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ABSTRACT 
 

In this paper, a highly accurate method is introduced to achieve the numerical solution of the advection diffusion equation 

(ADE). This approach contains collocation technique based on nonic B-spline functions in the spatial-domain discretization 

and Adams Moulton scheme in the temporal-domain discretization. Two test problems are studied to validate effectiveness of 

the new presented method and efficiency of the approximate results are tested by calculating rate of temporal-convergence and 

error norm 𝐿∞ for the suggested method. The obtained numerical results are compared in the tables by the other available 

studies in literature and it is observed that a better approximate solution is provided than the existing methods. 
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1. INTRODUCTION 
 

ADE used to model a lot of real problems in physics and engineering is expressed in the following form:  

 

𝑤𝑡 + 𝛼𝑤𝑥 − 𝜇𝑤𝑥𝑥 = 0, 0 ≤ 𝑥 ≤  𝑙 (1) 

 

along with the boundary conditions (BCs)  

 
𝑤(0, 𝑡) = 𝑤(𝑙, 𝑡) = 0
𝑤𝑥(0, 𝑡) = 𝑤𝑥(𝑙, 𝑡) = 0

, 𝑡 ∈ [0, 𝑇] (2) 

 

and the initial condition (IC) 

 

𝑤(𝑥, 0) = 𝜓(𝑥), 0 ≤ 𝑥 ≤ 𝑙 (3) 

 

where  𝛼  and  𝜇  denote the steady uniform fluid velocity and the constant diffusion coefficient, 

respectively. 

 

Numerous techniques have been implemented to ADE to solve it numerically so far including Finite 

difference method (FDM) [1-3], least-squares method [4], Taylor-Galerkin technique [5], cubic B-spline 

differential quadrature method (CBSDQM) [6], extended cubic B-spline collocation method (ECBSCM) 

[7], differential quadrature method based on quartic and quintic B-splines [8], extended cubic B-spline 

Galerkin method (ECBSGM) [9], Galerkin method [10] and collocation technique based on fourth-order 

cubic B-spline [11]. 

 

 

https://fbe.metu.edu.tr/en
https://fbe.metu.edu.tr/en
https://orcid.org/0000-0002-5704-2370
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The main purpose in this paper is to investigate the approximate solution of ADE by the new approach. 

In this approach, ADE is fully discretized by employing nonic B-spline collocation technique in spatial 

direction and Adams Moulton method in temporal direction. What is notable in this work is that the use 

of nonic B-spline functions that have not been utilized before to achieve the numerical solution of ADE. 

The rest structure of the paper is as follows. In section 2, the temporal and spatial discretizations of ADE 

are performed. In section 3, two test problems are examined to see the efficiency and accuracy of the 

present method. A brief summary about main findings of the suggested method is presented in section 

4.  

 

2. APPLICATION OF THE PROPOSED METHOD 

 

In this work, the analytical solution of the unknown function at the grid points is represented by  

 

𝑤(𝑥𝑟 , 𝑡𝑛) = 𝑤𝑟
𝑛, 𝑟 = 0,1, … ,𝑀;     𝑛 = 0,1,2, … 

 

where  𝑥𝑟 = 𝑟ℎ,   𝑡𝑛 = 𝑛𝛥𝑡  and the approximate value of  𝑤𝑟
𝑛  is denoted by  𝑊𝑟

𝑛. 
 

2.1. Time Discretization 
 

Considering ADE of the form 

 

𝑤𝑡 = 𝜇𝑤𝑥𝑥 − 𝛼𝑤𝑥 (4) 

 

and employing the following two-step method 

 

𝑤𝑛+1 = 𝑤𝑛 + 𝛥𝑡(𝜃1𝑤𝑡
𝑛+1 + 𝜃2𝑤𝑡

𝑛 + 𝜃3𝑤𝑡
𝑛−1) (5) 

 

we have the temporal discretization of the Eq. (4). Choosing the coefficients in (5) as 

 

𝜃1 =
1

2
, 𝜃2 =

1

2
,   𝜃3 = 0 

 

gives Crank-Nicolson (CN) method having order two in time and then choosing the coefficients 

in (5) as 

 

𝜃1 =
5

12
, 𝜃2 =

2

3
,   𝜃3 = −

1

12
 

 

yields the third-order implicit Adams Moulton method which is going to be used to discretizate 

the temporal domain. Using Eq. (5), the temporal discretization of the Equation (4) is obtained 

as 

  

𝑤𝑛+1 − 𝜃1𝛥𝑡(𝜇𝑤𝑥𝑥
𝑛+1 − 𝛼𝑤𝑥

𝑛+1)
= 𝑤𝑛 + 𝜃2𝛥𝑡(𝜇𝑤𝑥𝑥

𝑛 − 𝛼𝑤𝑥
𝑛) + 𝜃3𝛥𝑡(𝜇𝑤𝑥𝑥

𝑛−1 − 𝛼𝑤𝑥
𝑛−1)  

(6) 

 
2.2. Nonic B-spline Collocation Method 
 

Let the spatial domain  [0, 𝑙]  be splitted into uniformly  𝑀  finite elements at the knots  
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0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑀 = 𝑙 
 

where  ℎ = 𝑥𝑟 − 𝑥𝑟−1,   𝑟 = 1,… ,𝑀 . On this partition, the nonic B-splines  𝜑𝑟 ,   𝑟 =
−4,… ,𝑀 + 4,  have the following form:  

 

𝜑𝑟(𝑥) =
1

ℎ9

{
 
 
 
 
 

 
 
 
 
 
𝜙1, 𝑥𝑟−5 ≤ 𝑥 < 𝑥𝑟−4,
𝜙2, 𝑥𝑟−4 ≤ 𝑥 < 𝑥𝑟−3,
𝜙3, 𝑥𝑟−3 ≤ 𝑥 < 𝑥𝑟−2,
𝜙4, 𝑥𝑟−2 ≤ 𝑥 < 𝑥𝑟−1,
𝜙5, 𝑥𝑟−1 ≤ 𝑥 < 𝑥𝑟 ,
𝜙6, 𝑥𝑟 ≤ 𝑥 < 𝑥𝑟+1,
𝜙7, 𝑥𝑟+1 ≤ 𝑥 < 𝑥𝑟+2,
𝜙8, 𝑥𝑟+2 ≤ 𝑥 < 𝑥𝑟+3,
𝜙9, 𝑥𝑟+3 ≤ 𝑥 < 𝑥𝑟+4,
𝜙10, 𝑥𝑟+4 ≤ 𝑥 < 𝑥𝑟+5,
0 otherwise

 

 

(7) 

 

where  

 

𝜙1 = (𝑥 − 𝑥𝑟−5)
9, 

𝜙2 = ℎ9 + 9ℎ8(𝑥 − 𝑥𝑟−4) + 36ℎ
7(𝑥 − 𝑥𝑟−4)

2 + 84ℎ6(𝑥 − 𝑥𝑟−4)
3 + 126ℎ5(𝑥 − 𝑥𝑟−4)

4 

          +126ℎ4(𝑥 − 𝑥𝑟−4)
5 + 84ℎ3(𝑥 − 𝑥𝑟−4)

6 + 36ℎ2(𝑥 − 𝑥𝑟−4)
7 + 9ℎ(𝑥 − 𝑥𝑟−4)

8 

           −9(𝑥 − 𝑥𝑟−4)
9,  

𝜙3 = 502ℎ9 + 2214ℎ8(𝑥 − 𝑥𝑟−3) + 4248ℎ
7(𝑥 − 𝑥𝑟−3)

2 + 4536ℎ6(𝑥 − 𝑥𝑟−3)
3 

        +2772ℎ5(𝑥 − 𝑥𝑟−3)
4  + 756ℎ4(𝑥 − 𝑥𝑟−3)

5 − 168ℎ3(𝑥 − 𝑥𝑟−3)
6 − 216ℎ2(𝑥 − 𝑥𝑟−3)

7 

         −72ℎ(𝑥 − 𝑥𝑟−3)
8 + 36(𝑥 − 𝑥𝑟−3)

9, 
𝜙4 = 14608ℎ9 + 36414ℎ8(𝑥 − 𝑥𝑟−2) + 34272ℎ

7(𝑥 − 𝑥𝑟−2)
2 + 11256ℎ6(𝑥 − 𝑥𝑟−2)

3 

         −4032ℎ5(𝑥 − 𝑥𝑟−2)
4 − 4284ℎ4(𝑥 − 𝑥𝑟−2)

5 − 672ℎ3(𝑥 − 𝑥𝑟−2)
6

+ 504ℎ2(𝑥 − 𝑥𝑟−2)
7 

         +252ℎ(𝑥 − 𝑥𝑟−2)
8 − 84(𝑥 − 𝑥𝑟−2)

9, 
𝜙5 = 88234ℎ9 + 101934ℎ8(𝑥 − 𝑥𝑟−1) + 5544ℎ

7(𝑥 − 𝑥𝑟−1)
2 − 36456ℎ6(𝑥 − 𝑥𝑟−1)

3 

          −10836ℎ5(𝑥 − 𝑥𝑟−1)
4 + 5796ℎ4(𝑥 − 𝑥𝑟−1)

5 + 2856ℎ3(𝑥 − 𝑥𝑟−1)
6 

          −504ℎ2(𝑥 − 𝑥𝑟−1)
7 − 504ℎ(𝑥 − 𝑥𝑟−1)

8 + 126(𝑥 − 𝑥𝑟−1)
9, 

𝜙6 = 156190ℎ9 − 88200ℎ7(𝑥 − 𝑥𝑟)
2 + 23940ℎ5(𝑥 − 𝑥𝑟−1)

4 − 4200ℎ3(𝑥 − 𝑥𝑟)
6 

           +603ℎ(𝑥 − 𝑥𝑟)
8 − 126(𝑥 − 𝑥𝑟)

9, 
𝜙7 = 88234ℎ9 − 101934ℎ8(𝑥 − 𝑥𝑟+1) + 5544ℎ

7(𝑥 − 𝑥𝑟+1)
2 + 36456ℎ6(𝑥 − 𝑥𝑟+1)

3 

          −10836ℎ5(𝑥 − 𝑥𝑟+1)
4 − 5796ℎ4(𝑥 − 𝑥𝑟+1)

5 + 2856ℎ3(𝑥 − 𝑥𝑟+1)
6 

          +504ℎ2(𝑥 − 𝑥𝑟+1)
7 − 504ℎ(𝑥 − 𝑥𝑟+1)

8 + 84(𝑥 − 𝑥𝑟+1)
9, 

𝜙8 = 14608ℎ9 − 36414ℎ8(𝑥 − 𝑥𝑟+2) + 34272ℎ
7(𝑥 − 𝑥𝑟+2)

2 − 11256ℎ6(𝑥 − 𝑥𝑟+2)
3 

          −4032ℎ5(𝑥 − 𝑥𝑟+2)
4 + 4284ℎ4(𝑥 − 𝑥𝑟+2)

5 − 672ℎ3(𝑥 − 𝑥𝑟+2)
6

− 504ℎ2(𝑥 − 𝑥𝑟+2)
7 

          +252ℎ(𝑥 − 𝑥𝑟+2)
8 − 36(𝑥 − 𝑥𝑟+2)

9, 
𝜙9 = 502ℎ9 − 2214ℎ8(𝑥 − 𝑥𝑟+3) + 4248ℎ

7(𝑥 − 𝑥𝑟+3)
2 − 4536ℎ6(𝑥 − 𝑥𝑟+3)

3 

          +2772ℎ5(𝑥 − 𝑥𝑟+3)
4 − 756ℎ4(𝑥 − 𝑥𝑟+3)

5 − 168ℎ3(𝑥 − 𝑥𝑟+3)
6 + 216ℎ2(𝑥 − 𝑥𝑟+3)

7 

          −72ℎ(𝑥 − 𝑥𝑟+3)
8 + 9(𝑥 − 𝑥𝑟+3)

9, 
𝜙10 = [ℎ − (𝑥 − 𝑥𝑟+4)]

9. 
The set of nonic B-spline functions   
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{𝜑−4(𝑥), 𝜑−3(𝑥), . . . , 𝜑𝑀+3(𝑥), 𝜑𝑀+4(𝑥)} 

 

generates a basis over the spatial domain  [0, 𝑙] . The global approximate solution  𝑊(𝑥, 𝑡)  
corresponding to the analytical solution  𝑤(𝑥, 𝑡)  is expressed as a combination of separable 

solution of the nonic B-spline spatial terms  𝜑𝑗(𝑥)  and temporal terms  𝛿𝑗(𝑡)  as 

 

𝑊(𝑥, 𝑡) = ∑ 𝛿𝑗𝜑𝑗

𝑀+4

𝑗=−4

 

 

(8) 

where temporal term  𝛿𝑗(𝑡)  is going to be determined by means of the collocation procedure. Since each 

subinterval  [𝑥𝑟−1, 𝑥𝑟]  is covered by ten B-splines, the approximate solution and its first two derivatives 

at the knots  𝑥𝑟  are calculated in terms of temporal terms  𝛿𝑗(𝑡) using (7) and (8) as 

   
  𝑊𝑟

= 𝛿𝑟−4 + 502𝛿𝑟−3 + 14608𝛿𝑟−2 + 88234𝛿𝑟−1 + 156190𝛿𝑟 + 88234𝛿𝑟+1 + 14608𝛿𝑟+2 + 502𝛿𝑟+3 + 𝛿𝑟+4,

𝑊𝑟
′ =

9

ℎ
(−𝛿𝑟−4 − 246𝛿𝑟−3 − 4046𝛿𝑟−2 − 11326𝛿𝑟−1 + 11326𝛿𝑟+1 + 4046𝛿𝑟+2 + 246𝛿𝑟+3 + 𝛿𝑟+4),                   

𝑊𝑟
′′ =

72

ℎ2
(𝛿𝑟−4 + 118𝛿𝑟−3 + 952𝛿𝑟−2 + 154𝛿𝑟−1 − 2450𝛿𝑟 + 154𝛿𝑟+1 + 952𝛿𝑟+2 + 118𝛿𝑟+3 + 𝛿𝑟+4) .               

 

 

 

(9) 

 

Substituting (9) into (6), the fully-discretization of ADE is obtained as  

 
𝛿𝑟−4
𝑛+1(1 + 𝑎1 − 𝑎2) + 𝛿𝑟−3

𝑛+1(502 + 118𝑎1 − 246𝑎2) + 𝛿𝑟−2
𝑛+1(14608 + 952𝑎1 − 4046𝑎2) +                        

𝛿𝑟−1
𝑛+1(88234 + 154𝑎1 − 11326𝑎2) + 𝛿𝑟

𝑛+1(156190 − 2450𝑎1) + 𝛿𝑟+1
𝑛+1(88234 + 154𝑎1 + 11326𝑎2) +

𝛿𝑟+2
𝑛+1(14608 + 952𝑎1 + 4046𝑎2) + 𝛿𝑟+3

𝑛+1(502 + 118𝑎1 + 246𝑎2) + 𝛿𝑟+4
𝑛+1(1 + 𝑎1 + 𝑎2)                               

= 𝑊𝑟
𝑛 + 𝑎3(𝑊

′′)𝑟
𝑛 + 𝑎4(𝑊

′)𝑟
𝑛 + 𝑎5(𝑊

′′)𝑟
𝑛−1 + 𝑎6(𝑊

′)𝑟
𝑛−1,     0 ≤ 𝑟 ≤ 𝑀                                                              

 

  

 

(10) 

where 

 

𝑎1 = −𝜃1𝛥𝑡𝜇
72

ℎ2
, 𝑎2 = 𝜃1𝛥𝑡𝛼

9

ℎ
, 𝑎3 = 𝜃2𝛥𝑡𝜇

72

ℎ2
,

𝑎4 = −𝜃2𝛥𝑡𝛼
9

ℎ
, 𝑎5 = 𝜃3𝛥𝑡𝜇

72

ℎ2
, 𝑎6 = −𝜃3𝛥𝑡𝛼

9

ℎ
.

 

 

Hence, we get a linear system (10) consisting of  𝑀 + 1  algebraic equations in  𝑀 + 9  

unknowns  (𝛿−4
𝑛+1, … , 𝛿𝑁+4

𝑛+1) . Using BCs (2) and the following additional BCs 

 
𝑤𝑥𝑥(0, 𝑡) = 0 𝑤𝑥𝑥(𝑙, 𝑡) = 0
𝑤𝑥𝑥𝑥(0, 𝑡) = 0 𝑤𝑥𝑥𝑥(𝑙, 𝑡) = 0,

 

 

the variables 

 

𝛿−4
𝑛+1, 𝛿−3

𝑛+1, 𝛿−2
𝑛+1, 𝛿−1

𝑛+1, 𝛿𝑀+1
𝑛+1 , 𝛿𝑀+2

𝑛+1 , 𝛿𝑀+3
𝑛+1   and  𝛿𝑀+4

𝑛+1  

 

are eliminated from the above system. Thus, the system is reduced to solvable matrix system 

of  (𝑀 + 1) × (𝑀 + 1)  dimension. In order to commence iterative computation, the initial 

vector 

 

𝛿0 = (𝛿−4
0 , . . . , 𝛿𝑀+4

0 )𝑇 
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is first computed using ICs, BCs and additional BCs. After getting the initial vector  𝛿0 , the 

unknown vector 

 

𝛿1 = (𝛿−4
1 , . . . , 𝛿𝑀+4

1 ) 
 

is obtained by making use of CN method. Thus, the unknown vectors  

 

𝛿𝑛+1 = (𝛿−4
𝑛+1, . . . , 𝛿𝑀+4

𝑛+1)𝑇(𝑛 = 1,2, . . . ) 
 

at any desired time level can be computed repeatedly by solving the recurrence relation two 

precious  𝛿𝑛  and  𝛿𝑛−1. 
 

3. NUMERICAL EXPERIMENTS 

 

In this section, two test problem are examined to illustrate the efficiency and applicability of 

the suggested method. Accuracy of solution is tested by measuring error norm  𝐿∞   

 

𝐿∞ = 𝑚𝑎𝑥
𝑚
|𝑤𝑚 −𝑊𝑚| (11) 

 

and the order of temporal convergence is calculated by the formula 

 

order=

𝑙𝑜𝑔 |
(𝐿∞)𝛥𝑡𝑖
(𝐿∞)𝛥𝑡𝑖+1

|

𝑙𝑜𝑔 |
𝛥𝑡𝑖
𝛥𝑡𝑖+1

|
 (12) 

 

where  (𝐿∞)𝛥𝑡𝑖  is the error norm  𝐿∞  for time step  𝛥𝑡𝑖 .  

 
3.1. Problem 1 

 

Consider pure advection problem obtained by taking  𝜇   = 0.  The analytical solution of this 

problem is given by  

 

𝑤(𝑥, 𝑡) = 10 𝑒𝑥𝑝 (−
(𝑥 − 𝑥̃0 − 𝛼𝑡)

2

2𝜌2
). 

  

(13) 

 

The numerical computation is performed by choosing flow velocity  𝛼   = 0.5𝑚/𝑠 , initial peak 

location  𝑥̃0 = 2𝑘𝑚 ,  𝜌 = 264  in the spatial domain  [0,9000]  until the terminating time  𝑡 =
9600𝑠 . In this case, the wave which is initially located at  𝑥̃0 = 2𝑘𝑚  with its peak moves to 

the right along a channel maintaining its initial shape and size by the time  𝑡 = 9600𝑠 . The 

suggested program is running until the time  𝑡 = 9600𝑠  and the figures of initial solution and 

waves at various time levels are presented in Figure 1 with  ℎ = 60, 𝛥𝑡 = 1 . It can be observed 

from Figure 1 that wave preserves its initial state while moving to the right. Thus, the initial 

wave moves  4.8   𝑘𝑚  from the initial position and the peak of the wave remains stable  10  in 
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progress of time. The graph of absolute error at  𝑡 = 9600𝑠  is also given in Figure 2 which 

shows that the influence of BCs can be neglected. 
 

                
Figure 1. Waves at 𝑡 = 0,3000,6000,9600. 

 

The error norms  𝐿∞  are listed in Table 1 to make a comparison with previous studies given in 

[4,7,9]. The obtain results confirm that the suggested method gives better results then the other 

methods. Also, the order of temporal convergence is calculated for  ℎ = 100  and different 

temporal steps  𝛥𝑡𝑖 . The calculated order of convergence along with error norm is listed in 

Table 2. As expected from the theoretical results, the order of the temporal convergence is three. 

Table 1. Comparison of 𝐿∞ at time 𝑡 = 9600 

Method h    𝛥𝑡 𝐿∞ 

Proposed 200             50 4.56 × 10−2 

Proposed 100 50 1.93 × 10−2 

Proposed 50 50 1.94 × 10−2 

[9] 200 50 2.18 × 10−1 

[9] 100 50 1.90 × 10−1 

[9] 50 50 1.90 × 10−1 

[7] 200 50 1.29 

[7] 100 50 3.25 × 10−1 

[7] 50 50 1.98 × 10−1 

[4] 200 50 5.18 × 10−1 

[4] 100 50 3.76 × 10−1 

[4] 50 50 3.73 × 10−1 

Table 2. The error norms and  temporal order of convergence with ℎ = 100 at 𝑡 = 9600 

𝛥𝑡𝑖 Order 𝐿∞ 

100 - 1.63 × 10−1 

50 3.07 1.95 × 10−2 

25 3.01 2.41 × 10−3 

12.5 3.00 3.01 × 10−4 
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Figure 2. Absolute error for Problem 1 with h=𝛥𝑡 = 50 . 

 

3.2. Problem 2 

 

The analytical solution of this problem, modeling fade out of an initial bell shaped 

concentration of height 1, is  

 

𝑤(𝑥, 𝑡) =
1

√4𝑡 + 1
𝑒𝑥𝑝 (−

(𝑥 − 𝑥̃0 − 𝛼𝑡)
2

𝜇(4𝑡 + 1)
) 

  

(13) 

The initial wave forms the peak of which is initially located at  𝑥̃0 , moves to the right along  

𝑥  axis as time progresses. 

 

The computation is carried out by taking the parameters  𝛼   = 0.8   𝑚/𝑠  and  𝜇   = 0.005   

𝑚2/𝑠 . Table 3 gives the comparison of  𝐿∞  error norms with  𝛥𝑡 = 0.0125 . It can be seen 

from the Table 3 that our method produces better results than the methods given in Method I 

[6] and [9]. But the result of Method II [6] is a bit better than the result of the present method 

for  ℎ = 0.025 . The order of convergence and  𝐿∞  error norms are listed Table 4. It is seen 

from Table 4 that when time step size is reduced from  0.01  to  0.00125, the order of temporal 

convergence approaches to three.  

Table 3. Comparison of 𝐿∞ at time 𝑡 = 5 with 0 ≤ 𝑥 ≤ 9 

h Proposed [9] Method I [6] Method II [6] 

0.2 1.36 × 10−1 1.33 × 10−1 1.25 × 10−1 1.36 × 10−1 

0.1 4.01 × 10−3 4.23 × 10−3 6.96 × 10−3 1.46 × 10−2 

0.05 3.94 × 10−5 8.43 × 10−4 1.21 × 10−4 2.89 × 10−4 

0.025 3.98 × 10−5 8.43 × 10−4 3.07 × 10−4 1.81 × 10−5 

Table 4. The error norms and  temporal order of convergence with ℎ = 0.01 at 𝑡 = 5. 

𝛥𝑡𝑖 Order 𝐿∞ 

0.01 - 2.04 × 10−5 

0.005 3.00 2.55 × 10−6 

0.0025 3.00 3.19 × 10−7 

0.00125 3.00 3.98 × 10−8 

Figure 3 shows the behaviour of numerical solutions up to time  𝑡 = 5  over the spatial interval  

[0,9]  with  ℎ = 𝛥𝑡 = 0.001.  Figure 4 gives the graph of the absolute error with  ℎ =
0.01, 𝛥𝑡 = 0.00125  at time  𝑡 = 5 . It can be seen from Figure 4 that maximum error appears 
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at about the peak of the final wave. Thus, it can be said that the there is no problem in applying 

BCs. 

                
Figure 3. Waves at 𝑡 = 0,1,2,3,4,5. 

 

               
Figure 4. Absolute error for Problem 2 with ℎ = 0.01, 𝛥𝑡 = 0.00125 at 𝑡 = 5 . 

 

4. CONCLUSION 

 

In this paper, nonic B-spline collocation technique in collaboration with Adams Moulton 

method has been proposed to get approximate solution of ADE. To show the effectiveness of 

the present method, two test problems are used by computing error norms  𝐿∞  and compared 

with the results existing in the literature. The results obtained by the present method is found to 

be better than the existed studies given in [4,6,7,9]. The order of temporal convergence is 

calculated numerically, which agrees with theoretical rate. Consequently, nonic B-spline 

functions can be applied to obtain approximate solution of the high order nonlinear partial 

differential equations. 
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