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Abstract 

This study aims to transform the calculated item difficulty statistics according to Classical Test Theory (CTT) into 

the item difficulty parameter of Item Response Theory (IRT) by utilizing the normal distribution curve and to 

analyze the effectiveness of this transformation based on Rasch model. In this regard, 36 different data sets created 

with catR package were studied. For each data set, item difficulty parameters and transformed item difficulty 

parameters were calculated and the correlation coefficients between these parameters were analyzed. Then, 

Computerized Adaptive Test (CAT) simulations were performed using these parameters. According to the 

simulation results, the correlation coefficients between the estimated theta values with both methods were high. 

Furthermore, in CAT simulations in which both parameters were used, especially in the samples which were over 

250, it was found to have similar bias, RMSE values, and the average number of administered items. 

Keywords: Item difficulty, classical test theory, item response theory, Rasch model 

 

Introduction 

A measurement tool can be developed based on Classical Test Theory (CTT) or Item Response Theory 

(IRT) (de Ayala, 2009). Tests are easy to develop under the CTT, yet it has some limitations. For 

example, a single standard error value for the entire test score can be calculated by using CTT; the item 

statistics depend on the examinees, and the true score estimates are based on the item set (Hambleton & 

Swaminathan, 1985). The studies show that an item that should be removed from the test according to 

CTT should also be taken out of the test according to IRT, which reveals the fact that CTT and IRT 

estimates are similar when deciding whether an item is good or bad (Çelen & Aybek, 2013). On the 

other hand, IRT comes to the fore for studies such as Computerized Adaptive Test (CAT), test equation 

and linking, and Differential Item Functioning (DIF), but loses its practicality for classroom assessment. 

IRT models can be classified in different ways according to the dimension that is measured and the 

number of response categories. In addition to unidimensional IRT models in which an item measures 

one single dimension, there are also multidimensional IRT models in which an item can measure 

multiple dimensions (Reckase, 2009). In addition, there are some models such as Rasch, 1 Parameter 

Logistic (1PL), 2PL, 3PL, and 4PL models for dichotomous items (Hambleton et al., 1991); Nominal 

Response Model (NRM) (Bock, 1972); Partial Credit Model (PCM) (Masters, 1982); Generalized 

Partial Credit Model (GPCM) (Muraki, 1992); and Graded Response Model (GRM) for polytomous 

items (Samejima, 1996).  

In the Rasch model, the probability of responding to an item correctly depends only on the item 

difficulty, b, parameter of that item, while the item discrimination, a, parameter is considered to be 1.00 

for all the items. The Rasch and 1PL models are similar in that item discrimination is considered the 
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same for all items; however, a parameter can take different values than 1.00 in 1PL model (de Ayala, 

2009).  

According to the Rasch model, the probability for an individual with a given (θ) ability level to respond 

correctly to an item whose difficulty parameter is b is calculated with the equation below (1) (Rasch, 

1961): 

 

𝑝(𝜃) =  
𝑒(𝜃−𝑏)

1+ 𝑒(𝜃−𝑏)   (1) 

 

The b parameter represents item difficulty and refers to the θ level at which the item is correctly 

answered with 50% probability. Although the theoretical limits for θ are between  

(-∞, ∞), they usually work within ranges such as [-3, 3] or [-4, 4]. When Equation 1 is applied, the 

probability of responding to an item correctly with b = 0.00 for all θ levels within the range  

[-3, 3] with an increment of 0.01 creates a curve as shown in Figure 1, and this curve is called the item 

characteristic curve. 

When Equation 1 and Figure 1 are analyzed, another superiority of IRT can be recognized. Item 

parameters and the examinee’s ability level are described on the same scale. As stated earlier, the b 

parameter for the item shown in Figure 1 is 0.00, which means that an examinee whose θ level is 0.00 

responds to this item correctly with a probability of %50. In addition, when Figure 1 is carefully 

analyzed, it can be recognized that, as the θ level decreases, the probability of responding to an item 

correctly also decreases, and as it increases, the probability of responding to the item correctly increases, 

as well. In this context, the b parameter has similar limits as θ. 

 

Figure 1.  

A sample item characteristic curve for b=0 parameter in Rasch model 
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On the other hand, normal distribution is described as “a theoretical distribution for a continuous 

variable measured for an infinite population” (Crocker & Algina, 1986, p.24) and defined using the 

Equation 2 (Pitman, 1993): 

𝑌 =  
1

√2𝜋𝜎
𝑒−

1

2
𝑧2

   (2) 

 

In this Equation, z stands for the standard z score and is obtained as  𝑧 = (𝑥 −  𝜇)/𝜎 In addition, the 

area under the normal distribution curve can be obtained approximately by Equation 3 (Pitman, 1993):  

 

𝜙(𝑧)  ≈ 1 −
1

2
(1 + 𝑐1𝑧 + 𝑐2𝑧2 + 𝑐3𝑧3 + 𝑐4𝑧4)−4    (𝑧 ≥ 0)  (3) 

 

c values in this equation as follows: c1 = 0.196854, c2 = 0.115194, c3 = 0.000344, and c4 = 0.019527. 

When z is below 0, 𝜙(−𝑧) = 1 −  𝜙(𝑧) relation can be used by utilizing the symmetric characteristic 

of normal distribution curve. Accordingly, when the Equation 3 is used, the area under normal 

distribution curve for z = 1 constitutes approximately %84,3 of the whole area. Based on all this 

information, a normal distribution curve and the area under the normal distribution curve are given in 

Figure 2. 

 

Figure 2.  

Normal distribution curve and the area under the normal distribution curve  

 

 

The right side of Figure 2 shows the area under the normal distribution curve for different z scores. 

When this plot is analysed, its similarity with the item characteristic curve in Figure 1 is significant. 

Therefore, is it possible to interpret that an item with b = 0.00 is responded correctly by half of the group 

(p = 0.50 according to CTT) and an item with b = 1.50 is responded correctly by %6.5 (p = 0.065 

according to CTT) of the group? Both cases are shown in Figure 3. 
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Figure 3.  

Two sample b parameters on the normal distribution curve 

 

 

As shown in the graphic in Figure 2, the view that the normal distribution curve can be used for an IRT-

based conversion is not unrealistic. In fact, Lord (1980) focuses on the relation between CTT and IRT 

and he indicates that “We can see from the figure that the item response function … is equal to a 

standardized normal curve area” (p.31), and also adds that this approximation is “not for practical use 

but rather to give an idea of the nature of the item discrimination parameter” (p.33-34). Lord (1980) 

also describes the relationship between CTT item difficulty and discrimination statistics and IRT a and 

b parameters with mathematical proving. When all the items have the same discrimination (e.g., Rasch 

model), bj ≈ 𝜙𝑗 while bj represents the IRT item difficulty parameter for item j and 𝜙𝑗 represents the 

area under the normal distribution curve at the point of CTT item difficulty statistics, pj. On the other 

hand, if the items have different item discrimination, then bj ≈ 𝜙𝑗 / 𝑟𝑗𝑥 while rjx represents the item-total 

biserial correlation or CTT item discrimination statistics. Lord (1980) also describes the relationship 

between IRT a parameter and CTT item discrimination statistics rj as in Equation 4: 

 

𝑎𝑗 =
𝑟𝑗𝑥

√1 − 𝑟𝑗𝑥
2

                          (4) 

 

In addition to that, even the equation of the area under the normal distribution curve looks very 

complicated, a simple function (e.g., NORM.DIST) in a spreadsheet software (Microsoft Excel, 

LibreOffice Calc, Google Sheet, etc.) can make the calculations. 

Recent studies that support this perspective can be found in the literature. Kohli et.al. (2014) discussed 

the comparability of CTT and IRT based item parameters with underlying normal variable assumption. 

They found extremely high correlations between IRT and CTT based parameters, and these correlations 

are affected more by sample size rather than item pool size. Raykov and Marcoulides (2016) also shows 

the relationship and equivalence of CTT & IRT. They also recommend researchers combine the benefits 

of both test theories. A recent study by van der Ark and Smits (2023) suggests a new CAT method 

without using IRT, and they call it FlexCAT. Yet, their method is based on Latent Class Analysis (LCA), 

and it is still not very feasible for non-technical researchers. 
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Beyond the relationship between CTT and IRT in the manner of item parameters, how practical is the 

CTT to IRT transformation using this relationship for CAT applications? Due to the nature of CAT, we 

can estimate the trait level of the examinee with items that give more information about the examinee. 

In a typical CAT application, the next item to administer is selected based on the previous responses of 

the examinee, and the trait level can be estimated with much fewer items in contrast to conventional 

linear tests. This feature of the CAT makes it more convenient to schedule the test-taking time and place 

since not every examinee takes the same item set (van der Linden & Glas, 2002). Since CAT applications 

need a calibrated item bank, and the calibration process needs a large sample size, developing an item 

bank is not very feasible for a small-scale application. IRT calibration also needs expertise and cannot 

easily be implemented in the testing process for unfamiliar researchers to the IRT. The conversion of 

the item difficulty from CTT to IRT using the normal distribution curve mention above has potential for 

not only the development of CAT forms but also other applications based on IRT. 

In this context, the research aims to evaluate the effectiveness of the transformation from the CTT-based 

p statistic to IRT-based b parameter using the normal distribution curve in terms of a CAT simulation. 

And due to fact that the focus of this study is on converting CTT item difficulty statistic to the b 

parameter, the present study is limited with the Rasch model since all the parameters but b are constant. 

 

Methods 

Data 

In R (R Core Team, 2020), using the genDichoMatrix function of the catR package (Magis & Barrada, 

2017; Magis & Raiche, 2012), 10, 50, 100, 250, 500 and 1000-item pools were created sequentially. The 

item pool was created according to the Rasch model, accordingly, the item discrimination parameter a 

was accepted as a = 1.00, the pseudo-guessing parameter as c = 0.00, and the asymptote parameter as 

d = 1.00. Therefore, only b parameters were generated using genDichoMatrix. Then, 10, 50, 100, 250, 

500, and 1000 response patterns were generated for each item pool using the genPattern function 

included in the catR package. Therefore, 36 different response patterns have been studied, including a 

total of six item pools and six response patterns for each item pool. The rationale behind choosing these 

conditions, is due to test the performance of the conversion on the data from different sample sizes and 

item pools. For instance, a teacher may want to convert the item statistics calculated from the data 

obtained from a classroom as small as 10 and item pool as small as 10. But it is also important to see 

the performance of the conversion from the data from a larger sample and item pool. While generating 

response patterns, theta values and item parameters in the item pool were used. Theta values were 

obtained from a normal distribution whose mean score is 0 and standard deviation is 1. 

 

Data Analysis  

Since item parameters were generated according to IRT, item difficulties were first obtained according 

to classical test theory for data analysis. In this regard, item difficulty values were calculated by finding 

the means of each item in 36 response patterns. Then, those item difficulties were converted to standard 

z score using the following function below, and these scores were accepted as b parameter according to 

IRT. The item difficulty parameters obtained according to classical test theory are demonstrated with p; 

item difficulty parameters converted from classical test theory to item response theory with bp, and the 

item difficulty parameters obtained according to the item response theory were indicated with b. The 

following function is used to obtain bp: 

 

𝑏𝑝  =  0 –  𝑞𝑛𝑜𝑟𝑚(𝑐𝑜𝑙𝑀𝑒𝑎𝑛𝑠(𝑣𝑎𝑟))   (4) 
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This function simply takes the p parameter as a percentage of the area under normal distribution and the 

z value corresponding to the percentage indicated by the p parameter as the b parameter according to 

IRT. In this function, colMeans (var) calculates the means of columns. In other words, the item difficulty 

value of each item is calculated. For example, in this function, if 0.065 is used instead of colMeans (var), 

1.51 is obtained, and this value is in accordance with the example given after the Equation 4. Similarly, 

when 0.50 is written instead of colMeans (var), the function gives the output as 0. In other words, for  

p = 0.50, bp = 0 is obtained. 

Following the parameter transformations, b, p, and bp parameters were obtained sequentiallyly, for each 

response pattern. At this stage, Inf and -Inf values were obtained during the bp conversion, especially 

when the sample size was 10. To avoid errors in simulations, Inf  values were changed into 6 while -Inf  

values were changed into -6.  

A CAT simulation was conducted with both b and bp parameters. In the simulation, Maximum a 

Posteriori (MAP) was used as an ability estimation method and Maximum Fisher Information (MFI) as 

item selection method. In the first item selection, theta was assumed as 0.00 and the simulation was 

terminated when the standard error value was below .40. The simulations were carried out via the 

simulateRespondents function included in the catR package. 

According to the simulation results, when b and bp were used, the average number of items used in the 

simulation, the correlation coefficients between the full-item estimated theta and theta levels estimated 

by CAT, and bias and RMSE values were compared and the seed value set as 26 for the item and 

response generation, and CAT simulations. 

 

Results 

According to the results of a total of 72 CAT simulations using the b and bp parameters for a total of 36 

data sets, correlations between theta values estimated using b and bp parameters are shown in Figure 4. 

 

Figure 4.  

Correlation coefficients between theta levels estimated from CAT simulations using b and bp 
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Figure 4 shows that the correlation coefficients were above .80 for almost all cases. When the item pool 

size was 10, the correlation coefficients for all sample sizes were close to 1.00. This is because the 

simulation cannot reach the .40 standard error used for the termination rule below 10 items. While the 

highest correlation coefficient was obtained with a pool of 50 items, other item pools were found to have 

around .85 correlation coefficients, especially in samples of 50 respondents and above. This indicates 

that the IRT-based b parameter or CTT-based bp parameter can perform similar theta estimation in CAT 

simulation. 

The bias values of theta estimates were analyzed for both b and bp, and the values obtained for all item 

pools and sample sizes are presented in Figure 5. For clarity, bias values are analyzed as absolute values. 

 

Figure 5. 

Bias values from CAT simulations using b and bp  

 

Although it is seen that both methods have high bias values in small sample sizes, it is understood that 

the IRT-based parameter estimates with lower bias. Especially when the sample size is 250 and above, 

the bias value approximates to zero for the theta levels estimated by IRT-based parameters. A decrease 

in bias value because the sample size increased was also observed in the difficulty parameter obtained 

by CTT conversion. Similarly, when the sample size is 250 and above, the bias value drops below 0.05. 

RMSE values of ability estimates were also analyzed for the whole item pool and sample sizes (see the 

plots in Figure 6). 

 

Figure 6.  

RMSE values from CAT simulations using b and bp  
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When RMSE values are analyzed, it is seen that, similar to bias, RMSE values of the ability level 

estimated by IRT-based difficulty parameter are lower. However, in cases where the sample size is 250 

and above, it is seen that the RMSE value goes below .50 in both methods. 

The correlation coefficients between the ability levels estimated by CAT simulations using both b and 

bp parameters and the ability levels estimated from all items were analyzed and shown in Figure 7. 

Figure 7 shows that the CAT simulations using IRT-based b and bp converted from CTT have similar 

correlation coefficients between full-theta estimates and CAT estimates. Although the correlation 

coefficients obtained for 10 respondents vary according to the item pool sizes, it is seen that the 

correlation coefficients between all theta and estimated theta values with the sample sizes above 50 are 

around .90. 

 

Figure 7.  

Correlation coefficients between CAT simulations using b and bp and theta levels estimated from all 

items 

 

 

The average numbers of items in which CAT simulations are terminated for both parameters are given 

in Figure 8. 

 

Figure 8.  

Average numbers of items in which CAT simulations are terminated using b and bp parameters  
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It is seen in Figure 8 that in the CAT simulation using the b parameter, the entire item pool is 

used when the item pool size is 10. On the other hand, in cases where the item pool size is 100 

and above, it is seen that the simulation terminates with a similar number of items for both b 

and bp parameters. 

 

Discussion 

This study aims to investigate the effectiveness of transforming CTT-based p statistic into IRT-

based b parameter by utilizing the area under the normal distribution curve in the manner of 

CAT simulation.  

It is seen that the converted bp parameter has a higher bias and RMSE value than the b parameter 

in CAT simulation. However, it was found that bias and RMSE values in the simulations using 

bp also decreased, especially when the sample size was 250 and above. On the other hand, while 

the correlation coefficients between the estimates were found to be around .85, the correlation 

coefficients between the ability levels estimated by CAT and the ability levels estimated from 

all items were found to be around .90 when both b and bp parameters were used. In both cases, 

the simulation terminated with less than 10 items. 

All these findings reveal the potential of bp converted from CTT into IRT in IRT-based studies 

and supported by previous studies (Kohli et al. 2014; Raykov & Marcoulides, 2016). Simulation 

results are more effected by sample size rather than item pool size (except item size was 10) 

which is matched with the Kohli, Koran, & Henn (2014). Although the findings show that the 

bp parameter is not as effective as the b parameter, the similarity of CAT simulation results is 

promising. Especially due to COVID-19 pandemic, the practicality of measurement and 

assessment processes in distance education has become even more important. In this process, 

tailored test solutions such as CAT are beyond being available to educators who are not 

particularly familiar with IRT. 

In this context, it is expected that CAT applications can be developed by easily converting 

parameters from CTT to IRT with the proposed conversion. Practically, a teacher who applied 

a test to 250 students can convert the p statistic to b parameter and use the items in a CAT form. 

In addition to that, converted b parameters can be used to kickstart an operational CAT 

application, then make the IRT based calibrations as data grows. On the other hand, the data 

used in the research were produced in accordance with IRT assumptions with catR package. 

Investigating the performance of the bp parameter where IRT assumptions are not met, as well 

as applying real data-based post-hoc CAT simulations, will provide a deeper understanding to 

see how effective the transformation is. In addition, the transformation applied in the research 

assumed that student ability is normally distributed. Further studies are required to be conducted 

on how violating this assumption may affect the bp parameter and the results of the analysis. 

 

Acknowledgement 

This study is supported by Pamukkale University Scientific Research Projects Committee. 

Project No: 2021BSP008. The preliminary results of this study were presented in IACAT 2022, 

Frankfurt, Germany. 

 

 



Aybek, E. C./The Relation of Item Difficulty Between Classical Test Theory and Item Response Theory: 

Computerized Adaptive Test Perspective         

__________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575 Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 

Journal of Measurement and Evaluation in Education and Psychology 

 

127 

Declarations 

Conflict of Interest: No potential conflict of interest was reported by the author. 

Ethical Approval: The data was simulated; thus ethical approval is not required. 

 

References 

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or 

more nominal categories. Psychometrika, 37(1), 29-51. https://doi.org/10.1007/BF02291411  

Crocker, L., & Algina, J. (1986). Introduction to Classical and Modern Test Theory. Cengage Learning. 

Çelen, Ü., & Aybek, E. C. (2013). Öğrenci başarısının öğretmen yapımı bir test ile klasik test kuramı ve 

madde tepki kuramı yöntemleriyle elde edilen puanlara göre karşılaştırılması. Journal of 

Measurement and Evaluation in Education and Psychology, 4(2), 64-75.  

https://dergipark.org.tr/tr/pub/epod/issue/5800/77213 

De Ayala, R.J. (2009). The theory and practice of item response theory. The Guilford Press. 

Hambleton, R., & Swaminathan, R. (1985). Fundementals of Item Response Theory. Sage Pub. 

Hambleton, R., Swaminathan, R., & Rogers, H.J. (1991). Fundementals of Item Response Theory. Sage 

Pub. 

Kohli, N., Koran, J., & Henn, L. (2015). Relationships among classical test theory and item response 

theory frameworks via factor analytic models. Educational and psychological measurement, 

75(3), 389–405. https://doi.org/10.1177/0013164414559071  

Lord, F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Routledge.  

Magis, D. & Barrada, J.R. (2017). Computerized adaptive testing with R: Recent updates of the package 

catR. Journal of Statistical Software, Code Snippets, 76(1), 1-19. 

https://doi.org/10.18637/jss.v076.c01  

Magis, D. & Raiche, G. (2012). Random generation of response patterns under computerized adaptive 

testing with the R package catR. Journal of Statistical Software, 48(8), 1-31. 

https://doi.org/10.18637/jss.v048.i08  

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174. 

https://doi.org/10.1007/BF02296272  

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. ETS Research 

Report Series, 1992(1), i-30. https://doi.org/10.1002/j.2333-8504.1992.tb01436.x  

Pitman, J. (1993). Probability (6th Edition). Springer. 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing. Vienna, Austria. URL https://www.R-project.org/. 

Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the 

Fourth Berkeley Symposium on Mathematical Statistics and Probability (pp. 321-333). 

University of California Press. 

Raykov, T., & Marcoulides, G. A. (2016). On the relationship between classical test theory and item 

response theory: From one to the other and back. Educational and psychological measurement, 

76(2), 325–338. https://doi.org/10.1177/0013164415576958   

Reckase, D. (2009). Multidimensional Item Response Theory. Springer. 

Samejima, F. (1996). Polychotomous responses and the test score. The University of Tennessee. 

van der Linden, W. J. & Glas, G.A.W. (2022). Computerized Adaptive Testing: Theory and Practice. 

Kluwer Academic Publishers. 

https://doi.org/10.1007/BF02291411
https://dergipark.org.tr/tr/pub/epod/issue/5800/77213
https://doi.org/10.1177/0013164414559071
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v048.i08
https://doi.org/10.1007/BF02296272
https://doi.org/10.1002/j.2333-8504.1992.tb01436.x
https://www.r-project.org/
https://doi.org/10.1177/0013164415576958

