.37 0.094 

1 17 17 0.19 2.37 0.222 

2 9 18 0.10 2.37 0.263 

3 9 27 0.10 2.37 0.207 

4 8 32 0.09 2.37 0.123 

5 7 35 0.08 2.37 0.058 

6 4 24 0.04 2.37 0.023 

7 5 35 0.06 2.37 0.008 

8 2 16 0.02 2.37 0.002 

9 1 9 0.01 2.37 0.001 

Toplam 90 213 1.000   0.99982 
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One of the variables affecting the GDP deviation is the credit score variable. Figure 2 shows 

the average credit scores for each category of GDP deviations of 90 countries between 2011 

and 2020. 

 

 

 
 

Figure 2. Average Credit Scores for each Category of GDP Deviations 

 

The other variable affecting the GDP deviation is the Human Development Index variable. 

Figure 3 shows the average HDI for each category of GDP deviations of 90 countries between 

2011 and 2020. 

 

 

 

Figure 3. Average HDI for each Category of GDP Deviations 
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Table 3. Descriptive Statistics 

 

  
Count of GDP 

Deviance 
Human Development Index Credit Score 

count 90.00 90.00 90.00 

mean 2.36 77.32 68.44 

std 2.44 13.42 23.29 

min 0.00 50.00 20.00 

25% 0.00 66.00 50.00 

50% 1.50 79.50 75.00 

75% 4.00 90.00 88.75 

max 9.00 95.00 100.00 

 

Although the mean of the dependent variable for the data used in the study is smaller than 

the variance, since the difference is very small, the difference can be neglected and the analysis 

can be continued with the assumption of equality. In this case, it is expected that the metrics of 

Poisson distribution will give better results in the Negative Binomial distribution as explained 

above. (2.36 <= 2.44). The reason for this situation is the absence of underdispersion or 

overdispersion in the data. In addition, although the number of zero values is higher than the 

other values, it is not known whether it requires the use of zero truncated models due to the low 

difference. For this reason, the analysis was performed with zero-truncated models of the 

poisson and negative binomial, and the results are given in Table 4. 

 

Table 4. Comparison of Model Metrics 

 

 
POISSON NEGATIVE BINOMIAL ZIP ZINB 

AIC 288.49 290.83 304.39 299.53 

RMSE 1.69 1.76 1.56 2.14 

MAE 1.17 1.21 1.07 1.30 

 

As can be seen in the Table 4, Poisson and Negative Binomial Regression according to the 

AIC criterion are the most suitable models for this data set. On the other hand, when looking at 

RMSE and MAE, models with low error are Poisson and Zero Truncated Poisson. So, there is 

no case of under- or over-dispersion in the data because the metrics of the Negative Binomial 
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Regression model were high. Therefore, if the mean and variance are very close to each other, 

the analysis can be continued without any dispersion problem and equality. Also, the Zero 

Truncated models do not give high accuracy predictions based on the results of the AIC 

measurement metric. This situation can be interpreted as follows; The number of zeros in the 

data set in the study is not large enough to require the application of Zero Truncated models. 

In Figure 4, Figure 5, Figure 6 and Figure 7, there are the measurement results and 

prediction graphs of the compared models. 

 

 

 

 
 

Figure 4. Poisson Model Prediction Graph and Model Metrics 
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Figure 5. Negative Binomial Model Prediction Graph and Model Metrics 

 

 

 

Figure 6. Zero Truncated Poisson Model Prediction Graph and Model Metrics 
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Figure 7. Zero Truncated Negative Binomial Model Prediction Graph and Model Metrics 

 

5. RECOMMENDATION AND FUTURE STUDIES 

 

If the dependent variable is discrete or count data, analyzes using linear regression models 

will yield inconsistent and highly erroneous results. Therefore, alternative regression models 

are used for count data. The most well-known among them are Poisson and negative binomial 

regression models. The most important condition for using the Poisson model is that the 

conditional variance value is equal to the conditional mean value. This is rare in practice. In 

many applications, the conditional variance value exceeds the conditional mean value. In such 

cases it is not correct to use Poisson regression. When such an overdispersion (or 

underdispersion) occurs, negative binomial regression should be applied or corrected by test 

statistics and residuals dispersion parameter. In a negative binomial distribution, the variance is 

assumed to be a square function of the mean. This statement is one of the most important 

assumptions for the elimination of overdispersion. 

The results obtained from the analyzes and the issues that can be focused on in future studies 

are given below: 

• For the data used in the study, the mean of the dependent variable was smaller than the 

variance (2.36 < 2.44), but since there was little difference, the analyzes applied in both cases 

were applied in order to talk about any dispersion problem, and as a result, the difference was 

due to better Poisson Regression measurement results. It can be said that the variance is equal 

to the mean. 

• According to AIC metric results; Poisson Regression gave the lowest value. This means 

that the multiplicity of zero values in the data is insufficient to apply the Zero Truncated 

Poisson model. In addition, it has been understood that it is not necessary to apply the Negative 

Binomial model, which is applied when there is a dispersion problem. 

• According to RMSE and MAE metric results; It has been observed that Poisson models 

make less erroneous predictions than Negative Binomial Models. This once again confirms that 
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there is no dispersion problem. 

• In this study conducted with GDP deviation numbers, the variable of credit score was 

found to be significant in Poisson regression and Negative Binomial regression models, while 

the variable of HDI was found to be insignificant. However, in the Zero Truncated models, both 

of the independent variables were found to be insignificant. This can once again be interpreted 

as the number of zeros being insufficient to go for Zero Truncated models. 

• Based on these comments, it can be said that which model will be preferred and which 

metrics will give more meaningful results in studies where mean and variance are not equal but 

very close to each other as a subject that can be focused on for future studies. 

• In addition, in the literature, there is not a clear statement about how many zeros should be 

present in the data set, either numerically or as a percentage, in order to be able to apply Zero 

Truncated models. Future studies can be conducted with a data set suitable for this subject. 
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