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Abstract: In this paper, we study the problem of separating texture from structure in RGB-D images. Our structure preserving image 

smoothing operator is based on the region covariance smoothing (RCS) method in [16] that we present a number of modifications to this 

framework to make it depth-aware and increase its effectiveness. In particular, we propose to incorporate three geometric depth features, 

namely height above ground, angle with gravity and horizontal disparity to the pool of image features  used in that study. We also suggest 

to use a new kernel function based on KL-divergence between the distributions of extracted features. We demonstrate our approach on 

challenges images from NYU-Depth v2 Dataset [24], achieving more accurate decompositions than the state-of-the-art approaches which 

do not utilize any depth information.  
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1. Introduction 

Natural images typically contain several textured regions with 

different fine and coarse scale details. These regions that have 

large oscillatory structure, are quite hard to separate for classical 

image filters such as the Gaussian or the median filters. Figure 1 

shows some texture examples, demonstrating the richness and the 

variability of the texture components. In recent years, the com-

munity has witnessed the surge of development of new filters 

specifically designed to decompose an image into its structure 

and texture components, examples of which include weighted 

least square (WLS) [10], guided filter (GF) [12], L0-smoothing 

[32], relative total variation (RTV) [34], region covariance 

smoothing (RCS) [16], bilateral texture filtering (BTF) [5] and 

rolling guidance filter (RGF) [39]. These, the so-called structure-

preserving filters, aim at filtering out textures or low-contrast 

details while retaining prominent image structures and sharp 

edges. These filters can serve as a useful preprocessing tool to 

improve the performances of many computer vision and compu-

tational photography applications like tone mapping, detail en-

hancement, colorization, intrinsic image decomposition and scene 

understanding [1,5,10, 14,16,27,33-35].  

Meanwhile, with the recent availability of affordable and reliable 

3D acquisition devices like Microsoft Kinect, Apple PrimeSense, 

Google Project Tango and Intel RealSense, there has been a 

renewed interest in incorporating depth information into the pipe-

lines for many different computer vision tasks, e.g. semantic 

image segmentation [6,11], object detection [11,26], object track-

ing [4,25] and visual saliency detection [7,21]. The cues derived 

from a depth map could help the algorithms to disambiguate the 

visual interpretation of the scene, and hence significantly improve 

their accuracy. For image smoothing, the depth map can supply 

additional information about the scene layout, which can be 

exploited to better distinguish the object boundaries. For ex-

ample, Figure 2 shows an image of a bathroom scene where the  

boundary of the white towel placed on the sink is visually indis-

tinguishable from the background whereas this object boundary is 

clearly visible in the corresponding depth map. 

 

 

    

Figure 1. Textured region examples which appear in some indoor images 
(from NYU-Depth v2 Dataset [23]). 

This study explores, for the first time, how much depth infor-

mation helps decomposing an image into its structure and texture 

components. Here, building on the framework in [16], we pro-

pose a novel depth-aware structure-preserving image smoothing 

model which utilizes additional depth features complementary to 

the image features. M oreover, we suggest to use a more effective 

kernel function that is based on KL-divergence between the 

distributions of extracted features. We note that our aim here is 

still separating the texture from the structure of an RGB image, 

but while attempting to do so, we additionally make use of depth 

cues. We assume that the depth image does not have an ultra-high 

resolution so that the details of the textured regions are not visible 

hence it is sufficient enough to work on smoothing the RGB 

image alone. Although our ideas can be applied to decomposition 

of depth images, it is beyond the scope of this paper.  

The rest of the paper is organized as follows: In Section 2, we 

review the previous studies on structure-preserving image 

smoothing, putting more emphasis on more recent work. In Sec-

tion 3, we describe our depth-aware image decomposition ap-

proach in detail. In Section 4, we present and discuss our experi- 

mental results on images from NYU-Depth v2 Dataset [24].  

Finally, in Section 5, we conclude the paper with a brief summary 

and some remarks on directions for future research. 
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Figure 2. An example RGB and depth image pair from NYU-Depth v 2  
Dataset [24]. The boundary of the white towel on the bathroom sink is not 

visible in the RGB image, but is apparent in the depth map (Best v iewed 
in color). 

2. Related Work 

In this section, we provide a brief review of traditional and more 

recent structure-preserving smoothing filters. All these filters try 

to decompose a given image into its structure and detail compo-

nents by applying smoothing while simultaneously preserving 

image edges or details. In terms of their underlying computational 

frameworks, the existing filtering approaches can be mainly 

grouped into four family of studies, as mode and median filters 

[17,18,30,31,38], optimization-based approaches [10,22,23,27, 

32,34], weighted averaging methods [5,9,12,16,20,28,36,39], and 

learning-based approaches [33,35,37]. Below we summarize 

these approaches and compare and contrast their properties. 

2.1. Mode and Median Filters 

As compared to popular mean filtering or Gaussian filters, mode 

and median filters can provide much more satisfactory results in 

removing high-contrast details. They simply replace the value of 

a pixel with the mode [17,30] or the median [17,31] computed 

within a local neighborhood rather than taking the average, or 

alternatively some median filters additionally employ weighted 

schemes [18,38]. All these filters are excellent at removing salt-

and-pepper noise but they are computationally expensive and 

they are not very successful in eliminating the oscillatory parts of 

images that generally correspond to the textured regions.  

2.2. Optimization-Based Approaches  

The filters in this category of works pose the smoothing operation 

as an optimization problem, and they differ from each other in 

their optimization frameworks. Examples include anisotropic 

diffusion model [22], total variation (TV) model [23], weighted 

least squares (WLS) [10], envelope extraction [27], L0 gradient 

minimization model [32] and relative total variation (RTV) mod-

el [34]. 

The anisotropic diffusion model of Perona and Malik [22] utilizes 

a PDE-based formulation where spatially-varying diffusivity 

values are calculated for each pixel based on local image gradi-

ents, which are then used to guide the smoothing process to pre-

serve edges and thus important image structures. However, this 

approach is very sensitive to noise and it can not distinguish 

texture from edges. 

Another well-known optimization model is the total variation 

(TV) model by Rudin et al. [23] which explicitly penalizes large 

gradient magnitudes via additional L1-norm based regularization 

term. There exist many different extensions to improve the basic 

formulation which propose to use other regularization and data 

fidelity terms [2,19]. This formulation can provide fairly good 

smoothing results but its drawback is that the corresponding 

smoothing process could influence the contrast. Recently, Xu et 

al. [34] proposed a global optimization scheme with a relative 

total variation (RTV) regularization scheme, which specifically 

addresses separation of structure from texture. However, RTV 

measure could fail if the scale and the shape of edges are similar 

to the nearby texture. 

Other examples to optimization based formulations are the WLS 

method by Farbman et al. [10], which uses weighted least 

squares, and the model of Xu et al. [32], which is based on the 

optimization on the L0 norm of image gradients. These two ap-

proaches are very successful to suppress low-contrast details but 

their performance deteriorates for high-contrast details and tex-

tures as their formulations are directly based on image gradients. 

In addition, Subr et al. [27] performs an extrema and then per-

forms texture smoothing by taking the average of the extremal 

envelopes. 

2.3. Weighted Averaging Methods  

Another popular kind of structure-preserving smoothing ap-

proaches is the weighted averaging methods, one representative 

of which is the widely-known bilateral filter (BF) [28]. Since its 

computational complexity is very high, many accelerated ver-

sions exist [9,20,36]. The basic formulation suffers from the so-

called halo effect, which is caused by oversmoothing of high-

contrast image edges.  

 

An important extension to the BF is the guided filter (GF) [12] 

which considers a guidance image, the same input image or a 

different one, which serves as the base for a locally linear trans-

form of the input image. As compared to BF, the guided image 

filter is much faster and better preserves the gradients around the 

edges. However, it is still susceptible to the halo artifacts. Recent-

ly, Zhang et al. propose an iterative scheme called the rolling 

guidance filter (RGF) [39], which is quite fast and gives superior 

structure-texture decomposition results. Likewise, an idea similar 

to GF is explored in [5], in which the authors introduce a modi-

fied RTV measure which is used to compute a guidance image to 

guide the separation of texture from the prominent image struc-

ture.  

An alternative patch-based local filtering approach, region covar-

iance smoothing (RCS), is presented in [16], in which the authors 

propose to use first and second order feature statistics to define a 

novel similarity measure based on region covariance descriptor 

[29]. Despite being very simple and easy to implement, the meth-

od is quite effective in smoothing out textured regions, while 

preserving important image structures. Since our depth-aware 

smoothing approach is based on this model, more details about 

this smoothing filter will be given in Section 3. 



2.4. Learning-Based Approaches 

The final group of approaches utilize learning-based strategies to 

train edge/structure-preserving filters directly from data. The first 

example of this kind of works is the SVM-based filter in [37] 

which learns a function to map feature vector representation of a 

pixel consisting of exponentiation of the pixel value and their 

Gaussian filtered responses to the desired output. Similarly, Xu et 

al. [33] propose deep edge filters, which uses deep convolutional 

neural networks to learn filters in the gradient domain from a 

large set of natural image patches and their smoothed versions as 

the training data. Lastly, Yang [35] introduce the notion of se-

mantic filters, which employs confidence map of a learning-based 

edge detection model trained on human labelled data to guide the 

smoothing process. 

3. The Approach 

The problem of decomposing an image 𝐼 into its structure (𝑆) and 

texture (𝑇) components is usually defined with the following 

composition equation: 

𝐼 = 𝑆 + 𝑇      (1) 

where 𝑆 should contain on the main structural parts where the 

textural part 𝑇 should reflect on the detail components, devoid of 

any noticeable structural information.  

In the following, we first introduce the image and depth features 

used in our smoothing framework in Section 3.1 and Section 3.2, 

respectively. In Section 3.3, we then describe how we modify the 

region covariance smoothing (RCS) method of Karacan et al. 

[16] to make it additionally consider depth information about the 

scene to improve its decomposition quality. 

3.1. Image Features  

In our implementation, we use the same set of image features 

utilized in [16], namely intensity, orientation and pixel coordi-

nates. Hence, an image pixel is represented with the following 7-

dimensional feature vector:  

𝐹𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) = [𝐼 (𝑥, 𝑦)  |
𝜕𝐼

𝜕𝑥
|    |

𝜕𝐼

𝜕𝑦
|   |

𝜕2𝐼

𝜕𝑥2|    |
𝜕2𝐼

𝜕𝑦2|   𝑥  𝑦]  (2) 

with 𝐼 denoting the pixel intensity, |
𝜕𝐼

𝜕𝑥
| , |

𝜕𝐼

𝜕𝑦
| , |

𝜕2𝐼

𝜕𝑥2| , |
𝜕2𝐼

𝜕𝑦2| express-

ing the first and second-order derivatives of the image intensities, 

estimated with the filters [-1 0 1] and [-1 2 -1] in horizontal and 

vertical directions, and (𝑥, 𝑦) corresponding to the pixel location. 

For a sample image, these features are presented in Figure 3. 

3.2. Depth Features 

The novelty of our work lies in the utilization of extra depth 

information for structure-texture decomposition. For the comput-

er vision problems which consider RGB-D images as the input, 

the most straightforward way to consider depth information is to 

treat the depth image as a standard grayscale image, e.g. in track-

ing [25].  

Our decomposition approach, however, uses a much richer and 

geometrically meaningful set of depth features, namely horizontal 

disparity (disparity), angle with gravity (angle), and height above 

ground (height), which are proven to be effective for object de-

tection and semantic segmentation in a prior work [11]. This, in 

the end, gives us a 3-dimentional representation to denote the 

pixelwise depth of a pixel, as follows: 

𝐹𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) = [disparity(𝑥, 𝑦) angle(𝑥, 𝑦) height(𝑥, 𝑦)]  (3) 

In Figure 4, we visualize these depth features, which are extracted 

from the depth map of the image shown in Figure 3(a). As will be 

discussed in Section 4, incorporating this encoding into the stand-

ard image filtering pipeline of [16] greatly improves the quality 

of the decompositions. 

3.3. Depth-Aware Structure-Texture Decomposition  

    

(a) Input image (b) 𝐼 (c) |𝜕𝐼

𝜕𝑥
| (d) |𝜕𝐼

𝜕𝑦
| 

    

(e) |𝜕2 𝐼

𝜕𝑥2
| (f) | 𝜕2𝐼

𝜕𝑦2
| 

(g) 𝑥 (h) 𝑦 

Figure 3. The image features used in the RCS method [16], namely intensity, orientation and pixel coordinates. 
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Our depth-aware image decomposition approach extends the 

structure-preserving smoothing approach of Karacan et al. [16] 

with additional depth features and a novel KL-divergence based 

kernel function. Below, we summarize the the method in [16] and 

describe how we incorporate the complementary depth features 

into this framework.  

The method of Karacan et al. [16] is a novel variant of the non-

local means filter [3], which employs region covariance de-

scriptor [29] and two different adaptive kernel functions to define 

patch similarity. The model represents each pixel by the first and 

second order statistics of visual features, which are extracted 

from a patch around the pixel. More formally, let 𝐹(𝑥, 𝑦) repre-

sent the 𝑊 × 𝐻 × 𝐷 dimensional feature image extracted from a 

given image 𝐼. Then, a region 𝑅 inside 𝐹 can be expressed by a 

𝑑 × 𝑑  covariance matrix 𝐂𝑅 , computed as:  

𝐂𝑅 =
1

𝑛−1
∑ (𝐳𝑖 − 𝜇)(𝐳𝑖 − 𝜇)𝑇𝑛

𝑖=1     (4) 

where 𝐳𝑖=1 … 𝑛 denotes the 𝑑-dimensional feature vectors inside 𝑅 

and 𝜇 is the mean of these feature vectors.  

In our study, we propose to extend 7-dimensional simple image 
features (𝐹𝑖𝑚𝑎𝑔𝑒) given in Section 3.1 with the depth features 

(𝐹𝑑𝑒𝑝𝑡ℎ) proposed in Section 3.2. Hence, we obtain a 10-

dimensional feature vector to represent each pixel of the given 

image: 

𝐹(𝑥, 𝑦) =  [𝐹𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) 𝐹𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦)]   (5) 

The region covariance descriptor only encodes the second-order 

statistical relationships among the features and moreover, meas-

uring the similarity between two covariance matrices is computa-

tionally expensive since they lie on a Riemannian manifold. To 

transform covariance matrices into Euclidean space, Hong et al. 

[13] exploit the property that every symmetric positive semi-

definite matrix (like covariance matrices) has a unique Cholesky 

decomposition and propose to represent a 𝑑 × 𝑑  covariance ma-

trix 𝐂 with a set of points 𝒮 = {𝐬𝐢}, which is computed as follows: 

𝐬𝐢 =  {
√2𝑑𝐋𝑖 if 1 ≤ 𝑖 ≤ 𝑑          

−√2𝑑𝐋𝑖 if 𝑑 + 1 ≤ 𝑖 ≤ 2𝑑
    (6) 

where 𝐋𝑖 denotes the ith column of the lower triangular matrix 𝐋 

obtained with the Cholesky decomposition 𝐂 = 𝐋𝐋𝑇.  

The structure component of a single pixel 𝐩 can be computed 

with the following simple equation: 

𝑆(𝐩) =
1

𝑍𝐩

∑ 𝑤𝐩𝐪𝐼(𝐪)𝐪∈𝑁(𝐩,𝑟)      (7) 

where 𝑁(𝐩, 𝑟) stands for the pixel neighborhood of size (2𝑟 +
1) × (2𝑟 + 1) centered at 𝐩, 𝑤𝐩𝐪 denotes the similarity between 

two pixels 𝐩 and 𝐪, which is measured according to the region 

covariance based kernel functions based on the 𝑘 × 𝑘 patches 
centered around these pixels, and 𝑍𝐩 = ∑ 𝑤𝐩𝐪𝐪  is just a normali-

zation factor. 

The effectiveness of RCS method depends on the kernel func-

tions 

used 

to 

es-

ti-

mate 

patch similarity. In [16], the authors propose two models based 

on two different kernel functions, which are explained below. 

The first model (Model 1) is based on the Euclidean encoding of 
covariance matrices in [13] where the patch similarity 𝑤𝐩𝐪 is 

defined as: 

𝑤𝐩𝐪 ∝ exp (−
‖𝜑(𝐂𝐩)−𝜑(𝐂𝐪)‖

2

2𝜎2 )    (8) 

with 𝜑(𝐂) = (𝜇, 𝐬1, … , 𝐬d, 𝐬d+1, … , 𝐬2d)𝑇 being a feature map-

ping function which concatenates the first-order statistics of the 

features (𝜇) to the vectorial form of the covariance 𝐂, and 𝜎 being 

a spatial parameter, controlling the level of smoothing.  

The second model (Model 2), on the other hand, uses a different 

kernel function, which is based on an approximation of the 

Bhattacharyya distance between two multivariate normal distribu-

tions, defined as: 

𝑤𝐩𝐪 ∝ exp (−
(𝜇𝐩−𝜇𝐪)𝐂−1(𝜇𝐩−𝜇𝐪)𝑇

2𝜎2 )    (9) 

where 𝐂 = 𝐂𝐩 + 𝐂𝐪 with 𝐂𝐩 and 𝐂𝐪 being the covariance matrices 

of the features extracted from the patches centered at pixels 𝐩 and 
𝐪, and 𝝁𝐩 anf 𝝁𝐪 are the means of these features, respectively. 

In addition to these two kernel functions, in this study, we also 

adopt the KL-divergence based distance measure in [15], which is 

proposed for sampling based image matting, as a third adaptive 

kernel function. We refer to this new model as Model 3. Mathe-

matically, the KL-divergence between two multivariate normal 

distributions is computed as: 

𝐷𝐾𝐿(𝐩, 𝐪) = 

1

2
(tr(𝐂𝐪

−1𝐂𝐩) + ln (
det(𝐂𝐪)

det(𝐂𝐩)
) + (𝜇𝐪 − 𝜇𝐩)𝐂𝐪

−1(𝜇𝐪 − 𝜇𝐩)
𝑇

− 𝑑)  

(10) 

Then, we define the similarity between two image patches cen-

tered at pixels 𝐩 and 𝐪, as follows: 

𝑤𝐩𝐪 ∝ exp (−
𝐷𝐾𝐿(𝐩,𝐪)+𝐷𝐾𝐿(𝐪,𝐩)

2𝜎2 )    (11) 

4. Experimental Results 

In this section, we present our experimental evaluation of the 

proposed depth-aware smoothing method. To qualitatively evalu-

ate our approach, we compare its results on a set of test images to 

the results of three state-of-the-art structure preserving smoothing 

methods, namely the original region covariance smoothing (RCS) 

method of Karacan et al. [16], relative total variation (RTV) 

model [34], and rolling guidance filter (RGF) [39], whose im-

plementations are publicly available on the web. To highlight the 

effectiveness of our approach, we also demonstrate its use in 

detecting structural edges as an application. 

4.1. Test images 

    
Depth  image disparity angle height 

Figure 4. The depth features used in our depth-aware smoothing approach, namely horizontal disparity, angle with gravity and height above ground. 

 



We evaluate our proposed structure-texture decomposition ap-

proach on the three challenging images shown in Figure 5, which 

are all from NYU-Depth v2 Dataset [24] where the depth maps 

are readily available. These images are carefully chosen for our 

task such that they all contain highly textured regions. The bed-

room_0003 image shows a bedroom with a diamond print pillow 

and wooden floor. The bookstore_0001 image shows an image of 

a bookstore where many colorful books are stacked on a wooden 

desk.  The home_office_0011 image is a cluttered indoor scene 

containing a desk in front of a bookcase that is places on a fluffy 

rug.  

 

  
(a) bedroom_0003 

  
(b) bookstore_0001 

  

(c) home_office_0011 

Figure 5. The test images from NYU-Depth v2 Dataset [24]. 

 

4.2. Comparison 

In our experiments, we test our approach against three recently 

proposed structure-preserving smoothing approaches, i.e. region 

covariance smoothing (RCS) [16], relative total variation (RTV) 

[34], and rolling guidance filter (RGF) [39]. In addition, we also 

incorporate our proposed KL-divergence based kernel function to 

RCS, which we refer to as RCS (Model 3). The nature of the 

problem requires us to qualitatively compare the results such that 

a better smoothing model should preserve structure while only 

smoothing out the fine details and texture, and the texture com-

ponent should not contain any information about the structure.  

 

In Figure 6-8, we respectively show the structure-texture decom-

position results of the test images introduced in Figure 5, together 

with the close-up views of some image regions that contain dif-

ferent textures. Here, we note that we fine tuned the parameters of 

each tested method. As for the RTV [34] and RGF [39] models, it 

seems that they both oversmooth some prominent structures as 

some structures are clearly visible in the corresponding texture 

components. Compared to these two methods, the RCS models 

(Model 1 and Model 2), and the variant with our proposed kernel 

function (Model 3) provide much better structure-texture decom-

position results and moreover they preserve smoothly varying 

shading information, as discussed in [16]. However, they slightly 

blur the edges during the smoothing process. As can be seen from 

the provided close-up views, the proposed depth-aware models 

(Model 1 and Model 3) always improve the quality of the corre-

sponding base models, such as better capturing the shading on the 

sofa (Figure 6), the structure of the pipes on the ceiling (Figure 

7), and the edges of the papers on the desk (Figure 8). Model 2, 

however, produces ineffective smoothing results. We suspect that 

the corresponding kernel function could be giving more weight to 

the depth features. Overall, our results suggest that considering 

depth in the filtering process is beneficial to obtain better struc-

ture-texture decompositions. 

4.3. Detecting Structural Edges 

For the edge detection algorithms, it is really hard to distinguish 

edges from oscillations in the images. A direct application of 

structure-preserving smoothing methods is to improve the per-

formance of this classical image processing task, where edge 

detection is performed not on the originally given input image but 

its smoothed version. In Figure 9, we illustrate this use, in which 

we apply the recently proposed edge detection algorithm devel-

oped by Dollar and Zitnick [8] on one of our test images and its 

structure components obtained with RCS (Model 1) [16] and its 

depth-aware version proposed in this study. As can be seen from 

the figure, the additional depth information improves the detec-

tion of the structural edges, especially the image edges associated 

with the sofa in the scene. 

5. Conclusion 

We have developed a novel depth-aware image smoothing ap-

proach to decompose an RGB-D image into its structural and 

textural parts. The proposed methods extends the region covari-

ance smoothing method of Karacan et al. [16] with additional 

geometrical features, which are extracted from the depth map of 

the given image. Moreover, we suggest to use a KL-divergence 

based adaptive kernel function to better approximate similarity 

between two image patches. This study has demonstrated, for the 

first time, that that additionally considering the depth information 

about the scene provides much better decomposition results, 

compared to the results of state-of-the-art structure-preserving 

smoothing methods that do not take into account any information 

about the depth. We have also shown a straightforward applica-

tion of our approach on better detecting the structural edges. 

Possible areas of future research would be to investigate other 

uses of this method, such as improving the intrinsic image de-

composition algorithm proposed in [14]. 
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RTV [34] (𝜆 = 0.015,𝜎 = 3) RCS (Model 1)[16](𝜎 = 0.1,𝑘 = 9) RCS (Model 2)[16] 𝜎 = 0.3,𝑘 = 9 RCS(Our Model 3)( 𝜎 = 0.3,𝑘 = 9) 

    
RGF[39](𝜎𝑠 = 4, 𝜎𝑟 = 0.025,𝑡 = 4) Our Model 1 (𝜎 = 0.2,𝑘 = 9) Our Model 2 (𝜎 = 2,𝑘 = 9) Our Model 3 (𝜎 = 0.75,𝑘 = 9) 

(a) 
 

    
RTV [34] RCS (Model 1) [16] RCS (Model 2) [16] RCS (Our Model 3)  

    
RGF [39] Our Model 1 Our Model 2 Our Model 3 

(b) 

Figure 6. (a) Structure-texture decomposition results on the bedroom_0003 image. (b) Some close-up views of the extracted structures. 

 

    
RTV [34] (𝜆 = 0.015,𝜎 = 3) RCS(Model 1)[16]( 𝜎 = 0.1,𝑘 = 9) RCS(Model 2)[16]( 𝜎 = 0.2,𝑘 = 9) RCS(Our Model 3)( 𝜎 = 0.2,𝑘 = 9) 

    
RGF[39](𝜎𝑠 = 4, 𝜎𝑟 = 0.025,𝑡 = 4) Our Model 1 (𝜎 = 0.1,𝑘 = 9) Our Model 2 (𝜎 = 2,𝑘 = 9) Our Model 3 (𝜎 = 0.3,𝑘 = 9) 

(a) 
 

    
RTV [34] RCS (Model 1) [16] RCS (Model 2) [16] RCS (Our Model 3)  
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(b) 

Figure 7. (a) Structure-texture decomposition results on the bookstore_0001 image. (b) Some close-up views of the extracted structures. 
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Figure 9. Edge detection results. Our depth-aware model better captures 

the structure, thus improving the edge detection process. 
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