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Abstract: Target detection in hyperspectral images is important in many applications including search and rescue operations, defence 

systems, mineral exploration and border security. For this purpose, several target detection algorithms have been proposed over the years, 

however, it is not clear which of these algorithms perform best on real data and on sub-pixel targets, and moreover, which of these 

algorithms have complementary information and should be fused together. The goal of this study is to detect the nine arbitrarily placed 

sub-pixel targets, from seven different materials from a 1.4km altitude. For this purpose, eight signature-based hyperspectral target 

detection algorithms, namely the GLRT, ACE, SACE, CEM, MF, AMSD, OSP and HUD, and three anomaly detectors, namely RX, 

Maxmin and Diffdet, were tested and compared. Among the signature-based target detectors, the three best performing algorithms that 

have complementary information were identified. Finally these algorithms were fused together using four different fusion algorithms. 

Our results indicate that with a proper fusion strategy, five of the nine targets could be found with no false alarms. 

Keywords: Target detection, hyperspectral imaging, fusion. 

 

1. Introduction 

Hyperspectral imaging (HSI) refers to the imaging of the 

environment with the goal of identifying the materials in each 

pixel based on their reflection characteristics of the sunlight. 

These reflection characteristics, when plotted against the 

wavelength, form the fingerprints of each material, and are called 

as the material’s spectra. Using this spectral information, some of 

the most common applications of HSI involve the imaging of the 

small targets from higher altitutes [1, 2]. Such applications 

include save and rescue operation, target detection in defence, 

mineral exploration, border security as well as many others [3- 8].  

Typically, hyperspectral images are collected from air-borne 

sensors and have low spatial resolutions [9-11]. This constitutes a 

problem when two or more materials fall into a single pixel. 

These targets are called as sub-pixel targets as illustrated in 

Figure 1. As these materials would have different reflection 

characteristics, they are not easy to identify with spectral 

matching methods [12, 13]. In these cases, it is helpful to fuse 

together several spectral matching methods and combine their 

strengths. On the other hand, when a vast area is of concern, it 

may not be practical to search every pixel to see if they match the 

target we are looking for. In such cases, it may be best to perform 

anomaly detection and to identify those pixels that are different 

from their surroundings first [13-17]. 

For target detection from spectral matching, several algorithms 

exist in the literature. The most popular ones include the 

Generalized Likehood Ratio Test (GLRT) [18-22], Adaptive 

Coherence Estimator (ACE) [21-22], Signed Adaptive Coherence 

Estimator (SACE) [21], Constrained Energy Minimization 

(CEM) [25, 26], Matched Filter (MF) [27], Adaptive Matched 

Subspace Detector (AMSD) [26, 27], Orthogonal Subspace 

Projection (OSP) [27] and the Hybrid Unstructured Detector 

(HUD) [28, 29]. These algorithms take a known target spectra 

and compare it to all the pixels in the search image.  

 

Figure 1. Subpixel and full pixel targets. A subpixel target refers to the 

case when more than one material is imaged by the camera in a single 

pixel, due to the low spatial resolution. The rest of the pixel is occupied 

by other materials.  

On the other hand, for anomaly detection, most algorithms 

assume a homogenous neighbourhood and look for the pixel that 

deviates significantly from this neighbourhood. Arguably, the 

most popular of the anomaly detection algorithms is the Reed-

Xiaoli (RX) algorithm [30] and most other algorithms are 

variants of the RX [31-33]. Two other algorithms that are worth 

mentioning that are not variants of RX, and thus carry 

complementary information are DIFDET [34] and MAXMIN [4].  

Despite the large variety of spectral matching and anomaly 

detection papers in the literature [35-38], it is not clear which 

ones perfom best, especially on sub-pixel data, and which ones 

are complementary and worth fusing. In this paper, we make a 

comprehensive analysis and compare all of these methods on a 

real hyperspectral dataset that has nine sub-pixel targets.  

In the rest of the paper, first we give the details of the dataset in 

Sec. 2. Then, we give details on the spectral matching algorithms 

in Sec. 3 and on anomaly detectors in Sec. 4. Then, we list the 
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results of these target and anomaly detectors in Sec 5. We 

investigate which spectral matching algorithms work best on sub-

pixel targets, and which of them have complementary 

information. Finally, we give the details of the fusion algorithms, 

namely matched filter fusion, hybrid fusion, sum and product 

fusion in Sec. 6 and compare all the algorithms. In addition, we 

investigate if doing an anomaly detection before spectral 

matching is worth pursuing in terms of time and accuracy; and 

fuse the results of anomaly detection with spectral matching 

algorithms. In Figure 2, we show the overview of these 

algorithms. We then conclude the study in Sec. 8 with our 

findings on which algorithms to use and to fuse. 

 

Figure 2. The algorithms tested and fused for target detection. 

2. Hyperspectral Dataset Used in the Experiments 

Hyperspectral data were collected by the Rochester Institute of 

Technology over the region of Chooke City, Montana, USA; 

using a HyMap sensor controlled with HyVista in 2006 July [39]. 

Nine targets from seven different materials were placed around 

town. Target locations and reflectance signatures of the targets 

were provided with the dataset [40, 41].  An aerial photograph of 

the area is shown in Figure 3 with a white box that shows the 

region of interest which includes all the targets. In Figure 3(b), 

locations of the targets are given superimposed on the false-color 

hyperspectral image, formed from the 30, 50 and 70th bands. 

 The collected data has 3meter spatial resolution and has 126 

bands between 453 nm and 2496 nm.  The water absorbtion 

bands, correspond to the bands between 1356-1417nm, 1820-

1932nm and above 2395nm, were cropped from the image as 

they do not contain meaningful information for target detection 

[2]. After these manipulations, the data of size 145 x 350 pixels 

and 107 bands were used for the detection. 

 The target materials and sizes are given in Table 1. Only F1 

and F2 materials are large enough to fully fit into a pixel; 

although not guaranteed. The rest of the targets are all smaller 

than the 3m pixel resolution; therefore, all targets can be 

considered as subpixel targets. The lab spectra of the targets are 

given in Figure 4. These were measured on the ground with a 

Fieldspec Pro. It can be seen that despite their color differences, 

targets F2 and F4 are both made from nylon, have similar spectral 

characteristics. Also, F1 and F3 are spectrally similar despite a 

shift, and differ in the red and blue color region of the spectra. 

Note that red color occurs around 650nm, and blue color occurs 

around 475nm. 

 
(a) 

 
(b) 

Figure 3. The photograph of the area imaged. (a) The white box shows 

the area that is being analysed [28]. (b) Locations of the targets on the 

false-color hyperspectral image. 

Table 1. Properties of the Targets 

Target Dimensions (m) Type 

F1 3 x 3 Red cotton 

F2 3 x 3 Yellow nylon 

F3a 2 x 2 Blue cotton 

F3b 1 x 1 Blue cotton 

F4a 2 x 2 Red nylon 

F4b 1 x 1 Red nylon 

V1 4 x 2 1993 Chevy Blazer 

V2 3 x 1.7 1997  Toyota T100 

V3 4.5 x 1.6 1985  Subaru GL Wagon 

 
(a) 

 
(b) 

Figure 4. Spectra of the target materials 

3. Signature–based Target Detection Methods 

Signature-based target detection methods aim to find the target by 

comparing the image spectra to a known target spectra. In this 

section, we describe the GLRT, ACE, Signed ACE, MF, CEM, 

AMSD, OSP and HUD target detection methods. In our case, the 

known target spectra would be lab spectrum of the materials as 
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given in Fig. 4. 

3.1. GLRT  

GLRT target detection method assumes that the background, 

denoted as v, can be modelled with a Normal distribution. Let S 

be the target spectral signatures. Then the hypothesis are as 

follows: [18-22] 

H0 ∶ 𝐱 =  𝐯 not a target  

H1 ∶ 𝐱 =  𝐒 + 𝐯 target 

Then, the GLRT score can be computed as: 

𝐷𝐺𝐿𝑅𝑇(𝑥) =
[(𝑺 − µ)𝑇�̂�−1(𝒙 − µ)]

2

[(𝑺 − µ)𝑇�̂�−1(𝑺 − µ)]. [1 + (
1
𝑀

) . (𝒙 − µ)𝑇�̂�−1(𝒙 − µ)]
 (1) 

where M is the number of pixels, µ is the mean of the backgroud 

and �̂� is the covariance of the background. If 𝐷𝐺𝐿𝑅𝑇 is bigger than 

a specified threshold, then H1 is satisfied, meaning the tested 

pixel x is a target; otherwise H0 is satisfied and the tested pixel is 

not a target. 

GLRT can be used as a subpixel target detector; however, it 

assumes that the background covariance is the same for both 

hypothesis, which may not be the ideal assumption and could be 

very restrictive.  Therefore, several extensions to GLRT relax this 

assumption that we briefly summarize below. 

3.2. ACE  

ACE is an extension to GLRT that assumes different 

backgrounds for the hypothesis as follows [21, 22]: 

H0: 𝐱 =  𝐯  nontarget 

H1: 𝐱 =  𝐒 +  𝛔𝐯  target 

With this, the ACE target detector can be computed as:  

𝐷𝐴𝐶𝐸(𝑥) =
[(𝑺 − µ)𝑇�̂�−1(𝒙 − µ)]

2

[(𝑺 − µ)𝑇�̂�−1(𝑺 − µ)]. [(𝒙 − µ)𝑇�̂�−1(𝒙 − µ)]
 (2) 

DACE equals its maximum value when x = S, meaning the tested 

pixel is the target and its minimum value when x = µ, meaning 

the tested pixel is the background. 

3.3. SACE 

Signed ACE (SACE) is an extension to ACE that takes into 

account if the target is emissive or absorbant. In this case, the 

sign of  (𝒙 − µ)𝑇�̂�−1(𝒙 − µ) is important, and the SACE detector 

is computed as [21]:  

𝐷𝑆𝐴𝐶𝐸(𝒙) = 𝑠𝑖𝑔𝑛[(𝒙 − µ)𝑇�̂�−1(𝒙 − µ)]. 𝐷𝐴𝐶𝐸(𝒙) 
(3) 

 

3.4. MF 

MF is a simplified version of GLRT that also assumes that the 

background covariances are the same for target and nontarget 

pixels. MF is computed as [27]: 

𝐷𝑀𝐹(𝒙) =
(𝑺 − µ)𝑇�̂�−1(𝒙 − µ)

(𝑺 − µ)𝑇�̂�−1(𝑺 − µ)
 

(4) 

3.5. CEM 

CEM is a bit different from the other methods in that, it uses a 

finite impulse response filter to suppress the energy of the 

background [25, 26, 43]. The filter is of the form: 

𝒚(𝑛) = 𝒘𝑇𝒙(𝑛) 

and hence the energy at the end of the filter is: 

𝐸 =
1

𝑁
∑ 𝒚2(𝑛) 

𝑁

𝑛=1

 

If this energy is minimized with a constraint that 𝒘𝑻S=1, the 

CEM target detector is obtained as: 

𝐷𝐶𝐸𝑀(𝒙) =
𝑺𝑇�̂�−1𝒙

𝑺𝑇�̂�−1𝑺
  (5) 

where �̂� is the correlation matrix. The correlation matrix might 

be preferred for faster and easier computations when the matrices 

get too large to handle. 

 

3.6. AMSD 

Different from all the other methods discussed so far, AMSD 

considers the abundances and the endmembers of the 

background. Let B be these endmembers and ab be the 

abundances of these endmembers. In this case, the hypothesis are 

as follows: 

H0: 𝐱 =  𝐁𝐚𝒃  +  𝐯   nontarget 

H1: 𝐱 =  𝐒 +  𝐁𝐚𝒃  +  𝐯  target 

With these hypothesis, the AMSD target detector is defined as:  

𝐷𝐴𝑀𝑆𝐷(𝒙) =
𝒙𝑇(𝑷𝑩

┴ − 𝑷𝒁
┴)𝒙

𝒙𝑇𝑷𝒁
┴𝒙

     (6) 

where E is a matrix that includes all the endmembers of the 

background and the target, and 

𝑷𝑩
┴ = 𝑰 − 𝑩(𝑩𝑇 𝑩)−1𝑩𝑇    

𝑷𝒁
┴ = 𝑰 − 𝑬(𝑬𝑇 𝑬)−1𝑬𝑇   

Here 𝑷𝑩
┴ and 𝑷𝒁

┴ are the orthogonal subspace projections the 

matrices onto their pseudoinverses.  

3.7. OSP 

 OSP is also like AMSD, but it only uses the endmember 

matrix of the background, B [27], and simply computes: 

𝐷𝑂𝑆𝑃(𝒙) =
𝑺𝑇𝑷𝑩

┴𝒙

𝑺𝑇𝑷𝑩
┴𝑆

    (7) 

3.8. HUD 

HUD, like ACE, assumes different background hyphothesis, and 

is computed as follows [28, 29]: 

𝐷𝐻𝑈𝐷(𝒙) =
𝒙𝑇�̂�−1𝑺�̂�

𝒙𝑇�̂�−1𝒙
     (8) 

where; 

�̂� = (𝑬𝑇�̂�−1𝑬)−1𝑬𝑇�̂�−1𝒙 − (𝑬𝑇�̂�−1𝑬)−1𝝀  

𝝀 = 𝑬𝑇�̂�−1(𝒙 − 𝑬�̂�)   

which are iterated to meet the Kuhn-Tucker conditions. 

4. Anomaly Detection Methods 

The eight target detectors listed above are based on comparing a 

lab-measured signature to all the pixels in the image and seeing 

which ones fit most. An alternative to these methods, as described 
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in this section, would be to find which pixels differ most from the 

background. These would result in many false alarms, but were 

considered to see if they would decrease the false alarm rates 

during fusion by providing complementary information. 

Three anomaly detection methods were tested; the Reed-Xiaoli 

(RX) [31], maximum-minimum detector (MAXMIN) [4] and the 

differential detector (DIFDET) [34]. The goal of these methods is 

to find to pixels that are different than the background. Unlike the 

signature-based methods, anomaly detection algorithms may be 

able to find all the targets at once, as they are not looking for a 

specific target. 

4.1. RX 

 RX algorithm is arguably the most well-known method for 

anomaly detection. It puts a window on the pixel being tested as 

shown in Figure 5. The inner window is used as a buffer region 

and the part between the inner and the outer windows is used as 

an estimate of the background. Hence, if the pixel being tested is 

different than the background, it is considered as an anomaly. RX 

is computed as: 

 𝐷𝑅𝑋(𝒙) = (𝒙 − µ)𝑇�̂�−1(𝒙 − µ)                           (9) 

where the mean and the covariance are estimated from the 

background. For each pixel, the window is slided and the 

anomaly value is computed. In practice, to have a nonsingular 

solution, the outer window should have as many pixels as 10 

times the number of bands. 

 

Figure 5. RX anomaly detector 

4.2. MAXMIN 

In the Maxmin method, the image bands are divided into two as 

shown in Figure 6. Then, the extremities in each region is found 

as:  

MaMi = Matrix of maximum spectral values for the ith subimage. 

MiMi = Matrix of minimum spectral values for the ith subimage. 

MaAi = The average of maximum spectral values for the 

background in the ith subimage. 

MiAi = The average of minimum spectral values for the 

background in the ith subimage. 

and the following anomaly detector value is computed: 

MaxMini = | MaMi[p,q] - MaAi|+ | MiMi[p,q] - MiAi|, i = 1,2 

Here, p and q are the coordinates of the test pixel, i stands for the 

subimage. 

 

Figure 6. Maxmin method divides the images into two. For an LxKxD 

image, there are two hyperspectral images of size LxKxD/2.  

Maxmin is a very fast method that requires only finding 4 

extreme values. However, our experiments show that these 

extremities may not always be reliable. 

4.3. DIFFDET 

In the Diffdet method, the average spectrum in the local 

neighbourhood of a test pixel is computed. The sum of the 

absolute difference in each band between the test pixel’s 

spectrum and its neighbourhood average is considered as the 

detector response. If the detector response exceeds a threshold 

value, the pixel is considered an anomaly. 

5. Results of Target Detection 

In this section, we provide the anomaly detection results on the 

Chooke City dataset, followed by the results of signature-based 

target detection methods. 

5.1. Anomaly detection results: 

For anomaly detection, we test all the 3 detectors, namely the RX, 

Maxmin and Diffdet, using increasing window sizes. Since all of 

our targets are subpixel (or at most 1 pixel), the inner window 

size was selected as 3 for all methods, and only the outer window 

size was varied. As stated before, in a single run of the algorithm, 

all of the targets can be searched for, as the anomaly detection 

methods are not looking for a specific target.  

The receiver operating characteristic (ROC) curves are given in 

Figure 7. In the ROC plots, x-axis shows the probability of false 

alarm (PFA) and the y-axis shows the probability of detection 

(PD). Ideally, we would like to have the PFA to be zero and the 

PD to be one. Therefore, the closer the line to the left upper part, 

the better the algorithm is. Based on this information, RX can be 

said to operate best at a window size of 25, Maxmin at 11, and 

Diffdet at 45.  

 

(a) RX Results ROC curves 
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(b) Maxmin Results ROC curves 

 
(c) DiffDet Results ROC curves 

Figure 7. Anomaly Detection Results. The y-axis shows the probability 

of detection whereas the x-axis shows the probability of false alarm. 

If we fix the PD at 80%, the FAR values are given in Table 2. 

The minimum value in the table is shown in bold: with 14% false 

alarm rates, RX algorithm with window size 25 performs the best. 

However, this comes with an expensive execution time as shown 

in Table 3. Despite its common use, it was found that RX 

execution time was the largest among the three detectors, and 

increased significantly based on the window size. This is due to 

the covariance matrix, which gets harder to invert, as it gets 

larger. 

 

Table 2.  False Alarm Rates of Anomaly Detection Algorithms when the 

Positive Detection Rate is 80%. 

Window Size RX MAXMIN DIFDET 

11 0.58 0.81 0.62 

15 0.25 0.70 0.60 

25 0.14 0.47 0.53 

35 0.21 0.38 0.42 

45 0.27 0.35 0.32 

Table 3. Execution times of the anomaly detection algorithms in seconds, 

with respect to increasing window sizes. 

Window Size 11 15 25 35 45 

RX time:  (sn)   1302 1667 4504 7110 10514 

MAXMIN time (sn): 2.47 2.47 2.66 3.34 3.50 

DIFDET time (sn): 8 12 26 60 67 

5.2. Results of Signature-based Target Detection 

Using the signature-based target detection methods, only one 

target can be tested at a time. This makes these ROC curves have 

only one jump corresponding to finding/not finding the target. 

Therefore, a better way to describe these the success of these 

algorithms may be to list the number of false alarms when the 

target is first detected. One can think of this as the optimal 

threshold where the algorithm would find the target and give the 

least number of false alarms. Out of 50750 pixels in the image, 

the number of false alarms when the optimal threshold value is 

selected is given in Table 4. 

 

Table 4. Number of False Alarms using the Signature-based Target 

Detection Algorithms  

 

Looking at the results, the best scores on the cloth targets were 

detected with AMSD. When the cloth targets are bigger than 

2mx2m, AMSD could perform with no false alarms. On the other 

hand, GLRT and ACE had similar performances; and SACE 

always had a better performance than ACE. This makes sense as 

SACE is basically ACE, but also considers if the material is an 

absorbing or emitting type; and both ACE and SACE are 

extensions to the GLRT algorithm. 

In addition, we analyzed where each algorithm gave their false 

alarms in the image. It was seen that the following groups of 

algorithms gave the false alarms in the similar parts of the 

images: 

- Group 1: AMSD, OSP and HUD 

- Group 2: GLRT, ACE and SACE 

- Group 3: CEM and MF 

Among these groups, AMSD, CEM and SACE stood out as the 

better of the eight algorithms. In addition, based on where they 

gave false alarms, they were seen to complement each other. One 

example is shown in Figure 8 for target V1. The white circles 

show the location of the target. The other grayscale points are the 

false alarms, where a bright value indicates a higher score of the 

target detection algorithm. It can be seen that most false alarms 

are occurring at different places, giving an indication that these 

three algorithms are good to fuse together. In Figure 8, AMSD is 

giving more false alarms on the upper right corner, CEM is 

giving more false alarms on the lower left corner and SACE is 

giving more false alarms to the bottom right corner. 

Also, in Table 5, we show the number of false alarms common to 

all three algorithms. It can be seen that under a good threshold 

value, these three algorithms complement each other nicely, and 

lead to zero false alarms for most targets. For this reason, in the 

next section, we investigate methods for the fusion of these three 

algorithms. 

 
(a) AMSD results on the V1 target 

 Number of False Alarms when the Optimal Threshold Value is 

Selected 

Target/Alg. GLRT ACE SACE CEM MF AMSD OSP HUD 

F1 (3mx3m) 0 0 0 0 0 0 0 4 

F2 (3mx3m) 513 537 342 0 1  0 109 722 

F3a (2mx2m) 29 33 24 8 9 0 186 50 

F3b (1mx1m) 2980 2998 1851 348 1026 135 1924 2914 

F4a (2mx2m) 13 13 13 1  1  0 29 47 

F4b (1mx1m) 4195 4265 2490 94 468 15695 4095 1230 

V1 (4mx2m) 6506 6542 3733 93 1328 3 382 506 

V2 (3mx1.7m) 2631 2639 1652 30368 1342 6064 4600 570 

V3 

(4.5mx1.6m) 

38 42 28 582 160 37 907 23 
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(b) CEM results on the V1 target 

 
(c) SACE results on the V1 target 

Figure 8: AMSD, CEM and SACE results on the V1 target. The circle 

shows where the target is, the other gray points show the false alarms. 

Gray levels are due to each point's AMSD, CEM and SACE scores.  

 

Table 5. Number of false alarms that are common to SACE, CEM and 

AMSD. 

 Number of False Alarms Common to All 
Three Algorithms  

Target SACE CEM AMSD Common 

F1 0 0 0 0 

F2  342 0 0 0 

F3a 24 8 0 0 

F3b 1851 348 135 2 

F4a 13 1  0 0 

F4b 2490 94 15695 64 

V1 3733 93 3 0 

V2 1652 30368 6064 93 

V3 28 582 37 0 

6. Fusion Methods 

In this study, it was seen that none of the anomaly detectors or the 

signature-based detectors could reach 100% detection. Therefore, 

to combine all these algorithms in the best possible way, the 

multiplication, summation [10], hybrid fusion [44] and matched 

filter fusion (MFF) [45- 47] methods that excel in the literature, 

were tested. Below, we briefly explain these methods and give 

the results of fusion. 

6.1. MFF 

MFF aims to increase the signal-to-noise ratio (SNR) of the 

targets by bringing together the output of the detection 

algorithms. Let 𝐫𝒊 be the ouput of the ith algorithm. For n 

algorithms, the matrix R can be arranged as follows: 

𝑹 = [𝒓1, 𝒓2 … 𝒓𝑛]𝑇 

Then, the target vector 𝒕 can be formed by listing the maximum 

values of the detectors as follows: 

𝒕 = [max (𝒓1), max( 𝒓2) , … max (𝒓𝑛)]𝑇 

And the result of the MFF output can be computed as:  

𝒇𝑀𝐹 = (𝑹 − 𝑴)𝑇𝑲−1(𝒕 − 𝒎)   (9) 

where 𝒎 is the column vector that represents the mean of the 𝑹 

matrix, and 𝑲 is the covariance matrix of 𝑹. Also, 𝑴 represents 

the matrix whose columns are all 𝒎.  

6.2. Hybrid fusion 

 The hybrid fusion algorithm depends on the number of pixels 

that exceeds the score value of the test pixel. Let 𝐷𝐷𝑒𝑡1 and 𝐷𝐷𝑒𝑡2 

be the outputs of the algorithms to fuse. Hybrid fusion works as 

follows: 

1. Compute 𝑁𝐷𝐸𝑇1, the number of pixels in the image that 

satisfy 𝐷𝐷𝑒𝑡1(𝑥) ≥ 𝐷𝐷𝑒𝑡1(𝑥𝑖) where 𝑥𝑖 is the test pixel. 

2. Compute 𝑛𝐷𝑒𝑡1+𝐷𝑒𝑡2 , the number of pixels in the 

image that satisfy both 𝐷𝐷𝑒𝑡1(𝑥) ≥ 𝐷𝐷𝑒𝑡1(𝑥𝑖)  and 

𝐷𝐷𝑒𝑡2(𝑥) ≥ 𝐷𝐷𝑒𝑡2(𝑥𝑖).  

3. Compute 𝑟(𝑥𝑖) =
𝑛𝐷𝑒𝑡1+𝐷𝑒𝑡2

𝑁𝐷𝑒𝑡1
. 

4. Compute the output of the hybrid detector as 

𝐷𝐻𝑌𝐵𝑅𝐼𝐷(𝑥𝑖) = 𝑟(𝑥𝑖) . 𝐷𝐷𝑒𝑡1(𝑥𝑖).   

Finally, the last two methods, product and sum fusion, simply 

multiply or sum the outputs of the target detectors. 

6.3. Fusion Results 

As stated before, AMSD, CEM and SACE algorithms were 

selected from signature-based target detection; and RX was 

selected from anomaly detection for fusion. Before the fusion 

algorithms are applied, all the outputs of the target detectors were 

normalized to be between 0-1, so that no detector dominates the 

fusion.  

Two of the ROC curves resulting from the fusion are given in  

Figure 9 and Figure 10 for targets F3 and V3. Since there are two 

F3 targets, the ROC is a staircase; and since V3 is a single target, 

there is only one jump, indicating the target has been found. 

Considering both of the F3 targets and only the CEM and SACE 

algorithms, MFF fusion of CEM and SACE results in the best 

detection rates in Figure 9. (Note that the colors might be 

overlapping). Figure 10, shows a zoomed version of the ROC 

curve, therefore, the algorithms that did not perform well were  

cropped (which would be at the right upper corner of the figure). 

If only CEM and SACE fusion is considered, among the other 

alternatives, the product of SACE and CEM gives the best fusion 

results and significantly shifts the ROC curve from the right 

(green line) to the left (blue line). 

 

Figure 9. Sample fusion results for target F3, considering only the fusion 

of CEM and SACE. 

 

Figure 10. Sample fusion results for target V3, considering only the 

fusion of CEM and SACE. 
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If all three algorithms are tested, and if we record the percentage 

of false alarms at the time when detection has occurred, Table 6 

is obtained. Here, the best performing algorithms for each target 

(in each column) is shaded in red, and the second best performing 

algorithm for each target is shaded in green. In this table, if we 

examine each row, it can be observed that fusing three algorithms 

always performs better than fusing two algorithms, which is 

better than no fusion at all. However, it is also seen that the RX, 

an anomaly detector had the worst results when it is run alone, as 

expected, but also did not contribute to the fusion in general. If 

we count the number of green and red cells in each row, it can be 

observed that the product of CEM, SACE and AMSD provides 

the best results. 

Table 6. Percentage of false alarms from the fusion of SACE and CEM 

 
 

7. Conclusion 

In this study GLRT, ACE, SACE, MF, CEM, AMSD, OSP and 

HUD signature-based target detection methods are tested and 

compared on the Chooke City dataset on all the nine targets. 

Among these, SACE, CEM and AMSD were found to be the 

better-performance algorithms, and AMSD showed the best 

performance. In fact, AMSD showed a good performance 

especially if the sub-pixel target area was close to at least half of 

the pixel area. However, AMSD requires to model the 

background endmembers, which increases the computational 

complexity. 

With this study, it was shown that AMSD, SACE and CEM 

showed success and weaknesses on different regions, and 

complemented each other. Hence, these algorithms were fused 

with the sum, product, MFF and hybrid fusion methods. It was 

shown with ROC curves and detection tables, that the false alarm 

rate can be significantly decreased with the fusion of these three 

algorithms.  In addition, specifically for this dataset, the product 

fusion gave the best results. With product fusion, it was shown 

that the F1, F2, F3a, F4a and V1 targets could be detected with no 

false alarms. 
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