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Abstract   Özet  

Occupational accidents in the construction industry occur 

more frequently when compared with other industries. 

Construction occupational accidents still have not been 

prevented at the desired level. Several studies in the 

literature have been conducted to predict the occurrence 

frequency of these accidents using classical statistical and 

machine-learning techniques. However, some challenges 

regarding imbalanced and multicollinearity problems 

present in the dataset are not considered while analyzing 

data with a large size and a large number of categorical 

variables. This study aims to predict the severity of non-

fatal construction accidents considering mentioned 

challenges to obtain more accurate results. In this study, 

standard binary logistic regression, Firth, Ridge, Lasso, 

and Elastic Net Regularized logistic regression models 

were used for the prediction of lost workdays in the 

construction industry and results were compared. The data 

used were classified into five groups: victim, workplace, 

accident time, accident and sequence of events, and post-

accident state-related variables. The results showed that 

Firth’s logistic model is the best-performing model and 

age, education, vocational education, workplace size, 

project type, working environment, accident month and 

year, general and specific activities, material agent, type of 

injury, and part of body injured are the most significant 

variables. This study, by providing interpretable machine 

learning tools, is the first attempt to use proposed models 

in the area of construction safety in the literature. 

 İnşaat sektöründe iş kazaları diğer sektörlere kıyasla daha sık 

meydana gelmektedir. İnşaat iş kazaları hâlâ istenilen 

düzeyde önlenememiştir. Literatürde klasik istatistiksel ve 

makine öğrenmesi teknikleri kullanılarak bu kazaların 

meydana gelme sıklığını tahmin etmek için birçok çalışma 

yapılmaktadır. Ancak, büyük boyutlu ve çok sayıda 

kategorik değişken içeren veriler analiz edilirken, veri 

setinde bulunan dengesizlik ve çoklu bağlantı sorunlarına 

ilişkin bazı problemler dikkate alınmamaktadır. Bu çalışma 

daha doğru sonuçlar elde edebilmek için bahsedilen 

problemleri dikkate alarak, ölümcül olmayan inşaat 

kazalarının şiddetini tahmin etmeyi amaçlamaktadır. Bu 

çalışmada, inşaat sektöründe iş günü kaybının tahmini için 

standart ikili lojistik regresyon, Firth, Ridge, Lasso ve 

Elastik Net düzenlileştirilmiş lojistik regresyon modelleri 

kullanılmış ve sonuçlar karşılaştırılmıştır. Kullanılan veriler 

kazazede, iş yeri, kaza zamanı, kaza ve olaylar zinciri ve 

kaza sonrası durumla ilgili değişkenler olmak üzere beş 

gruba ayrılmıştır. Sonuçlar, Firth'in lojistik modelinin en iyi 

performans gösteren model olduğunu ve yaş, eğitim, mesleki 

eğitim, işyeri büyüklüğü, proje türü, çalışılan ortam, kaza ayı 

ve yılı, genel ve özel faaliyetler, kullanılan materyal, yaranın 

türü ve yaranın vücuttaki yerinin en önemli değişkenler 

olduğunu göstermiştir. Yorumlanabilir makine öğrenimi 

araçları sağlayan bu çalışma, literatürde inşaat güvenliği 

alanında önerilen modelleri kullanmaya yönelik ilk 

girişimdir. 

Keywords: Occupational accidents, Construction industry, 

Logistic regression, Machine learning, Accident severity. 

 Anahtar kelimeler: İş kazaları, İnşaat sektörü, Lojistik 

regresyon, Makine öğrenmesi, Kaza şiddeti. 

1 Introduction  

Occupational accidents are complex and serious health 

and safety problems of the working life. Millions of people 

suffer from injuries and fatalities resulting from occupational 

accidents in the workplaces every year. Not only do these 

incidents impact the workers’ health, but they also create 

significant burdens for their families, employers, and society 

as a whole [1], [2]. In addition, occupational accidents may 

result in absenteeism from work, loss of income, loss of job, 

and time loss due to disabling injuries and medical check-

ups after the injured worker returns to work [3], [4].  

According to the estimation model of the International 

Labour Organization (ILO), there are approximately 3.5 

billion workers in the world [5]. Unfortunately, these 

workers are at risk of experiencing occupational accidents 

and diseases, resulting in 2.78 million deaths and 374 million 
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non-fatal accidents that cause more than four days of work 

missed each year [6]. Occupational accidents also lead to 

significant economic costs including long-term workday 

loss, safety corrections, medical treatment, survivor benefits, 

death-related costs, fines, and numerous indirect costs to the 

employers for occupational accidents are much and assorted. 

The economic cost of poor occupational safety and health 

(OSH) practices is estimated to be 3.94% of the global Gross 

Domestic Product (GDP) annually [6], [7].  

Despite the fact that annual surveys of occupational 

accidents in developing countries state that there is a 

decrease taking place in the incidence rate for occupational 

accidents, some problems may occur (i.e., identifying, 

recording, and reporting) in surveys and observation 

programs. Thus, this annual survey cannot show the rates 

precisely for occupational injuries and illnesses to evaluate 

the load of occupational accidents of the Nations correctly. 

There can be also other discussions for this decrement such 

as the results of surveys may have statistical artifacts or the 

survey may be completed in the higher unemployment times, 

and or shutdown period due to the epidemic. Besides, this 

decrement mentioned is not valid for every year and in 

general, the trend in the rates of injury and illness in 

workplaces and their costs is still upward. For these reasons, 

it is necessary to establish an OSH system in workplaces and 

carry out OSH studies and accident prevention activities in a 

systematic way in order to eliminate or reduce occupational 

accidents and their effects.  

In order to direct OSH-related activities in workplaces, 

occupational accident data should be analyzed. It is generally 

handled in terms of frequency and severity of the 

occupational accidents which indicates the number of 

incidents occurring in a given working period and expresses 

the effect on people when the accident occurs, respectively. 

In literature, accident frequency estimation is widely studied 

to accident severity. Besides, occupational accidents may 

result from various causes or variables. For this reason, much 

research has also been conducted to understand the etiologic 

mechanisms of occupational accidents, with most analyzing 

accident data to identify variables that may trigger them or 

to investigate the relationship between dependent and a 

limited number of independent accident variables. 

Therefore, it is important to analyze occupational accident 

data for learning overlapping characteristics of accidents, 

predicting future events, and reducing the frequency and 

severity of injuries. 

One industry that experiences a high frequency and 

severity of occupational accidents is the construction 

industry. In comparison to other industries globally, 

construction activities pose unique risks and have high rates 

of fatal and non-fatal injuries resulting from occupational 

accidents. 

According to the Bureau of Labor Statistics (BLS), in 

2021, 951 of 5.190 fatal occupational accidents in the USA 

and 386 of 1.382 fatal occupational accidents in Türkiye 

occurred in the construction industry [8], [9]. Despite the 

current legislation (Occupational Health and Safety Law No. 

6331 made in 2012 and then many regulations and 

communique gradually published under this law) that applies 

to OSH, numerous safety-related actions carried out, fines 

applied, and precautions taken to improve safety and reduce 

workplace accident rates in Türkiye, the number, and 

severity of accidents in the construction industry have not 

been reduced to the desired level. In fact, the number of these 

accidents in the construction industry in Türkiye has 

exhibited an increasing trend every year. According to the 

report of the Social Security Institution (SSI), 10.08% of the 

working group under the framework of article 4/1.a of Law 

No. 5510 were employed in the construction industry in 

2021. Data from the same year indicate that occupational 

accidents that occurred in the construction industry 

constituted 11.37% of all occupational accidents, 27.93% of 

all fatal accidents, and 23.53% of all accidents that cause 

permanent incapacity in Türkiye. These findings indicate 

that the construction industry is where accidents occur most 

frequently. 

In literature, there are two main sources of data used to 

analyze occupational accidents which are government 

statistics and empirical data from organizations. Besides, 

government statistics that have high-dimensional database is 

less used in accident studies. Moreover, researchers 

commonly use traditional statistical approaches such as 

frequency analysis and standard regression models to 

analyze occupational accident data with small sample sizes. 

Cakan [10] used logistic regression models to study the 

effects of a few accident variables on fatal and non-fatal 

construction fall accidents by examining case reports 

obtained from the Occupational Safety and Health 

Administration (OSHA) based on the degree of injury. Onder 

[11] analyzed non-fatal occupational accidents in an open-

pit mining operation using logistic regression method to 

estimate the workday loss. Akboga [12] assessed the risk 

factors affecting injury severity scores in construction 

accident reports obtained from the General Directorates of 

Social Security Institution (SSI) for three metropolitan cities 

using logistic regression. Bilim [13] used cross-tabulation 

and logistic regression analyses for highway and railway 

construction accidents that occurred from 2013 to 2016.  

Nevertheless, a comprehensive database is necessary to 

investigate occupational accidents and learn the links among 

variables addressed in the study. However, traditional 

statistical modelling strategies may not accurately analyze 

and interpret high-dimensional accident databases. Recently, 

machine learning and data mining techniques have been used 

with large data sets. These approaches are used to predict 

accident outcomes, learn from the data, and take actions 

related to the variables that make that prediction to avoid 

recurrent accidents. Table 1 outlines some of the prominent 

studies that have analyzed construction accident data using 

machine learning and data mining techniques. 

Moreover, in general, the accident data include mostly 

rare events, many independent variables, and mostly 

categorical variables with many levels. Furthermore, highly 

imbalanced distribution, and multicollinearity which is a 

situation in which some independent variables are too similar 

to one another and highly correlated also exist among 

accident variables. All these issues may arise a quasi- 
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Table 1. Some prominent studies on analyzing construction 

accident data 

Author (year) Application Field 

(data period) 

Technique(s) Prediction 

purpose 

Tixier et al. [14] Construction 

(2011-2014)  

Random Forest 

and Stochastic 

Gradient Tree 

Boosting 

Injury type, 

energy type, 

body part, and 

injury severity 

Yang et al. [15] Construction 

(2015) 

 

 

Support Vector 

Machine 

Near miss falls 

Kang and Ryu 

[16] 

Construction 

(2008-2014) 

Random Forest Occupational 

accident types 

Ayhan and 

Tokdemir [17] 

Construction Clustering, 

Artificial Neural 

Networks, Case-

Based Reasoning 

Accident 

outcome 

Lee et al. [18] Construction 

(2015-2020) 

Clustering, 

Cramer’s V, Chi-

square test, 

Support Vector 

Machine, 

Principal Comp. 

Analysis 

Injury severity 

level 

Choi et al. [19] Construction 

(2011-2016) 

Logistic 

regression, 

Decision tree, 

Random Forest, 

Adaptive 

boosting 

Risk of fatality 

accidents 

Recal and 

Demirel [20] 

Construction 

(2013-2016) 

Support Vector 

Machines, 

Multinomial 

logistic, C5.0 

decision tree, 

Stochastic 

Gradient 

Boosting, Neural 

Network 

Fatal and non-

fatal accidents as 

two-class and 

multi-class 

outcomes  

Tetik et al. [21] Construction 

(2010-2012) 

C5.0 Decision 

tree algorithm 

Determination of 

associations 

between the 

degree of injury 

and several 

variables 

Koc et al. [22] Construction 

(2011-2020) 

Random Forest, 

Naïve Bayes, K-

Nearest 

neighbor,  Neural 

Networks 

Fatal vs. non-

fatal accident  in 

İstanbul 

 

complete separation problem which occurs when some 

observations of independent (explanatory) accident variables 

with a dependent (outcome) variable have values of zero (0) 

and causes one or some of the independent variables can 

perfectly or nearly perfectly predict the dependent accident 

variable [23-25]. In the presence of a quasi-complete 

separation problem, the model may fail to converge, 

predictions become biased, inaccurate prediction results are 

obtained, the standard errors can be very large values, and 

one or more regression coefficients become infinite. In this 

case, standard regression models are not suitable to fit the 

accident data when there are above-mentioned problems 

since estimated parameters become unstable and the fitting 

performances of the models are reduced in standard models. 

Therefore, imbalanced, and multicollinearity issues should 

be carefully considered before estimating regression 

parameters. Hoewever, machine learning algorithms 

consider a balanced assumption in a data set, and they are 

focused on increasing accuracy. Under these circumstances, 

integrating some alternative techniques and pre-processing 

(i.e., handling missing values, choosing and encoding 

variables, splitting the dataset, etc.) tasks that transform the 

data into a consistent, complete, and valid format before it is 

used [23] to address and handle these problems mentioned is 

necessary to obtain high-quality and accurate prediction 

results. For these reasons, in recent years, regularized 

prediction models as alternative solution approaches have 

been widely used and successfully applied in order to address 

imbalanced and multicollinearity challenges in literature 

[24], [26-28]. 

Regularization is a way to overcome the drawbacks of the 

standard regression models by modifying standard models. 

In this process, unstable regression parameters are penalized 

using a tuning parameter to the prediction functions. There 

are several regularized regression models and Firth, Ridge, 

Lasso, and Elastic net regression models are well-known in 

literature. Regularized prediction models help to diminish 

the variance and sample errors in the model and estimate 

robust regression parameters against imbalanced and 

multicollinearity, and improve model performances [24], 

[27]. 

In literature, to our knowledge, only three studies have 

been conducted using regularized prediction models to 

analyze occupational accidents. Gavanji [24] analyzed 

occupational injury data from the year 2007 to 2016 using 

Firth, Lasso, Elastic Net logistic regression models to predict 

fatal injury claims. Gonzalez-Delgado [26] studied 

occupational injuries that occurred in 2012 to predict the 

accident outcome (fatal/non-fatal) using Firth’s logistic 

regression model.  Gallego et al. [28] examined accident data 

between 1995 and 2017 to predict frequency rate, lost 

workdays, and severity rate in terms of the labour market, 

economy and productive structure-related variables using 

Lasso, Elastic Net and Adaptive Lasso linear regression 

models. In these studies, accident data for a particular 

industry are not investigated, and regularized logistic 

regression models are only used to predict injury cases being 

fatal. Besides, the number of independent variables is less 

and model performances are only assessed in terms of 

Bayesian information criteria (BIC) and Akaike’s 

information criterion (AIC) in these studies.  

The construction industry has hazardous environments 

and Law No. 6331 states construction works are a very 

dangerous occupation. Thus, construction safety is one of the 

broader fields of research in occupational safety literature. 

Safety-related studies are mostly conducted in terms of risk 

assessment and precautions in the construction industry. In 

addition, although machine learning and data mining 

applications for prediction and discovering patterns purposes 

have been conducted in the area of construction safety, to the 

best of our knowledge, the application of regularized 

prediction models has not been investigated in this field in 

the literature. Moreover, the applications of regularized 

prediction models in the context of occupational accident 

data and the use of large and variable-rich accident datasets 
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have thus far been quite limited in the literature. These 

remaining gaps form the main objectives of this study.  

The facts that mentioned above highlighted a need for 

careful analysis of occupational accidents data and 

integration of new approaches to standard techniques. Thus, 

the aim of this study is to cover the issue of occupational 

accidents in the construction industry taking into account the 

defined challenges arising from analyzing accident data, and 

to investigate whether new approaches improve the 

prediction success as compared to the using standard binary 

logistic regression. For this reason, the present study will 

attempt to focus on several research questions for predicting 

the lost workdays (LWD) as an indicator of severity of 

occupational accidents in the construction industry: 

(1) How can occupational accidents that occurred in the 

construction industry be analyzed to account for 

large and categorical variable-rich data? 

(2) How can the imbalanced classification problem be 

solved when construction occupational accident data 

is analyzed in standard binary logistic regression?  

(3) How can the multicollinearity problem be solved 

when construction occupational accident data is 

analyzed in standard binary logistic regression? 

(4) How can the best-performing model be determined 

for occupational accident data used? 

(5) What is the association between the LWD that 

resulting from occupational accidents and the 

accident variables? 

This study contributes to the limited safety literature and 

analyses construction occupational accidents using the 

proposed approaches for the first time. The following section 

describes the prediction models, performance metrics and 

materials used in the study. Section 3 presents the results of 

the applications, and Section 4 contains the conclusions of 

the study.  

2 Material and method 

This section first presents the prediction methods applied 

and the criteria used to compare classification performance 

to achieve the aims of this study. The formal definitions of 

five different supervised machine learning algorithms, which 

are used to predict a categorical outcome, are provided in the 

following subsections. These algorithms consist of binary 

logistic regression as the standard model and the newer, 

regularized binary logistic regression techniques namely 

Firth, Ridge, Lasso, and Elastic net logistic regression 

models. In this study, binary logistic regression is used to 

model categorical dependent variable, the regularized binary 

logistic regression models are utilized to eliminate 

imbalanced and multicollinearity problems while modelling, 

and enhance the prediction performances of the models. 

Then, the data set and data pre-processing in this study are 

described. The data were manipulated by MS Excel 2016 and 

analyzed using glmnet and brglm packages in Rstudio 

software version 1.3.1093. 

2.1 Binary logistic regression model  

Let 𝑉 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1, 2, … , 𝑛} be a data set used in the 

analysis. Here, 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑟) is the input vector of r 

independent variables and 𝑦𝑖  is the output (dependent 

variable) measured on the 𝑖th observation, and 𝑛 is the size 

of the 𝑉. If the output is categorical and takes two possible 

values which are coded as 1 (outcome present, class of 

interest) and 0 (outcome absent), the problem is considered 

as a binary logistic regression problem [29]. 

The binary logistic regression model is widely used to 

analyze the relationship between independent variables and 

a dependent variable in classification problems. This model 

with multiple independent variables is formally expressed as 

follows [30]: 

 

𝜋𝑖(𝑥𝑖) = P(𝑦𝑖 = 1|𝑥𝑖)         

             =  
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥i1 + ⋯ +  𝛽𝑟𝑥𝑖𝑟)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥i1 + ⋯ +  𝛽𝑟𝑥𝑖𝑟)
 

(1) 

 

where 𝜋𝑖(𝑥𝑖) = P(𝑦𝑖 = 1|𝑥𝑖) represents the conditional 

probability that 𝑦𝑖  is equal to 1 given 𝑥𝑖 under 𝑖𝑡ℎ 

observation. Additionally, the unknown regression 

parameters 𝛽0 and 𝛽1 − 𝛽𝑟 indicate the constant term and 

slope coefficients of independent variables, respectively. 

After manipulating Equation (1) by applying logit 

transformation, the model transforms into a linear model as 

follows [30]: 

 

𝑙𝑜𝑔𝑖𝑡 [𝜋𝑖(𝑥𝑖)] = 𝑙𝑛 (
𝜋𝑖(𝑥𝑖)

1 − 𝜋𝑖(𝑥𝑖)
)

= 𝛽0 + 𝛽1𝑥𝑖1 … +  𝛽𝑟𝑥𝑖𝑟  

(2) 

 

The maximum likelihood method is generally used to 

determine the association between variables by constructing 

the likelihood function. The maximum likelihood approach 

tries to acquire the log-likelihood function maximum while 

determining unknown regression parameters. The likelihood 

and log-likelihood functions are expressed as follows, 

respectively [31]: 

 

𝐿(𝛽) = ∏ 𝜋(𝑥𝑖)
𝑦𝑖𝑛

𝑖=1 (1 − 𝜋(𝑥𝑖))1−𝑦𝑖    

(3) 

ℓ(𝛽) =  ∑[𝑦𝑖

𝑛

𝑖=1

ln(𝜋𝑖(𝑥𝑖)) + (1 − 𝑦𝑖) 𝑙𝑛(1 − 𝜋𝑖(𝑥𝑖))] 

 

After the unknown regression parameters are estimated, 

the model is tested with the likelihood ratio test. If the 

estimated parameters are different from zero, the 

significance of the parameters is examined with p-values. 

The threshold for p-value is selected as 0.05 or less in this 

study. 

There are some assumptions that should be checked for 

logistic regression. These basic assumptions including 

independence, linearity between the logit of the dependent 

and continuous independent variables, and the absence of 

multicollinearity must be met [32]. 

The binary logistic regression can suffer from 

multicollinearity problem. If the multicollinearity problem 

occurs, the Wald statistic, which confirms whether 

corresponding independent variable is significant or not by 

dividing estimated parameter by standard error gets smaller 

since the standard errors of the logistic regression parameters 
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are overestimated [29], [30]. Besides, a variable that 

contributes to the model is found to be statistically 

insignificant. Therefore, the presence of the multicollinearity 

is generally tested using correlation coefficients values in 

binary logistic regression. If this problem is detected, the 

relevant variables can be removed from the model, or the 

number of observations can be increased [33]. 

Moreover, in the regression analysis, categorical 

variables need to be digitized using dummy encoding. In this 

process, if a categorical variable has 𝑚 categories, 𝑚 −
1 indicator columns, in other words dummy variables are 

introduced. The rule of creating 𝑚 − 1 dummy variables is 

to avoid falling into the "dummy variable trap", that is, 

perfect collinearity or multicollinearity if there is a perfect 

relationship between the variables [34]. The remaining 𝑚th 

category of the categorical variable is treated as a reference 

variable.  

In binary logistic regression, the estimated conditional 

probabilities for each observation are usually compared with 

the cut-off point of 0.5 [33]. If 𝜋𝑖(𝑥𝑖) > 0.5, the value of 𝑦𝑖  

corresponding to this observation is 1; otherwise, it is 

classified as 0. 

2.2 Regularized binary logistic regression models 

When there is an imbalanced distribution between the 

levels of the dependent variable, and the frequency of events 

belonging to the class of interest is low, the unknown 

regression parameters can be estimated with deviations [35]. 

In other words, these features of the data may lead to quasi-

complete or complete separation problems which produce 

biased or infinite estimates of the unknown parameters. 

Additionally, the presence of multicollinearity is another 

challenge in working with data since this problem can reduce 

the efficiency of the estimations and cause misclassification. 

Regularized (shrinkage) regression models are used as 

alternative techniques to classic estimation or prediction 

approaches for solving separation and multicollinearity 

problems. The popularity of regularized regression models 

among machine learning algorithms has been increasing in 

recent years. Firth, Ridge, Lasso, and Elastic net logistic 

regression models have been widely used as regularized 

models in the literature for different fields [28], [36-38]. In 

regularized logistic regression models, the unknown 

regression parameters are estimated by adding a penalty term 

to the log-likelihood functions of related models. 

2.2.1 Firth’s logistic regression model  

Firth’s logistic regression model introduced by Firth [39] 

is used as a possible solution to maximum likelihood 

estimation for the issues of imbalanced distribution and 

separation. Firth’s logistic regression model is based on the 

regularized logistic likelihood estimator. The regularized 

likelihood function in Firth’s logistic model can be shown in 

Equation (4). 

 

𝐿𝐹𝑖𝑟𝑡ℎ(𝛽) =  𝐿(𝛽)  ×  |𝐼(𝛽)|
1
2

=  𝐿(𝛽)  ×  |𝑋𝑇𝑊𝑋|1/2 
(4) 

 

where 𝛽 represent the vector of unknown parameters, 

𝐿(𝛽)  indicates likelihood function, and 𝐼(𝛽) is Fisher 

information matrix in which  𝑋 is the model matrix and 𝑊is 

the diagonal matrix that is subject to 𝑑𝑖𝑎𝑔 (𝜋𝑖(𝑥𝑖) (1 −

𝜋𝑖(𝑥𝑖))) which indicates the impact of each observation on 

the model [39]. 

The log-likelihood function (ℓ(𝛽)) is penalized by 

Jeffrey’s invariant prior in Firth’s logistic model. After 

taking the natural log of the corresponding likelihood 

function, in this case, the regularized log-likelihood function 

can be written as [24]: 

 

ℓ𝐹𝑖𝑟𝑡ℎ(𝛽) =  ℓ(𝛽) + (1 2⁄ ) 𝑙𝑛|𝐼(𝛽)| (5) 

 

The second term of the regularized log-likelihood 

function is maximized at 𝜋𝑖(𝑥𝑖) = 0.5 when 𝛽 = 0. 

Therefore, the values of regression parameters are shrunk 

towards zero (0) [40]. 

2.2.2 Ridge logistic regression model  

The Ridge logistic regression model was initially 

introduced by Schaefer et al. [41] and later by Duffy and 

Santer [42] is used when there is multicollinearity between 

independent variables. This model solves log-likelihood 

function of the binary logistic regression model using 𝐿2-

norm penalty (‖𝛽𝑗‖
2

2
) with tuning parameter 𝜆 that controls 

the amount of shrinkage. The ridge logistic regression model 

is expressed as follows [42]: 

 

ℓ𝑅𝑖𝑑𝑔𝑒(𝛽) =  ℓ(𝛽) + 𝜆 ‖𝛽𝑗‖
2

2
= ℓ(𝛽) + 𝜆 ∑ 𝛽𝑗

2

𝑟

𝑗=1

 (6) 

 

In the ridge logistic regression model, the value of 𝜆 

shrinks the estimated values of regression parameters 

towards 0, but none of the estimated parameters becomes 

exactly 0 [43], [44]. It estimates coefficients for all of the 

independent variables included in the model. This case is 

considered as a disadvantage of ridge regularization since it 

reduces the interpretability of the model. If regularization 

and coefficient estimation for all of the variables are needed, 

this model can be utilized [45].  

2.2.3 Lasso logistic regression model  

The Lasso model proposed by Tibshirani [46] is another 

regularized regression approach. The Lasso regression 

model overcomes the disadvantage of ridge regression since 

it performs variable selection process. This property 

provides an advantage to interpret the results of model more 

easily than ridge model. Therefore, if the regularization is 

required and the weights of less important variables need to 

be reduced to 0, the lasso model can be applied. 

Lasso logistic regression model is obtained by adding 

different penalty term called 𝐿1-norm ( ‖𝛽𝑗‖
1

) with tuning 

parameter 𝜆 to the negative log-likelihood function. This 

model has the following form [36]: 
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ℓ𝐿𝑎𝑠𝑠𝑜(𝛽) =  − ℓ(𝛽) + 𝜆 ‖𝛽𝑗‖
1

= − ℓ(𝛽) + 𝜆 ∑|𝛽𝑗|

𝑟

𝑗=1

 
(7) 

There are some drawbacks that make model less stable in 

lasso logistic regression model. This model randomly 

chooses any variable among highly correlated variables and 

ignores the rest ones. Besides, it chooses at most 𝑛 

independent variables in high dimensional data (𝑟 >  𝑛). 

However, there may be more variable parameters than 𝑛 

without 0 values in the last model. Another drawback of this 

model is that lasso model function is not exactly convex; 

thus, different estimates can be obtained according to the 

order of different independent variables when fitting the 

model. 

2.2.4 Elastic net logistic regression model  

The Elastic net model introduced by Zou and Hastie [47] 

is used as another regularization and variable selection 

approach. This model addresses the drawbacks of Lasso 

regression. The Elastic net model is a combination of lasso 

and ridge models. In other words, it uses a mixture of 𝐿1-

norm and 𝐿2-norm penalties that conveys the features of both 

lasso and ridge, respectively. The Elastic net approach uses 

another parameter to tune, and provides a balance association 

between reducing the size of parameters and shrinking them 

to 0.  

The elastic net logistic regression model adds two 

regularization terms to the log-likelihood function with a 

mixing parameter 𝛼 that indicates the degree of balance 

between lasso and ridge approaches. This model can be 

formulated as follows [47]: 

 

ℓ𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡(𝛽) =  ℓ(𝛽)

+ 𝜆 [
1

2
(1 − 𝛼) ∑ 𝛽𝑗

2

𝑟

𝑗=1

+ 𝛼 ∑|𝛽𝑗|

𝑟

𝑗=1

] 
(8) 

 

The elastic net logistic regression model is equivalent to 

ridge logistic regression when 𝛼 = 1 and to lasso logistic 

regression when 𝛼 = 0. The value of 𝛼  is usually taken as 

0.5 to perform an equal combination of ridge and lasso 

models. 

2.3 Choice of tuning parameter 

Determining the value of tuning parameter 𝜆 (lambda) is 

critical since it controls the parameter estimates. The 𝜆 

parameter is both a monotonically decreasing function of the 

variance of parameter estimation and a monotonically 

increasing function of the bias of this parameter [27]. When 

the value of 𝜆 increases, the variance decreases and the bias 

increases. The tuning parameter 𝜆 is generally determined by 

data-driven approaches such as k-fold cross validation.  

In k-fold cross-validation, the data set is split into to k 

groups, where one group is used as a test data set and other 

k-1 groups form the training data set [48]. 5-fold or 10-fold 

cross-validation is commonly used. In 10-fold cross 

validation, the data is splitting into 10 sub-samples of equal 

size [48], [49]. A training set consisting of 9 sub-samples are 

used to fit the model and test set consisting of the rest of one 

sub sample is utilized to assess the model’s validity. This 

process is repeated until each sub-sample is used once as a 

test set. Then, the value of 𝜆 is calculated.  

In literature, there are two main 𝜆 parameters which are 

known as 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 and 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒. The values of 

𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛  and 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 indicate the value of 

minimum misclassification error and the most regularized 

model of the misclassification error within one standard error 

of the minimal error, respectively [50]. The values of 

estimated parameters depend on the amounts of 𝜆. It is 

important to choose right value of 𝜆 to avoid overfitting and 

underfitting issues for the model. Cross validation is widely 

utilized to choose the proper 𝜆 values that provide a proper 

balance between variance and bias and diminish the 

misclassification error. For this reason, 𝑐𝑣. 𝑔𝑙𝑚𝑛𝑒𝑡() from 

glmnet package is used to determine the best value of 𝜆 in 

this study. 

2.4 Prediction performance comparison criteria 

2.4.1 Akaike’s information criterion (AIC) 

The AIC is a measure of fit to assess the different models. 

It adds a penalized term with the number of estimated 

parameters included in the model to the value of the log-

likelihood. The value of AIC is computed as follows [30]: 

 

𝐴𝐼𝐶 =  −2(ℓ(𝛽)) + 2𝑑 (9) 

 

where 𝑑 is the number of estimated parameters. Smaller 

AIC values mean better model fit. 

2.4.2 Confusion matrix and related metrics 

The confusion matrix and several metrics obtained with 

the help of this matrix are used to measure the prediction 

performance of the logistic regression models. The general 

structure of the confusion matrix for the binary classification 

with actual values on one axis and predicted values 

calculated with the classification algorithm on another are 

given in Table 2. 

 

Table 2. Confusion matrix of binary classification 

problem [51] 

 Predicted values 

Actual values Negative Positive 

Negative (N) True Negative (TN) False Positive 

(FP) 
Positive (P) False Negative (FN) True Positive 

(TP) 

 

True positive (𝑇𝑃) and True negative (TN) show 

outcomes that are correctly predicted as positive and 

negative, respectively. Contrarily, False positive (FP) and 

False negative (FN) indicate the negative and positive 

outcomes that are wrongly predicted as positive and 

negative, respectively. After constructing the confusion 

matrix, four basic rates are utilized to describe the predictive 

quality of a model. These rates are given below [51-53]: 
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𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

  

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

  

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (13) 

 

The true positive rate is also known as 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 or 

𝑟𝑒𝑐𝑎𝑙𝑙. The true negative rate is also called 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 and 

the positive predictive value is synonyms with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 
Other confusion matrix metrics are a combination of the 

basic rates. Besides, if there is an imbalanced distribution 

among classes, balanced accuracy, F1 and G-means metrics 

are used to avoid the misleading results rather than others 

[54]. Metrics used in this study are defined with their related 

formulations below. 

Balanced accuracy is a widely used metric to deal with 

imbalanced data. It is the arithmetic mean of the true positive 

and true negative rates. In other words, it adds sensitivity and 

specificity scores and divides their addition by two. This 

score is computed as follows [51]:  

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

   
(14) 

 

𝐹1 is another appropriate metric in the case of 

imbalanced class distribution. 𝐹1 is defined as the harmonic 

mean of the precision and sensitivity [52]. It can be 

formulated as follows: 

 

𝐹1 =    
2 × (

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

×  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
)

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

)
   (15) 

 

𝐺 −mean is also used as an evaluation metric for the 

imbalance data learning. 𝐺 −mean is the geometric mean of 

sensitivity and specificity [54]. It can be defined as follows: 

 

𝐺 − 𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
    (16) 

 

The values of comparison metrics are between 0 (the 

worst possible) and 1 (the best). The higher the comparison 

metrics scores, the better result. There are no standard range 

rules for all the metrics. These scores strongly depend on 

how imbalanced and high-dimensional the data is. Therefore, 

they are interpreted based on particular prediction problems 

in the literature [29], [55-56].  

2.4.3 Areas under the curves 

The receiver operating characteristic (𝑅𝑂𝐶) curve and 

precision-recall (𝑃𝑅) curve with areas under these curves  

have also been widely used to compare the performance of 

models [29], [52]. The 𝑅𝑂𝐶 curve plots the proportion of 

true positive rate (sensitivity or recall) and false positive rate 

(1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) of the model. The area under the 𝑅𝑂𝐶 

curve (𝑅𝑂𝐶 𝐴𝑈𝐶) represents the performance of the model 

by the rate of correct classification of positive and negative 

samples. The random prediction value which is a baseline 

measure for 𝑅𝑂𝐶 𝐴𝑈𝐶 is 0.50. If the value of 𝑅𝑂𝐶 𝐴𝑈𝐶 is 

smaller than 0.50, it indicates that the model performance is 

worse than the random prediction. A 𝑅𝑂𝐶 𝐴𝑈𝐶 value close 

to 1 means better performance for the model. However, if 

this value is 1, it implies that the model has the perfect skill 

to classify observations into classes. Alternatively, a 𝑃𝑅 

curve which plots the precision against the recall and the area 

under the 𝑃𝑅 curve (𝑃𝑅 𝐴𝑈𝐶) can be used to evaluate the 

model performance. The baseline random prediction value 

for 𝑃𝑅 𝐴𝑈𝐶 is the rate of actual positives (𝑃) to total of 

actual positives and actual negatives (𝑁) which is (𝑃/(𝑃 +
𝑁)) [55]-[56]. The 𝑃𝑅 𝐴𝑈𝐶 value greater than this rate 

represents better model performance. The 𝑃𝑅 curve is more 

appropriate for imbalanced data since it ignores the true 

negatives. 

2.5 Data set, data pre-processing and data analysis process 

The national data set used for this study is the 

construction occupational non-fatal injury data from January 

2013 to December 2017 for workers in the Central Anatolia 

region which accounts for approximately 20% of the 

occupational accidents in the construction industry in 

Türkiye. The data was obtained from the Turkish SSI. A total 

of 25,944 non-fatal occupational accidents were extracted 

from the data set after omitting missing values and “no 

information” entries as a first stage of data pre-processing.  

All variables were categorized into five groups as victim-

related, workplace-related, accident time-related, accident 

and sequence of events-related and post-accident state-

related variables. Additional independent variables are 

included in this study using the time and date variables of the 

data set and these are work experience, accident year, 

accident month, accident day and hour of the accident. Some 

numerical variables; age, work experience and size of 

workplace were required to be converted to categorical 

variables after checking logistic regression assumptions 

since the assumption of linearity between the logit of the 

dependent and continuous independent variables is not 

satisfied. Geographical locations were grouped by taking 

into account the insured working population of the cities.  In 

this study, the categories of the independent variables 

followed the European Statistics on Accidents at Work 

(ESAW) methodology. 

Age group, education level, marital status, last work 

experience, OSH and vocational training status of the victim, 

and occupation of the victim based on International Standard 

Classification of Occupations (ISCO-08) groups are 

included in the victim-related variables. In addition, local 

unit where accident occurs, economic activity of the project 

based on Nomenclature of Economic Activities (NACE) 

codes which group organizations according to the their 

business activities, total number of workers working at the 
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workplace of the victim, the place/post occupied by the 

victim, and the type of workplace, working area or location 

where the victim was present or working just before the 

accident are the variables within workplace-related group. 

Besides, accident-time related group provide information 

about year, month, day, and hour which accident occurs. 

Accident and sequence of events-related group addresses 

information regarding the process where the accident take 

place, main type of work/task being performed by the victim 

at accident time, the activity being performed by the victim 

just before the accident, the contact that injured the victim, 

and the event that triggers the accident, the tool, object, or 

instrument involved in the abnormal event. Moreover, post-

accident state-related group reveal information regarding the 

physical results for the victim, the part of the body injured, 

and the number of days where the victim is unfit for work 

due to an accident at work.  

The number of LWD was taken as the dependent variable 

in the analysis of accident data. The variable LWD refers to 

the number of days away from work where the workers who 

suffered an occupational accident are unfit for work [57]. In 

ESAW methodology, only cases of accidents with more than 

three days of absence are considered. Therefore, the variable 

LWD was converted into a categorical variable based on 

ESAW criteria in this study to predict the probability of non-

fatal occupational accidents with more than and less than or 

equal to three LWDs. The dependent variable was coded as 

“1” for more than 3 days lost accidents, and ‘0’ for less than 

or equal to 3 days lost accidents. Table 3 presents all 

variables considered in this study with their brief definitions 

and descriptive statistics. 

 
Table 3.  Variable set used for the study  

Variable Group Variable Subcategory of Variable (𝑛) 

 

Victim-related 

Age Group (AGE_GR) AGE.GR.1: 14-24 age (𝑛 = 6089) 

 AGE.GR.2: 25-34 age (𝑛 = 8265) 

 AGE.GR.3: 35- 44 age (𝑛 = 6184) 

  AGE.GR.4: 45-54 age (𝑛 = 4296) 

  AGE.GR.5: 55-64 age (𝑛 = 1046) 

  AGE.GR.6: 65 age and above (𝑛 = 64) 

 Education (EDU) EDU.1: Not literate  (𝑛 = 100) 

  EDU.2: Literate (𝑛 = 3785) 

  EDU.3: Primary school (𝑛 = 8181)                       

  EDU.4: Secondary school (𝑛 = 7889) 

  EDU.5: High school (𝑛 =5077) 

  EDU.6: Undergraduate level  (𝑛 = 912) 

 Marital status (MAS) MAS.1: Single (𝑛 = 8164) 

  MAS.2: Married (𝑛 = 16906) 

  MAS.3: Other (𝑛 = 874) 

 Experience (EXP) EXP.1: ≤ 1 month (𝑛 = 9894) 

 EXP.2: 1-6 months (𝑛 = 10863)      

 EXP.3: 6-12 months (𝑛 = 2516)       

 EXP.4: 12-18 months (𝑛 = 931)       

 EXP.5: 18-24 months (𝑛 = 481) 

  EXP.6: > 24 months (𝑛 = 1259) 

 OSH education (OSHEDU) OSHEDU.1: Yes (𝑛 = 23740), OSHEDU.2:  No (𝑛 = 2204) 

 Vocational education (VOCEDU) VOCEDU.1: Yes (𝑛 = 20482), VOCEDU.2: No (𝑛 = 5462) 

 Occupation (OCC) OCC.1: Managers (𝑛 = 18) 

 OCC.2: Professional (𝑛 = 214) 

 OCC.3: Technicians and associate professionals (𝑛 = 2143)      

 OCC.4: Clerical support workers (𝑛 = 117)    

 OCC.5: Service and sales workers (𝑛 = 342)   

 OCC.6: Skilled agricultural, forestry and fishery workers (𝑛 = 48) 

 OCC.7: Craft and related trades workers (𝑛 = 12688) 

 OCC.8: Plant and machine operators, and assemblers  (𝑛 = 2127) 
     OCC.9: Elementary occupations (𝑛 = 8247)  

Workplace-related 
Geographical Location (GEOL) GEOL.1: Ankara (𝑛 = 14261)       

GEOL.2: Eskisehir- Sivas (𝑛 = 3047) 

GEOL.3: Konya-Kayseri  (𝑛 = 4990)   

 GEOL.4: Others (𝑛 = 3646) 

 Project Type (PRT) PRT.1: Construction of buildings  (𝑛 = 16424)   

 PRT.2: Construction of roads and railways  (𝑛 = 2932)   

 PRT.3: Construction of utility projects (𝑛 = 2273)    

 PRT.4: Construction of other civil engineering projects (𝑛 = 468) 

 PRT.5: Demolition and site preparation  (𝑛 = 426)  
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Table 3. Variable set used for the study (continued) 

Variable Group Variable Subcategory of Variable (𝑛) 

  PRT.6: Electrical, plumbing and other construction installation         

activities (𝑛 = 1555)   PRT.7: Building completion and finishing  (𝑛 = 923) 

  PRT.8: Other specialised construction activities  (𝑛 = 943) 

 Size of the Workplace (SIZW) SIZW.1: < 10 workers (𝑛 = 2164) 

 SIZW.2:  10-20 workers (𝑛 = 2198) 

  SIZW.3: 21-49 workers (𝑛 = 3348) 

  SIZW.4: 50-99 workers (𝑛 = 3050) 

  SIZW.5: 100-199 workers (𝑛 = 3097) 

  SIZW.6:  200-249 workers (𝑛 = 1015) 

  SIZW.7: 250-499 workers (𝑛 = 3114) 

  SIZW.8:  500-999 workers (𝑛 = 2736) 

  SIZW.9: 1000 and above workers (𝑛 = 5222) 

 
Workstation (WOR) WOR.1: Usual workstation or within the usual local unit of work                     

(𝑛 = 5919)  
 

  
WOR.2: Occasional or mobile workstation or in a journey on behalf  

of the employer (𝑛 = 17607) 

  WOR.3: Other workstation  (𝑛 = 2418) 

 Working environment (WOE) WOE.1: Industrial site  (𝑛 = 1977) 

 
WOE.2: Construction site, construction, opencast quarry, opencast   

mine  (𝑛 = 19324) 
  WOE.3: Farming, breeding, fish farming, forest zone (𝑛 = 27) 

 
WOE.4: Tertiary activity area, office, amusement area, miscellaneous     

(𝑛 = 154)   

 WOE.5: Health establishment  (𝑛 = 134) 

 WOE.6: Public area  (𝑛 = 1088) 

 WOE.7: In the home  (𝑛 = 99) 

  WOE.8: Sports area (𝑛 = 23) 

  WOE.9: In the air, elevated, excluding construction sites (𝑛 = 37) 

  WOE.10: Underground, excluding construction sites (𝑛 = 238) 

  WOE.11: On /over water, excluding construction sites (𝑛 = 16)  

 
WOE.12: In high pressure environments, excluding construction sites     

(𝑛 = 29) 

 WOE.13: Other (𝑛 = 2798) 

Accident time-related 
Year (YEAR) YEAR.1: 2013 (𝑛 = 3595), YEAR.2: 2014 (𝑛 = 4302), 

YEAR.3: 2015 (𝑛 = 4955), YEAR.4: 2016 (𝑛 = 6220),   
YEAR.5: 2017 (𝑛 = 6872) 

Month (MONTH) 

 
MTH.1: January (𝑛 = 1259), MTH.2: February (𝑛 = 1452), MTH.3: March  

(𝑛 = 1930), MTH.4: April (𝑛 = 2171),  MTH.5: May (𝑛 = 2334), MTH.6: June  

(𝑛 = 2213), MTH.7: July (𝑛 = 2326), MTH.8: August (𝑛 = 2808),  
MTH.9: September (𝑛 =  2203), MTH.10: October (𝑛 = 2396),   
MTH.11: November (𝑛 = 2664), MTH.12: December (𝑛 = 2188)     
 Day (DAY) DAY.1: Monday (𝑛 = 4185), DAY.2: Tuesday (𝑛 = 4038), DAY.3: Wednesday  

(𝑛 = 4026),  DAY.4: Thursday (𝑛 = 4116), DAY.5: Friday (𝑛 = 4022),  
DAY.6: Saturday (𝑛 = 3395), DAY.7: Sunday (𝑛 = 2162) 

Hour (HOUR) HOUR.1: 00:00-01:59 (𝑛 = 174), HOUR.2: 02:00-03:59 (𝑛 = 210),  

HOUR.3: 04:00- 05:59 (𝑛 = 160), HOUR.4: 06:00-07:59 (𝑛 = 372),  

HOUR.5:  08:00-09:59 (𝑛 = 4613), HOUR.6: 10:00-11:59 (𝑛 = 7022), 

HOUR.7:  12:00-13:59 (𝑛 = 2918), HOUR.8: 14:00-15:59  (𝑛 = 5393), 

HOUR.9:  16:00-17:59 (𝑛 = 3787), HOUR.10: 18:00-19:59 (𝑛 = 663),  

HOUR.11: 20:00-21:59 (𝑛 = 374), HOUR.12: 22:00-23:59 (𝑛 = 258) 

Accident and sequence 

of events-related 

Process of accident (PRA)  PRA.1: At work (𝑛 = 23463) 

 PRA.2: Rest break (𝑛 = 877) 

 PRA.3: Busy with occupational activity (𝑛 = 1422) 

 PRA.4: Commuting from work to home (𝑛 = 182) 

General activity (GENAC) GENAC.1: Production, manufacturing, processing, storing (𝑛 = 3076) 

GENAC.2: Excavation, Construction, Repair, Demolition (𝑛 = 14577) 

GENAC.3: Agricultural type work, forestry, horticulture, fish farming,  

work with live animals (𝑛 = 33) 

GENAC.4: Service provided to enterprise and/or to the general public;  

intellectual activity (𝑛 = 250) 

GENAC.5: Other work related to above first four tasks (𝑛 = 294) 

  GENAC.6: Movement, sport, artistic activity (𝑛 = 399) 

 
 GENAC.7: Other working processes not listed in the above classification 

(𝑛 = 7315) 
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Table 3. Variable set used for the study (continued) 

Variable Group Variable Subcategory of Variable (𝑛) 

 
Specific Activity (SPECAC) SPECAC.1: Operating machine (𝑛 = 719) 

 
 SPECAC.2: Working with hand-held tools (𝑛 = 4777) 

 
 SPECAC.3: Driving/being on board a means of transport or handling equipment    

(𝑛 = 989) 

 
 SPECAC.4: Handling of objects (𝑛 = 2900) 

 
 SPECAC.5: Carrying by hand (𝑛 = 3331) 

 
 SPECAC.6: Movement (𝑛 = 3426) 

 
 SPECAC.7: Presence (𝑛 = 1615) 

 
 SPECAC.8: Other specific physical activities (𝑛 = 8187) 

 
Mode of Injury (MODI) MODI.1: Contact with electrical voltage, temperature, hazardous  

substances (𝑛 = 493) 

 
 MODI.2: Drowned, buried, enveloped (𝑛 = 23) 

  
MODI.3: Horizontal or vertical impact with or against a stationary  

object (the victim is in motion) (𝑛 = 4025) 

 
 MODI.4: Struck by object in motion, collision with (𝑛 = 3088) 

 
 MODI.5: Contact with sharp, pointed, rough, coarse material agent          

(𝑛 = 3579) 

 
 MODI.6: Trapped, crushed, etc. (𝑛 = 2516) 

 
 MODI.7: Physical or mental stress (𝑛 = 180) 

 
 MODI.8: Bite, kick, etc. (animal or human) (𝑛 = 107) 

 
 MODI. 9: Other contacts (𝑛 = 11933) 

 
Deviation (DEV) DEV.1: Deviation due to electrical problems, explosion, fire (𝑛 = 439) 

 
 DEV.2: Deviation by overflow, overturn, leak, flow, vaporisation, emission  

(𝑛 = 1267) 

 

 DEV.3: Breakage, bursting, splitting, slipping, fall, collapse of material agent 

(𝑛 = 3520) 

DEV.4: Loss of control of machine, means of transport or handling equipment,  

handheld tool, object, animal (𝑛 = 4160) 

DEV.5: Slipping, stumbling and falling, fall of persons (𝑛 = 6081) 

DEV.6: Body movement without any physical stress (𝑛 = 1519) 

DEV.7: Body movement under or with physical stress (𝑛 = 846) 

DEV.8: Shock, fright, violence, aggression, threat, presence (𝑛 = 121) 

DEV.9: Other Deviations (𝑛 = 7991) 

 

Material agent of the     

Deviation (MAT_DEV) 
MAT_DEV.1: No material agent (𝑛 = 2217) 

MAT_DEV.2: Buildings, structures, surfaces (at ground level) (𝑛 = 2155) 

MAT_DEV.3: Buildings, structures, surfaces (above ground level) (𝑛 = 2010) 

MAT_DEV.4: Buildings, structures, surfaces (below ground level) (𝑛 = 183) 

MAT_DEV.5: Systems for the supply and distribution of materials, pipe networks 

(𝑛 = 208) 

MAT_DEV.6: Motors, systems for energy transmission and storage (𝑛 = 57)  

MAT_DEV.7: Hand tools (𝑛 = 4003) 

MAT_DEV.8: Machines and equipment  (𝑛 = 1590) 

MAT_DEV.9: Conveying, transport and storage systems (𝑛 = 554) 

MAT_DEV.10: Land and other transport vehicles (𝑛 = 1288) 

MAT_DEV.11: Materials, objects, products, machine or vehicle components, 

debris, dust (𝑛 = 3581) 

  MAT_DEV.12: Chemical, explosive, radioactive, biological substances  (𝑛 = 128) 

  MAT_DEV.13: Safety devices and equipment (𝑛 = 24) 

 
 MAT_DEV.14: Office equipment, personal equipment, sports equipment, weapons,  

domestic appliances (𝑛 = 66) 

  MAT_DEV.15: Living organisms and human-beings (𝑛 = 101) 

  MAT_DEV.16: Bulk waste (𝑛 = 92) 

  MAT_DEV.17: Physical phenomena and natural elements (𝑛 = 287) 

  MAT_DEV.18: Other material agents (𝑛 = 7400) 

Post-accident state-

related 

Type of injury (TINJ) TINJ.1: Wounds and superficial injuries (𝑛 = 12322) 

 TINJ.2: Bone fractures (𝑛 = 3416) 

 TINJ.3: Dislocations, sprains and strains (𝑛 = 3563) 

  TINJ.4: Traumatic amputations (𝑛 = 67) 

  TINJ.5: Concussion and internal injuries (𝑛 = 202) 
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Table 3.  Variable set used for the study (continued) 

Variable Group Variable Subcategory of Variable (𝑛) 

 
 TINJ.6: Burns, scalds and frostbites (𝑛 = 322) 

 
 TINJ.7: Poisonings and infections (𝑛 = 207) 

 
 TINJ.8: Effects of sound, vibration and pressure (𝑛 = 38) 

 
 TINJ.9: Shock (𝑛 = 61) 

 
 TINJ.10: Multiple injuries (𝑛 = 219) 

 
 TINJ.11: Others (𝑛 = 5527) 

 
Part of Body Injured (PBINJ) PBINJ.1: Head (𝑛 = 4194) 

 
 PBINJ.2: Neck, inclusive spine and vertebra in the neck (𝑛 = 248) 

 
 PBINJ.3: Back, including spine and vertebra in the back (𝑛 = 865) 

 
 PBINJ.4: Torso and organs (𝑛 = 802) 

 
 PBINJ.5: Upper Extremities (𝑛 = 8739) 

 
 PBINJ.6: Lower Extremities (𝑛 = 5432) 

 
 PBINJ.7: Whole body and multiple sites (𝑛 = 608) 

 
 PBINJ.8: Other Parts of body injured (𝑛 = 5056) 

 
Lost Workdays (LWD) Less than or equal to 3 days (≤ 3 days) (𝑛 = 19010) 

More than 3 days (> 3 days) (𝑛 = 6934) 

The distribution and relationship of each independent 

variable with the dependent variable were investigated by 

cross-tabulation approach. It was determined that there was 

no significant relationship between only the independent 

variables of WOE, DAY and HOUR and the dependent 

variable of LWD. However, these three variables were also 

included in the analysis to reveal the combined effect 

between LWD and all independent variables. In this way, 

the prediction models were created for LWD, and the 

validity of these models was tested without initial variable 

selection in the present study. 

All categorical variables were handled as another step of 

data pre-processing. 157 dummy variables were created 

from 24 independent variables. Additionally, data were split 

into training set and test set data by using a stratified random 

sampling approach with a ratio of 70:30. The purpose of 

using the stratified random sampling method is to give an 

equal chance of being selected for each data element in the 

data set and to reduce the prediction variance. In this 

process, the training set was used to develop and tune the 

models and the test set was used to test the models’ 

predictive performance.  

3 Results and discussions  

Out of a total of 25,944 accidents considered in the 

study, 18,161 accidents were used in the training set and 

7,783 accidents were used in the test set. Table 4 provides 

the distribution details of the LWD variable in both the 

training and test data sets. 

 

Table 4. Distribution of the variable of LWD on training 

and test data   

Data set ≤ 3 days  > 3 days Total 

Train set 13,307 4,854 18,161 

Test set 5,703 2,080 7,783 

 

In our analysis, as the event of interest, the number of 

accidents with more than 3 workdays lost was low (< 27%). 

It appears that there is an imbalanced distribution between 

the two classes of the dependent variable, since the event of 

interest, in other words the positive class (> 3 days), 

occurred less frequently than the negative class (≤ 3 days). 

The reference categories of the dependent variable and 

independent variables were determined through the 

normative approach which considers the most interesting 

comparisons in the logical sense. The presence of 

multicollinearity between variables in the training data set 

was checked through pearson and spearman’s rho 

correlation analyses. It was observed that many independent 

variables were highly correlated with each other in the 

training data.   

Due to the mentioned reasons, regularized logistic 

regression models are needed to deal with the imbalanced 

distribution and multicollinearity issues. Thus, in this study, 

five different prediction models, which are explained in 

detail in Section 2, were used to predict more than 3 

workdays lost on the training data and to compare their 

prediction abilities. Moreover, an attempt to optimize the 

tuning parameters of the prediction models was done using 

a using 10-fold cross-validation algorithm to increase the 

prediction success of the models. 

3.1 Application of prediction models  

The results obtained from the application of Binary 

logistic, Firth, Ridge, Lasso and Elastic Net logistic 

regression methods to develop the corresponding regression 

models for the LWD indicator are presented in this section.  

To run Ridge, Lasso and Elastic net logistic models, 

glmnet package in Rstudio is used. For fitting these models, 

cv.glmnet function from glmnet package is utilized. This 

function conducts 10-fold cross-validations to choose the 

proper value of tuning parameter 𝜆. Besides, the brglm 

package in Rstudio is used to run Firth’s model. To develop 

the Elastic Net model, the mixing parameter α-value was 

chosen as 0.5 to give equal weight to Ridge and Lasso 

logistic regression models.  

In Figure 1, the plots depict the variation of coefficients 

and the misclassification error against tuning parameter log 

lambda in Ridge, Lasso and Elastic Net logistic regression 

models obtained for the accident data set of 70% training 

data set. 
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Figure 1. The variation of coefficients in Ridge, Lasso 

and Elastic net logistic regression models (on the left) 

and 10-fold cross-validated estimate of the 

misclassification prediction errors (on the right) as a 

function of log lambda showing the regularization of 

coefficients 

 

In Figure 1, there are two vertical lines on the right-side 

plots. The red and blue dashed lines show the logarithmic 

transformation values of the 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛  and 

𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒   values calculated for each model by cross- 

validation algorithm, respectively. Additionally, the 

numbers on the top of the plots indicate nonzero coefficient 

estimates, in other words, the independent variables 

selected by the relevant models for a given log lambda. As 

can be seen from the Ridge logistic plot, this number is the 

same as the number of variables in the data and is constant 

for all the lambda values. On the other hand, in Lasso and 

Elastic Net plots, the values of some coefficients are zero, 

which means that the relative variables are insignificant and 

removed in the models. 

The Ridge logistic yields 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 =0.0314 and    

𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 =0.0549 with 157 dummy variable of 

coefficient estimates. The number of variables in the lasso 

logistic model is 6 with 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 =0.0232 and 4 with 

𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 =0.0307. Besides, the number of variables 

remaining in the model via Elastic net logistic is 124 if 

𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 =0.0022 while it is 8 if 

𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 =0.0385. 

Standard binary and Firth’s logistic regression can 

indicate if an independent variable is statistically 

significantly related with the dependent variable based on 

p-values or confidence intervals. Nevertheless, Ridge, 

Lasso and Elastic net models do not generate meaningful p-

values or confidence intervals [58]. Thus, the coefficient 

estimates of Ridge, Lasso and Elastic Net logistic models 

for each of the lambda values are provided. The estimated 

coefficients in the standard and regularized logistic 

regression models are shown in Table 5. 

According to the results of the coefficient estimate, the 

absolute coefficient values of the variables computed 

mostly appears to be decreased and approach zero via Ridge 

logistic compared to the standard binary and Firth’s logistic 

regression models. Moreover, many variables are removed 

by Lasso and Elastic net logistic models. However, there 

may be some insignificant variables in Lasso and Elastic net 

logistic models since both models can eliminate less 

important variables from the model and perform better. The 

results also showed that the relationship between some 

variables and LWD is negative. This implies that a one-unit 

increase in the value of the variables that have a positive 

relationship with LWD increases the probability of 

occupational accidents resulting in more than three LWD, 

while those that are negatively correlated have a decreasing 

effect on this probability and less susceptible to LWD. 

In the standard binary logistic regression model, the 

variables determined to be significant were AGE_GR.4, 

EDU.3, EDU.4, EDU.5, VOCEDU.2, SIZW.9, PRT.2, 

PRT.3, WOE.2, WOE.5, WOE.10, MTH.8, MTH.9, 

YEAR.2, YEAR.3, YEAR.4, YEAR.5, GENAC.6, 

SPECAC.7, SPECAC.8, MAT_DEV.8, TINJ.2, TINJ.3, 

TINJ.4, TINJ.5, TINJ.6, TINJ.7, TINJ.9, TINJ.10, PBINJ.2, 

PBINJ.3, PBINJ.4, PBINJ.5, PBINJ.6, PBINJ.7 and 

PBINJ.8 according to the p-values (p<0.05). All 

independent variables found to be significant with the 

binary logistic regression model were also significant in 

Firth's logistic model except the variables EDU.3 and 

YEAR.3. 

The most important variable in Ridge, Lasso and Elastic 

net logistic models was “TINJ.2” since it had the greatest 

absolute value of the coefficient. It also indicates that there 

is a positive relationship between bone fractures (TINJ.2) 

and LWD. Additionally, “PBINJ.5” is another most 

important variable in Lasso lambda.1se model and there is 

a positive relationship between upper extremity injuries 

(PBINJ.5) and LWD. 

Overall, “TINJ” and “PBINJ” have the most influence 

on LWD in all models. Other variables were chosen 

differently in each model. Besides, the effects of each 

variable used in the data set in consideration of the reference 

category can be interpreted by using the 𝐸𝑥𝑝(𝛽𝑖) for 

positive and 
1

𝐸𝑥𝑝(𝛽𝑖)
 for negative coefficient estimates. For  

example, “TINJ.1” was chosen as reference category in the 

variable of “TINJ”. According to the “TINJ.1”, the 

probability of having more than three LWD is 4.4915 

(𝐸𝑥𝑝(1.5022)) times higher in accidents with “TINJ.2” in 

the standard binary logistic model (if all other variables are 

held constant). This probability value is equal to 4.4233 in 

Firth’s logistic, 3.6987 in Ridge lamda.min, 3.7889 in Lasso 

lambda.min, 4.4812 in Elastic net lambda.min, 3.2851 in 

Ridge lambda.1se, 3.4542 in Lasso lambda.1se and 3.5233 

in Elastic net lambda.1se logistic model. Additionally, 

occupational accidents with “PBINJ.5” have the highest 

probability of exposure to more than three LWD (4.4812 

times) compared to the reference category “PBINJ.1” by 

considering Lasso lambda.1se model. Using the same 

calculation approach, the relationship between LWD and 

other independent variables can be discussed for each 

model. In this study, the results were also interpreted based 

on the best-performing model in the following subsection.  
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Table 5. Coefficient estimates of the training data for different logistic regression models  

Variable  Subcategory of 
Variable 

Binary 
logistic 

Firth's 
logistic 

Ridge logistic 
lambda.min 

Lasso logistic 
lambda.min 

Elastic net 
logistic 

lambda.min 

Ridge logistic 
lambda.1se 

Lasso logistic 
lambda.1se 

Elastic net 
logistic 

lambda.1se 

 Constant -1.0157 -0.9613 -1.4153 -1.2448 -1.6338 -1.3453 -1.2151 -1.2528 
AGE_GR AGE_GR.1 Reference 

AGE_GR.2 0.0272 0.0275 -0.0113   -0.0170   
AGE_GR.3 0.0772 0.0769 0.0422  0.0425 0.0361   
AGE_GR.4 0.2230 0.2217 0.1645  0.1817 0.1472   
AGE.GR.5 0.0360 0.0372 0.0129   0.0147   
AGE.GR.6 0.5695 0.5827 0.4316  0.4055 0.3710   

EDU EDU.1 -0.3989 -0.3736 -0.4741  -0.4985 -0.4224   
EDU.2 0.1362 0.1306 -0.0734  -0.0906 -0.0807   
EDU.3 0.2407 0.2343 0.0302   0.0177   
EDU.4 0.2864 0.2797 0.0665  0.0421 0.0496   
EDU.5 0.3437 0.3362 0.1199  0.1028 0.0980   
EDU.6 Reference 

MAS MAS.1 -0.0598 -0.0588 -0.0887  -0.0800 -0.0895   
MAS.2 Reference 
MAS.3 -0.0807 -0.0785 -0.0659  -0.0395 -0.0570   

OCC OCC.1 Reference 
OCC.2 -0.5835 -0.5938 0.0565   0.0427   
OCC.3 -0.7863 -0.7974 0.0075   0.0092   
OCC.4 -1.2572 -1.2365 -0.3709  -0.3232 -0.3262   
OCC.5 -0.8742 -0.8797 -0.0712  -0.0118 -0.0655   
OCC.6 0.2617 0.2439 0.8269  0.8615 0.7198   
OCC.7 -0.8305 -0.8416 -0.0337  -0.0192 -0.0340   
OCC.8 -0.8647 -0.8744 -0.0229   -0.0130   
OCC.9 -0.7729 -0.7839 0.0352  0.0354 0.0366   

EXP EXP.1 -0.0754 -0.0743 -0.0281  -0.0042 -0.0212   
EXP.2 -0.0961 -0.0948 -0.0505  -0.0293 -0.0436   
EXP.3 -0.0320 -0.0308 0.0077  0.0065 0.0127   
EXP.4 0.1244 0.1246 0.1173  0.1376 0.1042   
EXP.5 0.0763 0.0786 0.0978  0.0929 0.0951   
EXP.6 Reference 

OSHEDU OSHEDU.1 Reference 
OSHEDU.2 -0.1273 -0.1261 -0.0481  -0.0485 -0.0250   

VOCEDU VOCEDU.1 Reference 
VOCEDU.2 0.0974 0.0966 0.0872  0.0753 0.0818   

GEOL GEOL.1 Reference 
GEOL.2 -0.0178 -0.0168 -0.0133   -0.0107   
GEOL.3 0.0938 0.0930 0.0985  0.0940 0.0959   
GEOL.4 -0.0014 -0.0008 0.0048   0.0082   

SIZW SIZW.1 Reference 
SIZW.2 0.0694 0.0693 0.1179  0.0841 0.1181   
SIZW.3 -0.0059 -0.0060 0.0566  0.0218 0.0622   
SIZW.4 -0.0049 -0.0051 0.0553  0.0142 0.0598   
SIZW.5 -0.0502 -0.0496 0.0222   0.0303   
SIZW.6 -0.0795 -0.0781 -0.0102  -0.0030 -0.0034   
SIZW.7 -0.0516 -0.0513 0.0137   0.0186   
SIZW.8 -0.1587 -0.1573 -0.0764  -0.0985 -0.0635   
SIZW.9 -0.4091 -0.4063 -0.2931 -0.1452 -0.3577 -0.2610 -0.0487 -0.1839 

PRT PRT.1 Reference 

PRT 

PRT.1 
Reference 

PRT 

PRT.1 

Reference 

PRT 

 PRT.2 0.2140 0.2127 0.1460  0.1644 0.1214   
 PRT.3 0.1711 0.1701 0.1255  0.1247 0.1092   
 PRT.4 0.1736 0.1741 0.1395  0.1174 0.1243   
 PRT.5 0.1605 0.1601 0.1488  0.1067 0.1361   
 PRT.6 0.0917 0.0919 0.0793  0.0512 0.0680   
 PRT.7 0.0488 0.0503 0.0590  0.0250 0.0553   
 PRT.8 0.1313 0.1331 0.1445  0.1098 0.1367   

WOR WOR.1 Reference 
 WOR.2 0.0658 0.0648 0.0296  0.0124 0.0197   
 WOR.3 0.0535 0.0538 0.0266   0.0182   

WOE WOE.1 Reference 
 WOE.2 -0.1977 -0.1952 -0.0991  -0.0852 -0.0808   
 WOE.3 -0.9006 -0.7954 -0.6249  -0.5436 -0.5295   
 WOE.4 -0.1828 -0.1710 -0.0790   -0.0586   
 WOE.5 -1.9123 -1.8124 -1.2082  -1.4822 -1.0003   
 WOE.6 -0.1571 -0.1540 -0.0240   0.0049   
 WOE.7 -0.5308 -0.5021 -0.3451  -0.2764 -0.2904   
 WOE.8 -0.4056 -0.3705 -0.2378  -0.1253 -0.1607   
 WOE.9 0.2243 0.2254 0.3943  0.2731 0.4101   
 WOE.10 -1.3909 -1.3513 -0.9601  -1.1265 -0.8084   
 WOE.11 -0.7494 -0.5837 -0.4099  -0.2184 -0.3236   
 WOE.12 -0.9307 -0.7365 -0.5717  -0.4394 -0.4725   
 WOE.13 -0.1631 -0.1607 -0.0284   -0.0045   

DAY DAY.1 0.0004 0.0000 -0.0026   -0.0036   
 DAY.2 -0.0387 -0.0388 -0.0317  -0.0181 -0.0273   
 DAY.3 0.0625 0.0612 0.0536  0.0566 0.0478   
 DAY.4 0.0767 0.0757 0.0652  0.0677 0.0590   
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Table 5. Coefficient estimates of the training data for different logistic regression models (continued) 

Variable  Subcategory of 

Variable 

Binary 

logistic 

Firth's 

logistic 

Ridge logistic 

lambda.min 

Lasso logistic 

lambda.min 

Elastic net 
logistic 

lambda.min 

Ridge logistic 

lambda.1se 

Lasso logistic 

lambda.1se 

Elastic net 
logistic 

lambda.1se 

 DAY.5 -0.0287 -0.0291 -0.0229  -0.0024 -0.0214   
 DAY.6 -0.0733 -0.0729 -0.0582  -0.0448 -0.0508   
 DAY.7 Reference 

MONTH MTH.1 Reference 
 MTH.2 0.0451 0.0445 0.1200  0.1049 0.1177   
 MTH.3 0.0278 0.0273 0.0959  0.0855 0.0919   
 MTH.4 -0.0586 -0.0584 0.0258  0.0033 0.0283   
 MTH.5 -0.0435 -0.0435 0.0371  0.0206 0.0397   
 MTH.6 -0.0817 -0.0812 0.0111   0.0179   
 MTH.7 -0.1725 -0.1713 -0.0600  -0.0603 -0.0463   
 MTH.8 -0.3056 -0.3035 -0.1772  -0.1998 -0.1535   
 MTH.9 -0.2576 -0.2553 -0.1313  -0.1416 -0.1101   
 MTH.10 -0.1009 -0.1004 -0.0052   0.0032   
 MTH.11 -0.1395 -0.1386 -0.0369  -0.0300 -0.0271   
 MTH.12 -0.1692 -0.1676 -0.0682  -0.0618 -0.0555   

YEAR YEAR.1 Reference 
 YEAR.2 -0.1810 -0.1793 -0.0503  -0.0799 -0.0194   
 YEAR.3 -0.1251 -0.1241 -0.0074  -0.0328 0.0167   
 YEAR.4 -0.3551 -0.3520 -0.2068  -0.2598 -0.1662   
 YEAR.5 -0.3434 -0.3405 -0.2046  -0.2548 -0.1669   

HOUR HOUR.1 Reference 
 HOUR.2 0.3119 0.2989 0.1563  0.1207 0.1371   
 HOUR.3 0.3107 0.3010 0.1306  0.0806 0.1082   
 HOUR.4 0.3119 0.2972 0.1543  0.1143 0.1363   
 HOUR.5 0.1432 0.1267 0.0170   0.0156   
 HOUR.6 0.1622 0.1455 0.0290  0.0189 0.0241   
 HOUR.7 0.0934 0.0773 -0.0259  -0.0185 -0.0243   
 HOUR.8 0.1159 0.0995 -0.0106  -0.0037 -0.0124   
 HOUR.9 0.1287 0.1124 0.0024   0.0008   
 HOUR.10 -0.0223 -0.0352 -0.1194  -0.1165 -0.1065   
 HOUR.11 0.0714 0.0608 -0.0578  -0.0125 -0.0570   
 HOUR.12 0.2333 0.2213 0.0970  0.0496 0.0875   

PRA PRA.1 Reference 
 PRA.2 -0.1177 -0.1139 -0.1442  -0.0994 -0.1405   
 PRA.3 -0.0577 -0.0563 -0.0423  -0.0142 -0.0305   
 PRA.4 -0.2428 -0.2353 -0.1939  -0.1365 -0.1625   

GENAC GENAC.1 Reference 
 GENAC.2 -0.0336 -0.0339 -0.0627  -0.0719 -0.0588   
 GENAC.3 -1.0275 -0.8903 -0.8028  -0.7573 -0.6904   
 GENAC.4 -0.1769 -0.1700 -0.1980  -0.1837 -0.1708   
 GENAC.5 0.0243 0.0269 0.0041   0.0075   
 GENAC.6 0.3482 0.3434 0.2663  0.2363 0.2451   
 GENAC.7 0.0647 0.0637 0.0187   0.0144   

SPECAC SPECAC.1 Reference 
 SPECAC.2 -0.2140 -0.2127 -0.0238   -0.0112   
 SPECAC.3 -0.1531 -0.1535 0.0191   0.0297   
 SPECAC.4 -0.2072 -0.2060 -0.0170  -0.0030 -0.0069   
 SPECAC.5 -0.1832 -0.1820 0.0166   0.0272   
 SPECAC.6 -0.1916 -0.1906 0.0026   0.0150   
 SPECAC.7 -0.3771 -0.3735 -0.1524  -0.1568 -0.1233   
 SPECAC.8 -0.3296 -0.3273 -0.1087  -0.1203 -0.0876   

MODI MODI.1 Reference 
 MODI.2 0.6744 0.6878 0.5999  0.4827 0.5497   
 MODI.3 0.0203 0.0154 -0.0188   -0.0171   
 MODI.4 -0.0237 -0.0281 -0.0770  -0.0262 -0.0788   
 MODI.5 -0.0180 -0.0228 -0.0785  -0.0204 -0.0891   
 MODI.6 0.2306 0.2239 0.2156 0.0061 0.2222 0.2079  0.0553 
 MODI.7 0.0544 0.0541 0.0561  0.0001 0.0625   
 MODI.8 -0.3863 -0.3510 -0.3427  -0.1980 -0.3052   
 MODI.9 0.0745 0.0690 0.0396  0.0461 0.0343   

DEV DEV.1 Reference 
 DEV.2 0.0684 0.0645 -0.0406  -0.0268 -0.0416   
 DEV.3 0.1326 0.1267 0.0136   0.0066   
 DEV.4 0.1585 0.1525 0.0547  0.0305 0.0484   
 DEV.5 0.2415 0.2352 0.1415  0.1191 0.1397   
 DEV.6 0.0207 0.0165 -0.0899  -0.0777 -0.0907   
 DEV.7 0.2490 0.2430 0.1228  0.1049 0.1102   
 DEV.8 0.2740 0.2782 0.0441   0.0043   
 DEV.9 0.0113 0.0063 -0.1068 -0.0426 -0.1082 -0.1107  -0.0749 

MAT_DEV MAT_DEV.1 Reference 
 MAT_DEV.2 -0.0691 -0.0685 -0.0778  -0.0651 -0.0730   
 MAT_DEV.3 0.0264 0.0266 0.0187   0.0216   
 MAT_DEV.4 0.0957 0.0977 0.0325   0.0135   
 MAT_DEV.5 -0.1715 -0.1599 -0.1741  -0.1042 -0.1595   
 MAT_DEV.6 0.3715 0.3801 0.2447  0.1989 0.2214   
 MAT_DEV.7 0.1238 0.1222 0.0834  0.0878 0.0669   
 MAT_DEV.8 0.2347 0.2326 0.2214  0.2400 0.2044   
 MAT_DEV.9 0.1262 0.1264 0.1077  0.0881 0.1052   
 MAT_DEV.10 -0.0134 -0.0118 0.0138   0.0235   
 MAT_DEV.11 -0.0080 -0.0083 -0.0386  -0.0002 -0.0430   
 MAT_DEV.12 -0.1314 -0.1051 -0.1771  -0.0216 -0.1751   
 MAT_DEV.13 0.4908 0.5203 0.3596  0.2958 0.3089   
 MAT_DEV.14 -0.5279 -0.4768 -0.4116  -0.3604 -0.3637   
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Table 5. Coefficient estimates of the training data for different logistic regression models (continued) 

Variable  Subcategory of 

Variable 

Binary 

logistic 

Firth's 

logistic 

Ridge logistic 

lambda.min 

Lasso logistic 

lambda.min 

Elastic net 
logistic 

lambda.min 

Ridge logistic 

lambda.1se 

Lasso logistic 

lambda.1se 

Elastic net 
logistic 

lambda.1se 

 MAT_DEV.15 0.0981 0.1122 0.0436   0.0253   
 MAT_DEV.16 -0.3660 -0.3499 -0.2488  -0.1956 -0.1982   
 MAT_DEV.17 0.0987 0.1000 0.0747  0.0280 0.0685   
 MAT_DEV.18 -0.0431 -0.0436 -0.0563  -0.0425 -0.0569   

TINJ TINJ.1 Reference 
 TINJ.2 1.5022 1.4869 1.3080 1.3321 1.4999 1.1894 1.2396 1.2594 
 TINJ.3 0.4988 0.4943 0.4073 0.2574 0.5001 0.3490 0.1289 0.2573 
 TINJ.4 0.9954 0.9830 0.8841  0.9465 0.8080   
 TINJ.5 0.9945 0.9893 0.5784  0.8566 0.4482   
 TINJ.6 0.7725 0.7640 0.5619  0.6587 0.4739   
 TINJ.7 -2.3372 -2.1740 -1.2040  -1.7795 -0.9727   
 TINJ.8 -0.7712 -0.5640 -0.7011  -0.4920 -0.6314   
 TINJ.9 -1.3893 -1.2226 -1.0243  -1.0357 -0.8826   
 TINJ.10 1.2233 1.2100 0.9930  1.1707 0.8764  0.2058 
 TINJ.11 -0.0164 -0.0163 -0.0796   -0.1030   

PBINJ PBINJ.1 Reference 
 PBINJ.2 0.4130 0.4180 0.0491  0.1852 -0.0165   
 PBINJ.3 0.6203 0.6158 0.2517  0.4455 0.1787   
 PBINJ.4 0.4497 0.4474 0.1118  0.2753 0.0546   
 PBINJ.5 0.8363 0.8289 0.4440 0.0732 0.6858 0.3534 1.2396 0.1220 
 PBINJ.6 0.8077 0.8003 0.4193  0.6503 0.3332  0.0631 
 PBINJ.7 0.7690 0.7629 0.3762  0.5959 0.2875   
 PBINJ.8 0.5778 0.5725 0.1826   0.4060 0.0976     

 
3.2 Prediction performance comparison  

A comparison analysis was conducted between the 

standard and regularized logistic regression models that 

were used in this study to determine the best model to 

predict the severity of non-fatal construction accident data. 

Several model performance comparison criteria were 

utilized to compare the models. Table 6 depicts model 

comparison AIC values for these prediction models. 

 

Table 6. AIC values for the prediction models 

Model AIC 

Binary logistic  19,020 

Firth’s logistic 19,022 

Ridge logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 

Ridge logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 

Lasso logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 

Lasso logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 

Elastic net logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 

Elastic net logistic 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 

19,126 

19,206 

19,660 
19,822 

18,998 

19,598 

 

According to the AIC values, Elastic net logistic with 

lambda.min has the lowest AIC score. Besides, it was also 

observed that there was a very minimal difference between 

the AIC values of the models. Therefore, it is understood 

that different model comparison criteria should also be 

considered. 

Confusion matrices were used as another approach to 

evaluate the models’ performances. The cut-off value was 

taken as 0.50, which is commonly used, to construct 

confusion matrices on the training and test data and to 

obtain the performance values of the standard and 

regularized logistic regression models. Table 7 provides the 

accuracy, balanced accuracy, F1-score, G-mean, ROC AUC 

and PR AUC values of each model for both the training and 

test dataset. These metrics are selected because they are 

appropriate for binary classification [51-56]. 

The rates of correctly predicting the case of losing more 

than 3 working days are 27.38% 

(1329 1329 + 3525 = 27.38) ⁄ and 25.14% 

(523 523 + 1557 = 25.14)⁄  on the training and test data, 

respectively. However, when it comes to 3 or fewer working 

days, the rates are 93.48%  

(12439 12439 + 868 = 93.48) ⁄  on the training set and 

93.48% (5331 5331 + 372 = 93.48) ⁄ on the test set. 

Thus, although the accuracy rates of the standard binary 

logistic regression model are high in the confusion matrices 

obtained on both training and test data, the rates of correctly 

predicting the positive class are lower than those of negative 

ones. This result is due to the imbalanced distribution 

among the categories of the dependent variable “LWD”. It 

is, thus, preferable to assess models through balanced 

accuracy, F1-score, G-mean and PR AUC values instead of 

the accuracy and ROC AUC values commonly used.  

The balanced accuracy value obtained is lower than the 

accuracy value since the weights of the positive and 

negative classes of the dependent variable are taken to be 

equal. Besides, F1, G-mean and PR AUC values focus on 

the positive class that is less frequently in the dependent 

variable and thus, they give a more unbiased result like the 

balanced accuracy metric.  

It was observed that the performance results on training 

and test data sets were close to each other and were good. 

This means that there is no overfitting or underfitting 

problem and a successful prediction can be obtained when 

new data are used in the prediction models. According to 

the performance results on the training data, it is determined 

that Firth's logistic regression model had better performance 

values (bolded) in predicting the LWD. However, this case 

changes on the test data based on the performance metrics. 

The performance results of the test set show that while the 

Lasso logistic with lambda.min fits the data better in terms 

of balanced accuracy, F1-score, and G-mean values, the 

Elastic net logistic with lambda.min gives better result 

based on the PR AUC performance metric.  

Furthermore, the ROC AUC and PR AUC curves for 

comparing all models visually in the training and test data 

sets are depicted in Figure 2 and Figure 3.  
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Table 7. Performance measurements for the prediction models 

 

  
(a)  (b)  

Figure. 2. Comparison of (a) ROC curve (b) PR curve on the training data set 

As it can be seen from the graphs, the ROC AUC values 

of all models are higher than the baseline random prediction 

value of 0.50. Additionally, the baseline random prediction 

value for the PR curve was computed as 0.2672 by dividing 

the actual positive events by the sum of actual positive and 

negative events ([4854 (4854 + 13307)]⁄ ) for training 

and [2080 (2080 + 5703)]⁄  for test sets) in this study. The 

PR AUC values of all models are greater than 0.2672 on 

both the training and test sets. Thus, the results indicate that 

the performance of the models constructed for LWD is 

good. 

 

 

 

  Confusion matrix       

Data 

set 
Model 

TN FP 
Accuracy 

Balanced 

Accuracy 
F1-score G-mean ROC AUC PR AUC 

FN TP 

Train 

set 

Binary logistic  12439 3525 0.7581 0.6043 0.3770 0.5059 0.7235 0.4934 

868 1329 

 Firth’s logistic 12438 3523 0.7582 0.6045 0.3774 0.5063 0.7236 0.4936 

869 1331 

 Ridge logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 12597 3697 0.7573 0.5925 0.3443 0.4750 0.7217 0.4899 

710 1157 

 Ridge logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 12703 3840 0.7553 0.5818 0.3134 0.4466 0.7199 0.4881 

604 1014 

 Lasso logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 12380 3511 0.7556 0.6035 0.3771 0.5074 0.6813 0.4575 

927 1343 

 Lasso logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 12431 3578 0.7547 0.5985 0.3643 0.4956 0.6748 0.4500 

876 1276 

 Elastic net logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 12471 3568 0.7575 0.6010 0.3687 0.4983 0.7226 0.4907 

836 1286 

 Elastic net logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 12504 3682 0.7530 0.5906 0.3433 0.4764 0.6885 0.4622 

803 1172 

Test 

 set 

Binary logistic  5331 1557 0.7522 0.5931 0.3516 0.4848 0.6969 0.4622 

372 523 

 Firth’s logistic 5329 1557 0.7519 0.5929 0.3514 0.4847 0.6970 0.4623 

374 523 

 Ridge logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 5394 1627 0.7513 0.5818 0.3188 0.4539 0.6957 0.4613 

309 453 

 Ridge logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 5435 1679 0.7498 0.5729 0.2917 0.4286 0.6942 0.4607 

268 401 

 Lasso logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 5322 1539 0.7533 0.5966 0.3604 0.4927 0.6739 0.4427 

381 541 
 Lasso logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 5353 1557 0.7550 0.5950 0.3542 0.4858 0.6667 0.4398 

350 523 

 Elastic net logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛      5352 1574 0.7527 0.5909 0.3446 0.4778 0.6993 0.4631 

351 506 
 Elastic net logistic. 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 5377 1603 0.7522 0.5861 0.3309 0.4650 0.6831 0.4469 

326 477 
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(a)  (b)  

Figure. 3. Comparison of (a) ROC curve (b) PR curve on the test data set 

 

All in all, using the training data to construct models, 

and test data to validate the models built, Firth’s logistic 

model can be proposed as the best alternative for prediction 

purposes after all the results have been considered and 

interpreted. 

In the “Victim-related variable group, within the age 

(AGE_GR), education (EDU), and vocational education 

(VOCEDU) subcategories, the relationship between LWD 

and the variables of age groups of 45-54 (AGE_GR.4), 

secondary school (EDU.4) and high school graduates 

(EDU.5), and lack of vocational education (VOCEDU.2) 

are positive, respectively. It means that if one of related 

variable is chosen and others held constant (taking the value 

of 0) in the model, the probability of having more than three 

LWD accidents will increase with the chosen variable. In 

the AGE_GR subcategory, the probability of having more 

than three LWD accidents in AGE_GR.4 was 1.2482 times 

higher than in the age range between 14 and 24 

(AGE_GR.1). For the EDU subcategory, EDU.4 and EDU.5 

were 1.3227 and 1.3996 times, respectively, higher than 

workers that had an undergraduate degree (EDU.6). 

Besides, VOCEDU.2 was 1.1014 times more likely than for 

vocational training (VOCEDU.1). The fact that some 

physiological states seen in advanced ages negatively affect 

the healing time of injuries, most construction workforce in 

Türkiye has high school diploma or less and starts to work 

without completing their vocational training or has 

problems in understanding and applying the vocational 

education given due to low education level may cause an 

increase in the LWD.  

In the “Workplace-related” variable group, within the 

size of the workplace (SIZW) and working environment 

(WOE) subcategories, there is a negative relationship 

between the LWD and the variables of having 1000 or 

above workers in the workplace (SIZW.9), the working 

environments of construction site, construction, opencast 

quarry and mine (WOE.2), health establishment (WOE.5) 

and underground (WOE.10). Thus, the probability of having 

greater than three LWD will reduce with SIZW.9, WOE.2, 

WOE.5, and WOE.10. On the other hand, within the project 

type (PRT) subcategory, there is a positive relationship 

between LWD and the variables of construction of roads 

and railways (PRT.2) and construction of utility projects 

(PRT.3). The probability of having more than three LWD 

will increase with PRT.2 and PRT.3. In the SIZW 

subcategory, the probability of having more than three 

LWD accidents in SIZW.9 vs. the reference category of 10 

or fewer workers (SIZW.1) was 1.5013 

(1 𝐸𝑥𝑝(−0.4063)⁄ ) times lower. For the PRT subcategory, 

PRT.2 and PRT.3 were 1.2370 and 1.1854 times, 

respectively, higher than construction of building (PRT.1). 

This probability in the WOE.2, WOE.5 and WOE.10 were 

1.2156 (1 𝐸𝑥𝑝(−0.1952)⁄ ), 6.1252 (1 𝐸𝑥𝑝(−1.8124)⁄ ), 

and 3.8636 (1 𝐸𝑥𝑝(−1.3513)⁄ ) times, respectively, less 

likely than for industrial site (WOE.1). The fact that most of 

construction companies operating in the construction 

industry are small and medium-sized and there is an 

increase in roads and railways and utility projects in the 

region compared to other projects can be causes of these 

results. 

Under the “Accident time-relate” variable group, within 

the month (MTH) and year (YEAR) subcategories, the 

relationship between LWD and the variables of month of 

August (MTH.8), the month of September (MTH.9), 2014 

(YEAR.2), 2016 (YEAR.4) and 2017 (YEAR.5) are 

negative, respectively. The probability of experiencing 

more than three LWD will decrease with MTH.8, MTH.9, 

YEAR.2, YEAR.4, and YEAR.4. In the MTH subcategory, 

the probability of experiencing more than three LWD 

accidents in MTH.8 and MTH.9 were 1.3546 

(1 𝐸𝑥𝑝(−0.3035)⁄ ) and 1.2909 (1 𝐸𝑥𝑝(−0.2553)⁄ ) 

times, respectively, less than January (MTH.1). In the 

YEAR subcategory, the probability for YEAR.2, YEAR.4 

and YEAR.5 was 1.1964 (1 𝐸𝑥𝑝(−0.1793)⁄ ), 1.4219 

(1 𝐸𝑥𝑝(−0.3520)⁄ ), and 1.4057 (1 𝐸𝑥𝑝(−0.3405)⁄ ) 

times, respectively lower than the year of 2013 (YEAR.1). 

These outcomes may have resulted from the low number of 

construction projects in the relevant months and the effect 
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of safety precautions taken in construction workplaces due 

to sanctions and occupational safety awareness over time. 

In the “Accident and sequence of events-related” 

variable group, within the general activity (GENAC) and 

material agent of the deviation (MAT_DEV) subcategories, 

there is positive a relationship between LWD and the 

variables of movement-related activity (GENAC.6) and 

machines and equipment (MAT_DEV.8). The probability 

of having more than three LWD will increase with 

GENAC.6 and MAT_DEV.8. On the contrary, within the 

specific acitiviy (SPECAC) subcategory, there is a negative 

relationship between LWD and the variables of activity of 

presence (SPECAC.7) and other specific physical activities 

(SPECAC.8). In the GENAC subcategory, the probability 

of three LWD accidents in GENAC.6 was 1.4098 times 

more likely than the production, manufacturing, processing, 

and storing activity (GENAC.1). Besides, this probability in 

SPECAC.7 and SPECAC.8 vs. the operating machine 

activity (SPECAC.1) were 1.4528 (1 𝐸𝑥𝑝(−0.3735)⁄ ),  

and 1.3872 (1 𝐸𝑥𝑝(−0.3273)⁄ ) times lower, respectively. 

For the MAT_DEV subcategory, MAT_DEV.8 had 1.2618 

times riskier than without having material agent 

(MAT_DEV.1). This result may have arisen from the 

occurrence of more frequent accidents in movement and 

operationing machines and equipments. 

In the “Post-accident state-related” variable group, 

within the type of injury (TINJ) and part of body injured 

(PBINJ) subcategories, the relationship between LWD and 

the variables of having bone fractures (TINJ.2), 

dislocations, sprains and strains (TINJ.3), traumatic 

amputations (TINJ.4), concussion and internal injuries 

(TINJ.5), burns, scalds and frostbites (TINJ.6), multiple 

injuries (TINJ.10), injury in neck part (PBINJ.2), back part 

(PBINJ.3), torso and organs (PBINJ.4), upper extremities 

(PBINJ.5), lower extremities (PBINJ.6), whole body and 

multiple sites (PBINJ.7) and other parts of the body injured 

(PBINJ.8) are positive, respectively. The probability of 

having more than three LWD will increase with TINJ.2, 

TINJ.3, TINJ.4, TINJ.5, TINJ.6, TINJ.10, PBINJ.2, 

PBINJ.3, PBINJ.4, PBINJ.5, PBINJ.6, PBINJ.7 and 

PBINJ.8. Conversely, within the TINJ subcategory, the 

relationship between LWD and the variables of poisoning 

and infections (TINJ.7), getting shocked (TINJ.9) are 

negative. The probability of experiencing more than three 

LWD will reduce with TINJ.7 and TINJ.9. In the TINJ 

subcategory, the probability of experiencing more than 

three LWD accidents occasioned by accidents related to 

TINJ.2, TINJ.3, TINJ.4, TINJ.5, TINJ.6 and TINJ.10 were 

4.4234, 1.6394, 2.6725, 2.6894, 2,1468 and 3.3533 times, 

respectively, more likely than those related to wounds and 

superficial injuries (TINJ.1). On the other hand, the 

probability for TINJ.7 was 8.7936 (1 𝐸𝑥𝑝(−2.1740)⁄ ) and 

for TINJ.9 (1 𝐸𝑥𝑝(−1.2226)⁄ ) was 3.3958 times lower 

than TINJ.1. For the PBINJ subcategory, the probability of 

experiencing more than three LWD accidents increased in 

all subcategories compared with the head (PBINJ.1). This 

probability in PBINJ.2, PBINJ.3, PBINJ.4, PBINJ.5, 

PBINJ.6, PBINJ.7 and PBINJ.8 were 1.5189,1.8512, 

1.5642, 2.2907, 2.2263, 2.1445 and 1.7728 times, 

respectively, higher than for PBINJ.1. The injury type and 

its location on the body has a great impact on the LWD since 

they affect the healing time and back to work status.   

In general, increasing age, low education level, 

problems in obtaining vocational education due to low 

education level, increasing utility and road and railway 

projects in recent years, moving with vehicles, and use of 

machines and equipments are considered as cases that 

increase the occurrence risk of occupational accidents in the 

literature. Compared to the findings of this study, it is not 

surprising that in the presence of the stated cases, the 

probability of having more than three LWD accidents is 

increased. Besides, considering the effect of the safety 

precautions taken, it is expected that the probability of LWD 

decreases as time passes. The top determinants for having 

more than three days LWD at construction industry due to 

construction accidents are related to post-accident state. It 

can be concluded that the greater the impact of the 

occupational accident, the higher the loss of working days. 

However, in this study, contrary to what is known, it has 

been determined that despite the increases in the number of 

workers and construction projects, increasing workplace 

size, working in the summer months and around the 

construction site reduce the probability of having more than 

three LWD accidents. The severity of non-fatal injuries 

would be diminished in construction industry by focusing 

on the related variables that significantly trigger to the 

occurrence of LWD. In this direction, we can apply 

proactive precautions such as providing and using right and 

sufficient personal protective equipment, enhancing the 

content of the training, and teaching style. 

4 Conclusions  

Construction activities remain one of the most 

hazardous industries worldwide. Therefore, standard and 

regularized logistic regression approaches as machine 

learning classification algorithms are applied to national 

construction accident data and the results obtained are 

compared in this study. Based on the model results, it can 

be concluded that the type of injury and the body part 

injured have a significant impact on the occurrence of 

occupational accidents resulting in more than LWD. The 

prediction performance of all models for non-fatal accidents 

with more than three LWD is good, with only slight 

differences in their performance values. The Ridge logistic 

regression model does not reduce any coefficients to zero, 

making it difficult to interpret the constructed model. 

However, Lasso and Elastic net estimators have variable 

selection capabilities. When all the models are compared, 

Firth's logistic model was found to display the best 

performance in predicting the LWD resulting from non-

fatal occupational accidents in the training set. However, 

this shouldn't imply the overall superiority of the model in 

all cases of occupational accidents phenomenon, and 

additional care should be given to each dataset to understand 

its nature and identify any problems in the data.  When there 

is no regularization requirement, standard binary logistic 

regression can be used. However, some form of 

regularization is usually necessary, particularly with large 
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sample sizes and categorical data. Therefore, other 

prediction approaches should be considered. Firth’s logistic 

regression model is a good alternative for reducing bias 

caused by imbalance problems, while the Ridge logistic 

regression is useful in the event of a multicollinearity 

problem, and all variables are necessary for the 

determination of presence of a relationship with LWD. 

Lasso and Elastic net logistic become the tools of choice in 

cases of multicollinearity issues and when there is a need to 

eliminate irrelevant variables. In this way, the best model 

which fits the data well can be determined. 

This study analyzes, for the first time, occupational 

accidents that occurred in the "construction of buildings", 

"civil engineering" and "specialized construction activities" 

sectors in the Central Anatolia region. The study considers 

accident variables that have not been previously covered in 

the literature. Moreover, this study demonstrates how 

standard binary logistic regression and regularized logistic 

regression models can be applied in a machine learning 

classification context in a large categorical occupational 

accident dataset. The study has the potential to advance the 

current knowledge of data analysis techniques for 

predicting the severity of non-fatal construction accidents 

using more innovative and interpretable machine learning 

tools. The use of regularized models on occupational 

accidents in the study opens new doors for researchers 

working in this field. Additionally, this study also shines a 

spotlight to the OSH professionals responsible for the 

implementation of OSH activities in workplaces in 

performing such analysis to model their historical accident 

records. Furthermore, the findings of this study provide vital 

information for assessing the occurrence of LWD risk at 

construction industry. These findings can be used to 

develop more appropriate safety precautions in the 

construction industry. 

As mentioned above, Firth’s logistic decreases bias, 

while Ridge, Lasso and Elastic net logistic models stabilizes 

the prediction in case of multicollinearity. However, none 

of the models deal with both problems. Future studies could 

develop a double regularized model integrating Firth’s 

logistic regression with a ridge, lasso, or elastic net 

parameter. As a potential next step, synthetic data could be 

generated to increase the performance of the models 

applied. In this study, dummy-coded categorical variables 

were used to build all models, but different coding 

strategies, such as one-hot encoding and contrast coding 

could be used to reveal how the coding choices affect the 

prediction results. Additionally, the occupational accident 

data used in this study could be subjected to analysis for 

prediction purposes using other machine learning methods, 

and the models in this study could also be applied in 

different fields. 
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