
International Electronic Journal of Algebra

Volume 21 (2017) 1-22

EXTENSIONS OF Σ-ZIP RINGS

Ouyang Lunqun, Zhou Qiong and Wu Jinfang

Received: 9 January 2016; Revised: 24 July 2016

Communicated by A. Çiğdem Özcan

Abstract. In this note we consider a new concept, so called Σ-zip ring, which

unifies zip rings and weak zip rings. We observe the basic properties of Σ-zip

rings, constructing typical examples. We study the relationship between the

Σ-zip property of a ring R and that of its Ore extensions and skew generalized

power series extensions. As a consequence, we obtain a generalization of several

known results relating to zip rings and weak zip rings.
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1. Introduction

Throughout this paper all rings R are associative with identity. The set of all

nilpotent elements of R is denoted by nil(R). Recall that R is reduced if for all

a ∈ R, a2 = 0 implies a = 0; R is reversible if for all a, b ∈ R, ab = 0 implies ba = 0;

R is an NI ring if nil(R) forms an ideal [8]. Let U and V be two nonempty subsets

of R. We define U : V = {x ∈ R | V x ⊆ U}. If V is singleton, i.e. V = {m}, we

use U : m in place of U : {m}. It is easy to see that if U and V are two right ideals

of R, then U : V is an ideal of R and such an ideal is usually called the quotient of

U by V .

For any nonempty subset X of a ring R, rR(X) = {a ∈ R | Xa = 0} denotes

the right annihilator of X in R. Faith in [3] called a ring R right zip if the right

annihilator rR(X) of a subset X of R is zero, then rR(Y ) = 0 for a finite subset

Y ⊆ X. Left zip rings are defined analogously. R is zip if it is both right and left zip.

Zelmanowitz stated that any ring satisfying the descending chain condition on right

annihilators is a right zip ring, but the converse does not hold [14]. Examples of right

zip rings that do not satisfy the descending chain condition on right annihilators

can be found in [3] and [14]. Extensions of zip rings were studied by several authors.
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Beachy and Blair [1] showed that if R is a commutative zip ring, then the polynomial

ring R[x] over R is zip. Faith in [3] proved that if R is a commutative zip ring and

G a finite abelian group, then the group ring R[G] of G over R is zip. Cedo in [2]

proved that there exist right (left) zip rings R such that M2(R) is not right (left)

zip. Also, he proved that if R is a commutative zip ring, then the n×n full matrix

ring Mn(R) over R is a zip ring. For more details and properties of zip rings (see

[1, 2, 3, 6, 14]).

For a nonempty subset X of a ring R, we define NR(X) = {a ∈ R | xa ∈ nil(R)

for all x ∈ X}, which is called the weak annihilator of X in R [10]. If X is a finite

set, i.e. X = {r1, r2, . . . , rn}, we use NR(r1, r2, . . . , rn) in place of NR({r1, r2,

. . . , rn}). Obviously, for any subset X of a ring R, NR(X) = {a ∈ R | xa ∈ nil(R)

for all x ∈ X} = {b ∈ R | bx ∈ nil(R) for all x ∈ X}, and rR(X) ⊆ NR(X),

lR(X) ⊆ NR(X). If R is reduced, then rR(X) = NR(X) = lR(X) for any subset X

of R. It is easy to see that for any subset X ⊆ R, NR(X) is an ideal of R whenever

nil(R) is an ideal.

A ring R is called weak zip provided that for any subset X of R, if NR(X) ⊆
nil(R), then there exists a finite subset Y ⊆ X such that NR(Y ) ⊆ nil(R). L.

Ouyang [10] proved that for an endomorphism α and an α-derivation δ of a ring R,

if R is (α, δ)-compatible and reversible, then R is weak zip if and only if the Ore

extension R[x;α, δ] is weak zip.

Motivated by the results in [1, 2, 3, 6, 14], in this article, we continue the study of

Σ-zip rings. We first introduce the notion of a Σ-zip ring, which is a generalization

of both zip rings and weak zip rings, and investigate their properties. We next

extend the class of Σ-zip rings through various ring extensions.

2. Σ-zip rings

In this section, U always denotes a proper ideal of a ring R unless otherwise

stated. We start this section with the following definition.

Definition 2.1. Let U be an ideal of R. The ring R is called ΣU -zip provided that

for any subset X of R with X 6⊆ U , if U : X = U , then there exists a finite subset

Y ⊆ X such that U : Y = U .

Clearly, if U = 0, then for any subset X of R, we have U : X = rR(X), and so R

is Σ0-zip if and only if R is right zip. Let R be an NI ring and U = nil(R). Then

for any subset X of R, we have nil(R) : X = NR(X), and so R is Σnil(R)-zip if and
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only if R is weak zip. So both right zip rings and weak zip rings are special Σ-zip

rings.

In the following we offer some examples of Σ-zip rings.

Example 2.2. (1) Recall that an ideal P of R is completely prime if P 6= R, and

ab ∈ P implies a ∈ P or b ∈ P , for a, b ∈ R. So if U is a completely prime ideal

of R, then R is a ΣU -zip ring since U : X = U for each subset X 6⊆ U . By the fact

that the zero ideal of any domain is completely prime, we have that any domain is

Σ0-zip as well as zip.

(2) Let R be a domain and S = R[x]/(xn), where (xn) is the ideal generated by

xn. Denote x in S = R[x]/(xn) by α. Thus S = R[x]/(xn) = R[α] = R+Rα+ · · ·+
Rαn−1, where α commutes with elements of R and αn = 0. Let U = {

∑n−1
i=1 riα

i |
ri ∈ R}. Then U is a completely prime ideal of S. So S = R[x]/(xn) = R[α] is

ΣU -zip.

(3) Let k be any field, and consider the ring R =

(
k 0

k k

)
of 2 × 2 lower

triangular matrices over k. We can write all the proper nonzero ideals of R as

follows: {
m1 =

(
0 0

k k

)
, m2 =

(
k 0

k 0

)
,m3 =

(
0 0

k 0

)}
.

Since m1 and m2 are completely prime ideals of R, we have that R are Σm1
-zip

and Σm2-zip, respectively. Now we show that R is Σm3-zip. In fact, let X be any

subset of R with X 6⊆ m3, and m3 : X = m3. Then we consider the sets W and V

defined as follow:

W =

{
a ∈ R |

(
a 0

b c

)
∈ X

}
, V =

{
c ∈ R |

(
a 0

b c

)
∈ X

}
.

Since m3 : X = m3, we must have W 6= 0 and V 6= 0. Hence there exist p =(
a 0

b c

)
∈ X with a 6= 0, and q =

(
x 0

y z

)
∈ X with z 6= 0. Let X0 = {p, q}.

Then X0 is a finite subset of X. By a routine computation, we have m3 : X0 = m3.

So R is Σm3-zip. Note that R is an NI ring and m3 = nil(R). Then by Definition

2.1, R is also weak zip.

Using the same way as above, we can show that R is Σ0-zip. Then by Definition

2.1, R is also right zip.

Let U be an ideal of R, and let



4 OUYANG LUNQUN, ZHOU QIONG AND WU JINFANG

Rn =




a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

 | aij ∈ R

, DUn =





u11 a12 a13 · · · a1n

0 u22 a23 · · · a2n

0 0 u33 · · · a3n

...
...

...
. . .

...

0 0 0 · · · unn


| uii ∈ U, aij ∈ R, 1 ≤ i ≤ n, 2 ≤ j ≤ n


,

LRn =




a11 0 · · · 0

a21 a22 · · · 0
...

...
. . .

...

an1 an2 · · · ann

 | aij ∈ R

, LDUn =





u11 0 0 · · · 0

a21 u22 0 · · · 0

a31 a32 u33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · unn


| uii ∈ U, aij ∈ R, 1 ≤ i ≤ n, 2 ≤ j ≤ n


.

Then under usual matrix operations, DUn is an ideal of Rn and LDUn is also an

ideal of LRn. The following proposition gives more examples of Σ-zip rings.

Proposition 2.3. Let U be an ideal of R. Then the following conditions are

equivalent:

(1) R is ΣU -zip;

(2) Rn is Σ(DUn)-zip;

(3) LRn is Σ(LDUn)-zip.

Proof. (1)⇒ (2) Suppose that R is ΣU -zip and V is a subset of Rn with V 6⊆ DUn
and DUn : V = DUn. Let

Yi =


aii ∈ R |


a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

 ∈ V

, 1 ≤ i ≤ n.

Then Yi ⊆ R, 1 ≤ i ≤ n. If Yi ⊆ U for some 1 ≤ i ≤ n, then V · Eii ⊆ DUn,

where Eij is the usual matrix unit with 1 in the (i, j) coordinate and zero elsewhere.
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Thus Eii ∈ DUn : V = DUn, and so 1 ∈ U , this contradicts the fact that U is a

proper ideal of R. Hence Yi 6⊆ U for all 1 ≤ i ≤ n. Now we show that for each

1 ≤ i ≤ n, U : Yi = U . In fact, U : Yi ⊇ U is clear, it suffices to show the reverse

inclusion. Suppose that b ∈ U : Yi. Then


a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

 · (bEii) ∈ DUn

for each


a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

 ∈ V . Thus bEii ∈ DUn : V = DUn and we

have that b ∈ U . Hence U : Yi ⊆ U and for each 1 ≤ i ≤ n, U : Yi = U .

Since R is ΣU -zip, there exists a finite subset Y ′i ⊆ Yi such that U : Y ′i = U ,

1 ≤ i ≤ n. For each c ∈ Y ′i , there exists Ac =


c11 c12 · · · c1n

0 c22 · · · c2n
...

...
. . .

...

0 0 · · · cnn

 ∈ V such

that cii = c. Let V ′i be a minimal subset of V such that Ac ∈ V ′i for each c ∈ Y ′i .

Then V ′i is a finite subset of V . Let V0 =
⋃

1≤i≤n V
′
i . Then V0 is also a finite subset

of V . If B =


b11 b12 · · · b1n

0 b22 · · · b2n
...

...
. . .

...

0 0 · · · bnn

 ∈ DUn : V0, then A′B ∈ DUn for each

A′ =


a′11 a′12 · · · a′1n

0 a′22 · · · a′2n
...

...
. . .

...

0 0 · · · a′nn

 ∈ V0. Let

Wi =


a′ii ∈ R |


a′11 a′12 · · · a′1n

0 a′22 · · · a′2n
...

...
. . .

...

0 0 · · · a′nn

 ∈ V0


, 1 ≤ i ≤ n.

Clearly, Y ′i ⊆ Wi for each 1 ≤ i ≤ n. So U : Wi ⊆ U : Y ′i = U for each

1 ≤ i ≤ n. Since A′B ∈ DUn implies that a′iibii ∈ U for all 1 ≤ i ≤ n, we obtain
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bii ∈ U : Wi ⊆ U : Y ′i = U . Thus bii ∈ U for each 1 ≤ i ≤ n, and hence B ∈ DUn.

Therefore DUn : V0 = DUn, and so Rn is Σ(DUn)-zip.

(2) ⇒ (1) Assume that Rn is Σ(DUn)-zip and X ⊆ R with X 6⊆ U and U :

X = U . Let V = {aI | a ∈ X} ⊆ Rn, where I is the n × n identity matrix. If

B =


b11 b12 · · · b1n

0 b22 · · · b2n
...

...
. . .

...

0 0 · · · bnn

 ∈ DUn : V , then aI · B ∈ DUn for all a ∈ X. Thus

abii ∈ U for all 1 ≤ i ≤ n and all a ∈ X, and it follows that bii ∈ U : X = U .

Hence B ∈ DUn which implies that DUn : V = DUn. Since Rn is Σ(DUn)-zip, there

exists a finite subset V0 = {a1I, a2I, . . . , amI} ⊆ V such that DUn : V0 = DUn.

Let X0 = {a1, a2, · · · , am} ⊆ X. If c ∈ U : X0, then (akI) · (cE11) ∈ DUn for all

k = 1, 2, . . . ,m. Thus cE11 ∈ DUn : V0 = DUn and so c ∈ U . Hence U : X0 = U .

Therefore R is ΣU -zip.

(1)⇔ (3) is analogous to (1)⇔ (2). �

Corollary 2.4. [10, Proposition 2.1] Let R be an NI ring. Then the following

conditions are equivalent:

(1) R is weak zip;

(2) Rn is weak zip;

(3) LRn is weak zip.

Proof. Let U = nil(R). Then DUn = nil(Rn), LDUn = nil(LRn) and both Rn

and LRn are NI rings. Note that for any ring R, we have that R is Σnil(R)-zip if

and only if R is weak zip. Therefore we complete the proof by Proposition 2.3. �

Based on the preceding results, we consider the following subrings of n×n upper

(lower) triangular matrix rings. Let U be an ideal of R and

Sn =




a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 | a, aij ∈ R


,

Un =




u u12 · · · u1n

0 u · · · u2n

...
...

. . .
...

0 0 · · · u

 | u, uii ∈ U


,
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LSn =




a 0 · · · 0

a21 a · · · 0
...

...
. . .

...

an1 an2 · · · a

 | a, aij ∈ R


,

LUn =




u 0 · · · 0

u21 u · · · 0
...

...
. . .

...

un1 un2 · · · u

 | u, uii ∈ U

,

where n ≥ 2 is a positive integer. Then we have the following.

Proposition 2.5. Let U be an ideal of R. Then the following conditions are

equivalent:

(1) R is ΣU -zip;

(2) Sn is ΣUn
-zip;

(3) LSn is Σ(LUn)-zip.

Proof. (1)⇒ (2) Suppose that R is ΣU -zip and V is a subset of Sn with V 6⊆ Un

and Un : V = Un. Consider the following set

X =


v ∈ R |


v v12 · · · v1n

0 v · · · v2n

...
...

. . .
...

0 0 · · · v

 ∈ V

,

that is, X is the set of all elements in the ring R, which occurs as diagonal entries

of elements in V . If X ⊆ U , then V · E1n ⊆ Un. Thus E1n ∈ Un : V = Un and

so 1 ∈ U which contradicts the fact that U is a proper ideal of R. Thus we obtain

X 6⊆ U . Now we show that U : X = U . Since U : X ⊇ U is clear, it suffices to

show that U : X ⊆ U . Suppose that a ∈ U : X. Then aE1n ∈ Un : V = Un,

and so a ∈ U . Thus U : X = U . Since R is ΣU -zip, there exists a finite subset

X0 = {v1, v2, . . . , vk} ⊆ X such that U : X0 = U . For each vi ∈ X0, 1 ≤ i ≤ k,

there exists Avi =


vi vi12 · · · vi1n

0 vi · · · vi2n
...

...
. . .

...

0 0 · · · vi

 ∈ V . Let V0 be the minimal subset of

V such that Avi ∈ V0 for each vi ∈ X0. Then V0 is a finite subset of V . Without
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loss of generality, we may write V0 as follow:

V0 =




vi vi12 · · · vi1n

0 vi · · · vi2n
...

...
. . .

...

0 0 · · · vi

 ∈ V | vi ∈ X0, 1 ≤ i ≤ k


.

Now we show that Un : V0 = Un. We proceed by induction on n. Suppose that(
vi vi12

0 vi

) (
a a12

0 a

)
∈ U2 for

(
a a12

0 a

)
∈ R2 and 1 ≤ i ≤ k. Then

via ∈ U and via12 + vi12a ∈ U for all 1 ≤ i ≤ k. From via ∈ U for all 1 ≤ i ≤ k, we

obtain a ∈ U : X0 = U . Then from via12 + vi12a ∈ U for all 1 ≤ i ≤ k and a ∈ U ,

we get a12 ∈ U : X0 = U . Hence

(
a a12

0 a

)
∈ U2 and so U2 : V0 ⊆ U2. Note

that U2 : V0 ⊇ U2 is clear. Thus U2 : V0 = U2. Next let


vi vi12 · · · vi1n

0 vi · · · vi2n
...

...
. . .

...

0 0 · · · vi




a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈ Un for


a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈ Sn and 1 ≤ i ≤ k.

Then we get


vi vi12 · · · vi1(n−1)

0 vi · · · vi2(n−1)

...
...

. . .
...

0 0 · · · vi




a a12 · · · a1(n−1)

0 a · · · a2(n−1)

...
...

. . .
...

0 0 · · · a

 ∈ Un−1 for

all 1 ≤ i ≤ k. By the induction hypothesis, we obtain a ∈ U and ast ∈ U for all

1 ≤ s, t ≤ n− 1. On the other hand, from a ∈ U and for all 1 ≤ i ≤ k,
vi vi12 · · · vi1n

0 vi · · · vi2n
...

...
. . .

...

0 0 · · · vi




a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈ Un,

we have that for all 1 ≤ i ≤ k, via1n + vi12a2n + · · · + vi1(n−1)a(n−1)n ∈ U , . . . ,

via(n−2)n + vi(n−2)(n−1)a(n−1)n ∈ U and via(n−1)n ∈ U . From via(n−1)n ∈ U

for all 1 ≤ i ≤ k, we get a(n−1)n ∈ U : X0 = U . Then from via(n−2)n +



EXTENSIONS OF Σ-ZIP RINGS 9

vi(n−2)(n−1)a(n−1)n ∈ U and a(n−1)n ∈ U , we get a(n−2)n ∈ U : X0 = U . In-

ductively, we obtain ain ∈ U for i = 1, 2, . . ., n− 1, concluding that Un : V0 = Un.

Therefore Rn is ΣUn -zip.

(2) ⇒ (1) Assume that Rn is ΣUn
-zip, and X 6⊆ U with U : X = U . Let

Xn =




x 0 · · · 0

0 x · · · 0
...

...
. . . 0

0 0 · · · x

 | x ∈ X


and


a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈ Un : Xn.

Then 
x 0 · · · 0

0 x · · · 0
...

...
. . . 0

0 0 · · · x




a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈ Un

for each


x 0 · · · 0

0 x · · · 0
...

...
. . . 0

0 0 · · · x

 ∈ Xn, and so xa ∈ U and xaij ∈ U for each x ∈ X.

Thus a ∈ U : X = U and aij ∈ U : X = U , which implies that


a a12 · · · a1n

0 a · · · a2n

...
...

. . .
...

0 0 · · · a

 ∈
Un. Hence Un : Xn = Un. Since Rn is ΣUn

-zip, there exists a finite subset

V =




xi 0 · · · 0

0 xi · · · 0
...

...
. . . 0

0 0 · · · xi

 ∈ Xn | 1 ≤ i ≤ k


⊆ Xn such that Un : V = Un. Let

X0 = {x1, x2, . . . , xk}. Then X0 ⊆ X is a finite subset of X. If a ∈ U : X0, then

aE1n ∈ Un : V = Un, and so a ∈ U . Hence U : X0 = U . Therefore R is ΣU -zip.

(1)⇔ (3) is proved in the same manner. �

Corollary 2.6. [6, Theorem 5] Let R be a ring. Then the following conditions are

equivalent:

(1) R is a right zip ring.

(2) Sn is a right zip ring.

(3) LSn is a right zip ring.
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Proof. Let U be the zero ideal of R. Then Un and LUn are the zero ideals of Sn

and LSn, respectively. Note that R is Σ0-zip if and only if R is right zip. Therefore

we complete the proof by Proposition 2.5. �

Corollary 2.7. Let U be an ideal of R. Then we have the following:

(1) R is ΣU -zip if and only if the trivial extension T (R,R) =

{(
a b

0 a

)
| a, b ∈ R

}

of R by R is ΣT (U,U)-zip, where T (U,U) =

{(
u v

0 u

)
| u, v ∈ U

}
.

(2) [6, Corollary 6] R is a right zip ring if and only if T (R,R) is right zip.

Proof. According to Proposition 2.5 and Corollary 2.6, we obtain the results. �

Let R be a ring and

T3(R) =




a11 0 0

a21 a22 a23

0 0 a33

 | aij ∈ R
 ,

W3(R) =




a 0 0

a21 a a23

0 0 a

 | a, a21, a23 ∈ R

 .

Then under usual matrix operations, T3(R) and W3(R) are subrings of the 3 × 3

matrix ring M3(R). Let U be an ideal of R and

DT3(U) =




u11 0 0

a21 u22 a23

0 0 u33

 | u11, u22, u33 ∈ U, a21, a23 ∈ R

 ,

W3(U) =




u 0 0

u21 u u23

0 0 u

 | u, u21, u23 ∈ U

 .

Then DT3(U) is an ideal of T3(R) and W3(U) is an ideal of W3(R).

Proposition 2.8. Let U be an ideal of R. Then the following conditions are

equivalent:

(1) R is ΣU -zip.

(2) T3(R) is Σ(DT3(U))-zip.

(3) W3(R) is Σ(W3(U))-zip.
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Proof. The argument for this claim is similar to that used in the proof of Propo-

sition 2.3 and Proposition 2.5. �

Corollary 2.9. Let R be a ring. Then we have the following:

(1) If R is an NI ring, then R is weak zip if and only if T3(R) is weak zip.

(2) R is right zip if and only if W3(R) is right zip.

Proof. (1) Let U = nil(R). ThenDT3(U) = nil(T3(R)) and therefore we complete

the proof by Proposition 2.8.

(2) Let U = 0. Then the result is an immediate consequence of Proposition 2.8

and the fact that R is Σ0-zip if and only if R is right zip. �

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension

of R by S is the ring D = R×S with operations (r1, s1)+(r2, s2) = (r1 +r2, s1 +s2)

and (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), where ri ∈ R and si ∈ S. Let U be

an ideal of S. We define R× U as follow:

R× U = {(r, s) ∈ D | r ∈ R, s ∈ U} .

Then R× U is an ideal of D.

Proposition 2.10. Let D be the Dorroh extension of R by S and U an ideal of S.

Then D is Σ(R×U)-zip if and only if S is ΣU -zip.

Proof. (⇒) Suppose that D is Σ(R×U)-zip and Y is a subset of S with Y 6⊆ U

and U : Y = U . Let R × Y = {(r, s) ∈ D | r ∈ R, s ∈ Y }. Then R × Y ⊆ D

and R × Y 6⊆ R × U . If (u, v) ∈ (R × U) : (R × Y ), then (r, s)(u, v) = (ru +

su + vr, sv) ∈ R × U for each (r, s) ∈ R × Y . Thus sv ∈ U for each s ∈ Y , and

so v ∈ U : Y = U . Hence (u, v) ∈ R × U and so (R × U) : (R × Y ) = R × U .

Since D is Σ(R×U)-zip, there exists a finite subset (R × Y )0 ⊆ R × Y such that

(R × U) : (R × Y )0 = R × U . Without loss of generality, we may assume that

(R × Y )0 = {(r1, s1), (r2, s2), . . . , (rk, sk)}. Then Y0 = {s1, s2, . . . , sk} is a finite

subset of Y . If r ∈ U : Y0, then (0, r) ∈ (R×U) : (R× Y )0 = R×U , and so r ∈ U .

Hence U : Y0 = U . Therefore S is ΣU -zip.

(⇐) Assume that S is ΣU -zip and V is a subset of D with V 6⊆ R × U and

(R × U) : V = R × U . Let X = {s ∈ S | (r, s) ∈ V }. Then by the condition that

V 6⊆ R × U , we have X 6⊆ U . If a ∈ U : X, then (0, a) ∈ (R × U) : V = R × U
and so a ∈ U . Thus U : X = U . Since S is ΣU -zip, there exists a finite subset

X0 = {s1, s2, . . . , sk} ⊆ X such that U : X0 = U . For each si ∈ X0, there exists

vsi = (ri, si) ∈ V . Let V0 be the minimal subset of V such that vsi ∈ V0 for each
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si ∈ X0. Then V0 is a finite subset of V . Now we show that (R×U) : V0 = R×U . If

(a, b) ∈ (R×U) : V0, then (r, s)(a, b) = (ra+sa+br, sb) ∈ R×U for each (r, s) ∈ V0.

Then sb ∈ U for each s ∈ X0. Hence b ∈ U : X0 = U , and so (R×U) : V0 = R×U .

Therefore D is Σ(R×U)-zip. �

Let R be a ring and ∆ a multiplicatively closed subset of R consisting of central

regular elements. ∆−R denotes the classical quotient ring of R. If U is an ideal of

R, then ∆−U is an ideal of ∆−R.

Proposition 2.11. Let U be an ideal of R. Then R is ΣU -zip if and only if ∆−R

is Σ(∆−U)-zip.

Proof. Suppose that R is ΣU -zip and V is a subset of ∆−R with V 6⊆ ∆−U

and ∆−U : V = ∆−U . Let X = {a | u−1a ∈ V } ⊆ R. Then X 6⊆ U . If

r ∈ U : X, then V r ⊆ ∆−U . Thus r ∈ ∆−U : V = ∆−U , and so r ∈ U . Hence

U : X = U . Since R is ΣU -zip, there exists a finite subset X0 of X such that

U : X0 = U . Let X0 = {a1, a2, . . . , an}. Then there exist elements α1, α2, . . .,

αn in V be such that α1 = u−1
1 a1, α2 = u−1

2 a2, . . ., αn = u−1
n an, where u1, u2,

. . ., un ∈ ∆. Let V0 = {α1, α2, . . . , αn}. Then V0 is a finite subset of V . Now if

β ∈ ∆−U : V0 and β = v−1b, then u−1
i aiv

−1b ∈ ∆−U for all 1 ≤ i ≤ n, and so

aib ∈ U for all 1 ≤ i ≤ n. Thus b ∈ U : X0 = U and so β = v−1b ∈ ∆−U . Hence

∆−U : V0 = ∆−U . Therefore ∆−R is Σ(∆−U)-zip.

(⇐) Assume that ∆−R is Σ(∆−U)-zip and X is a subset of R with X 6⊆ U and

U : X = U . If X(u−1a) ⊆ ∆−U for some u−1a ∈ ∆−R, then Xa ⊆ U and so

a ∈ U : X = U . Thus it is easy to see that ∆−U : X = ∆−U . Since ∆−R is

Σ(∆−U)-zip, there exists a finite subset X0 ⊆ X such that ∆−U : X0 = ∆−U . If

r ∈ U : X0, then r ∈ ∆−U : X0 = ∆−U , and so r ∈ U . Hence U : X0 = U .

Therefore R is ΣU -zip. �

Corollary 2.12. Let R be a ring and ∆ be a multiplicatively closed subset of R

consisting of central regular elements. Then we have the following:

(1) [6, Proposition 12] R is right zip if and only if ∆−R is right zip.

(2) If R is an NI ring, then R is weak zip if and only if ∆−R is weak zip.

Proof. (1) Let U = 0. Then the result is an immediate consequence of Proposition

2.11.

(2) Let U = nil(R). Then ∆−U = nil(∆−R). In view of Proposition 2.11, we

obtain the result. �
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Let φ : R −→ S be a surjective ring homomorphism. For any subset V ⊆ S, we

define V c = {r ∈ R | φ(r) ∈ V }, and for any subset T ⊆ R, we define T e = {φ(t) |
t ∈ T}. Clearly, if V is an ideal of S, then V c is an ideal of R.

The following proposition reveals the relationship between the Σ-zip property of

the ring R and that of its homomorphic image.

Proposition 2.13. Let φ : R −→ S be a ring homomorphism, and M an ideal of

S. Then the following conditions are equivalent:

(1) R is ΣMc-zip.

(2) S is ΣM -zip.

Proof. (1) ⇒ (2) Let X ⊆ S with X 6⊆ M and M : X = M . Now we show that

M c : Xc = M c. Suppose that r ∈M c : Xc. Then Xcr ⊆M c, and so Xφ(r) ⊆M .

Then φ(r) ∈M : X = M , concluding that r ∈M c. Thus M c : Xc = M c. Since R is

ΣMc-zip, there exists a finite subset V ⊆ Xc such that M c : V = M c. Now we show

that M : V e = M , where V e is a finite subset of X. If r ∈M : V e, then V er ⊆M
and so V rc ⊆ M c, where rc = {a ∈ R | φ(a) = r}. Hence rc ⊆ M c : V = M c, and

so r ∈M . Hence M : V e = M . Therefore S is ΣM -zip.

(2) ⇒ (1) Assume that S is ΣM -zip, and X ⊆ R with X 6⊆ M c and M c : X =

M c. Now we show that M : Xe = M . Suppose that r ∈M : Xe. Then Xer ⊆M ,

and so Xrc ⊆ M c. Thus rc ⊆ M c : X = M c, and so r ∈ M , concluding that

M : Xe = M . Since S is ΣM -zip, there exists a finite subset V ⊆ Xe such that

M : V = M . Without loss of generality, we may assume that V = {v1, v2, . . . , vk}.
Consider the following subset

W = {x1, x2, . . . , xk | xi ∈ X,φ(xi) = vi, 1 ≤ i ≤ k} ⊆ X.

Then W is a finite subset of X and W e = V . Now we show that M c : W = M c.

Suppose that a ∈ M c : W . Then Wa ⊆ M c, and so W eφ(a) = V φ(a) ⊆ M . Thus

we obtain φ(a) ∈M : V = M , and so a ∈M c. Hence M c : W = M c. Therefore R

is ΣMc-zip. �

Corollary 2.14. Let M be an ideal of R. Then the following conditions are equiv-

alent:

(1) R is ΣM -zip.

(2) R/M is Σ0-zip.

(3) R/M is right zip.
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Proof. (1) ⇔ (2) is an immediate consequence of Proposition 2.13. (2) ⇔ (3) is

trivial. �

Corollary 2.15. Let R be a commutative ring and U an ideal of R. If R is ΣU -zip,

then Mn(R) is ΣMn(U)-zip, where Mn(U) = {(aij)n×n ∈ Mn(R) | aij ∈ U for all

i, j = 1, 2, . . . , n}.

Proof. Suppose that R is ΣU -zip. Then by Corollary 2.14, we have that R/U is

zip, and so by [2, Proposition 1], Mn(R/U) ∼= Mn(R)/Mn(U) is zip. Hence the

result follows from Corollary 2.14. �

Rege and Chhawchharia in [11] introduced the notion of an Armendariz ring. A

ring R is called Armendariz if whenever polynomials
∑m
i=0 aix

i,
∑n
j=0 bjx

j ∈ R[x]

satisfy f(x)g(x) = 0, then aibj = 0 for each 0 ≤ i ≤ m and 0 ≤ j ≤ n. Hong

[6] showed that if R is an Armendariz ring, then R is right zip if and only if

the polynomial ring R[x] is right zip, if and only if the Laurent polynomial ring

R[x, x−1] is right zip. Let U be an ideal of R. Let U [x] and U [x, x−1] denote the

subsets U [x] = {f(x) =
∑m
i=0 aix

i ∈ R[x] | ai ∈ U, 0 ≤ i ≤ m} and U [x, x−1] =

{f(x) =
∑n
i=m aix

i ∈ R[x, x−1] | ai ∈ U,m ≤ i ≤ n}, respectively. Then we have

the following proposition.

Proposition 2.16. Let U be an ideal of R and R/U an Armendariz ring. Then

the following conditions are equivalent:

(1) R is ΣU -zip.

(2) R[x] is ΣU [x]-zip.

(3) R[x, x−1] is ΣU [x,x−1]-zip.

Proof. (1) ⇔ (2) Since R/U is Armendariz, by [6, Theorem 11], we have that

R/U is right zip if and only if (R/U)[x] ∼= R[x]/U [x] is right zip, and therefore we

complete the proof by Corollary 2.14.

(1)⇔ (3) is proved in the same manner. �

3. Ore extension of Σ-zip rings

In this section we always denote the Ore extension ring by R[x;α, δ], where

α : R −→ R is an endomorphism and δ : R −→ R is an α-derivation. Recall

that an α-derivation δ is an additive operator on R with the property that δ(ab) =

α(a)δ(b) + δ(a)b for all a, b ∈ R. The elements of R[x;α, δ] are polynomials in

x with coefficients written on the left. Multiplication in R[x;α, δ] is given by the

multiplication in R and the condition xa = α(a)x+ δ(a) for all a ∈ R.
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For any 0 ≤ i ≤ j, f ji ∈ End(R,+) will denote the map which is the sum of all

possible words in α and δ built with i letters α and j − i letters δ.

Using recursive formulas for the f ji ’s and induction (see [5]), one can show with

a routine computation that

xja =

j∑
i=0

f ji (a)xi.

This formula uniquely determines a general product of polynomials in R[x;α, δ]

and will be used freely in what follows.

Let I be a subset of R, I[x;α, δ] means the set {u0+u1x+· · ·+unxn ∈ R[x;α, δ] |
ui ∈ I, 0 ≤ i ≤ n}, that is, for any skew polynomial f(x) = u0 +u1x+ · · ·+unx

n ∈
R[x;α, δ], f(x) ∈ I[x;α, δ] if and only if ui ∈ I for all 0 ≤ i ≤ n.

Let α be an endomorphism and δ an α-derivation of R. Following Hashemi and

Moussavi [5], a ring R is said to be α-compatible if for each a, b ∈ R, ab = 0 ⇔
aα(b) = 0. Moreover, R is called to be δ-compatible if for each a, b ∈ R, ab =

0 ⇒ aδ(b) = 0. If R is both α-compatible and δ-compatible, then R is said to be

(α, δ)-compatible.

Let I be an ideal of R. Due to Hashemi [4], I is said to be α-compatible if for

each a, b ∈ R, ab ∈ I ⇔ aα(b) ∈ I. Moreover, I is called to be δ-compatible if for

each a, b ∈ R, ab ∈ I ⇒ aδ(b) ∈ I. If I is both α-compatible and δ-compatible, then

I is said to be (α, δ)-compatible. Clearly, a ring R is an (α, δ)-compatible ring if

and only if the zero ideal is an (α, δ)-compatible ideal. Let U be an ideal of R, we

say that U is a semiprime ideal if for any a ∈ R, a2 ∈ U implies a ∈ U .

The following lemma appears in [4].

Lemma 3.1. [4, Proposition 2.3] Let I be an (α, δ)-compatible ideal, and a, b ∈ R.

(1) If ab ∈ I, then aαn(b) ∈ I and αn(a)b ∈ I for every positive integer n.

Conversely, if aαk(b) or αk(a)b ∈ I for some positive integer k, then ab ∈ I.

(2) If ab ∈ I, then αm(a)δn(b) ∈ I and δm(a)αn(b) ∈ I for any nonnegative

integers m, n.

Lemma 3.2. Let I be an (α, δ)-compatible ideal and a, b ∈ R. If ab ∈ I, then

af ji (b) ∈ I and f ji (a)b ∈ I for all 0 ≤ i ≤ j.

Proof. It is clear by Lemma 3.1. �

Lemma 3.3. Let U be an (α, δ)-compatible ideal of R. Then for each Y ⊆ R, we

have (U [x;α, δ] : Y ) ∩R = U : Y .

Proof. It is trivial. �
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Proposition 3.4. Let α be an endomorphism and δ an α-derivation of R. If U is

an (α, δ)-compatible semiprime ideal, then the following conditions are equivalent:

(1) R is ΣU -zip.

(2) R[x;α, δ] is ΣU [x;α,δ]-zip.

Proof. (1) ⇒ (2) Suppose that R is ΣU -zip and V is a subset of R[x;α, δ] with

V 6⊆ U [x;α, δ] and U [x;α, δ] : V = U [x;α, δ]. For a skew polynomial f(x) =∑n
i=0 aix

i ∈ R[x;α, δ], Cf denotes the set of coefficients of f(x), and for a subset

X of R[x;α, δ], CX denotes the set
⋃
f∈X Cf . Then CV ⊆ R and CV 6⊆ U . Now we

show that U : CV = U . If r ∈ U : CV , then ar ∈ U for any a ∈ CV . So by Lemma

3.2, we obtain

f(x)r = (

n∑
i=0

aix
i)r =

n∑
k=0

(

n∑
s=k

asf
s
k(r)xk) ∈ U [x;α, δ]

for any skew polynomial f(x) =
∑n
i=0 aix

i ∈ V . Hence r ∈ U [x;α, δ] : V =

U [x;α, δ], and so r ∈ U . Thus U : CV = U . Since R is ΣU -zip, there exists

a finite subset Y0 ⊂ CV such that U : Y0 = U . For each a ∈ Y0, there exists

ga(x) ∈ V such that some of the coefficients of ga(x) are a. Let V0 be a minimal

subset of V such that ga(x) ∈ V0 for each a ∈ Y0. Then V0 is a finite subset of

V . Let Y1 =
⋃
ga(x)∈V0

Cga(x). Then Y0 ⊆ Y1, and so U : Y1 ⊆ U : Y0 = U . If

g(x) =
∑n
j=0 bjx

j ∈ U [x;α, δ] : V0, then f(x)g(x) ∈ U [x;α, δ] for each f(x) =∑m
i=0 aix

i ∈ V0. We have

f(x)g(x) = (
m∑
i=0

aix
i)(

n∑
j=0

bjx
j)

=
m+n∑
k=0

(
∑

s+t=k

(
m∑
i=s

aif
i
s(bt)))x

k ∈ U [x;α, δ].

Thus we obtain∑
s+t=k

(

m∑
i=s

aif
i
s(bt)) ∈ U, k = 0, 1, . . . ,m+ n, 0 ≤ s ≤ m, 0 ≤ t ≤ n.

Set k = m+ n. Then amα
m(bn) ∈ U . By Lemma 3.1, we obtain ambn ∈ U , and

so bnam ∈ U since U is a semiprime ideal.

Set k = m+ n− 1. We have

amα
m(bn−1) + am−1α

m−1(bn) + amf
m
m−1(bn) ∈ U.

Then

bnamα
m(bn−1) + bnam−1α

m−1(bn) + bnamf
m
m−1(bn) ∈ U,
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and so bnam−1α
m−1(bn) ∈ U . By using Lemma 3.1 again, we obtain bnam−1bn ∈ U ,

and so (bnam−1)2 ∈ U , (am−1bn)2 ∈ U . Since U is semiprime, we obtain bnam−1 ∈
U and am−1bn ∈ U .

Continuing this procedure yields that aibn ∈ U for all 0 ≤ i ≤ m, and so

aif
t
s(bn) ∈ U for every t ≥ s ≥ 0 and every 0 ≤ i ≤ m. Thus it is easy to

verify that (
∑m
i=0 aix

i)(
∑n−1
j=0 bjx

j) ∈ U [x;α, δ]. Applying the preceding method

repeatedly, we obtain aibj ∈ U for each 0 ≤ i ≤ m and 0 ≤ j ≤ n. Thus

bj ∈ U : Y1 ⊆ U : Y0 = U for all 0 ≤ j ≤ n, and so g(x) ∈ U [x;α, δ]. Hence

U [x;α, δ] : V0 = U [x;α, δ]. Therefore R[x;α, δ] is ΣU [x;α,δ]-zip.

(⇐) Conversely, assume that R[x;α, δ] is ΣU [x;α,δ]-zip. Let Y be a subset of R

with Y 6⊆ U and U : Y = U . If f(x) =
∑n
i=0 aix

i ∈ U [x;α, δ] : Y , then for each

r ∈ Y ,

rf(x) = r(

n∑
i=0

aix
i) =

n∑
i=0

raix
i ∈ U [x;α, δ].

So rai ∈ U for each 0 ≤ i ≤ n and each r ∈ Y . Thus for each 0 ≤ i ≤ n, we

obtain ai ∈ U : Y = U , and it follows that f(x) ∈ U [x;α, δ]. Thus we obtain

U [x;α, δ] : Y = U [x;α, δ]. Since R[x;α, δ] is ΣU [x;α,δ]-zip, there exists a finite

subset Y0 ⊂ Y such that U [x;α, δ] : Y0 = U [x;α, δ]. By Lemma 3.3, we obtain

U : Y0 = (U [x;α, δ] : Y0) ∩R = U . Therefore R is ΣU -zip. �

Corollary 3.5. Let R be an (α, δ)-compatible reduced ring. Then the following

conditions are equivalent:

(1) R is right zip.

(2) R[x;α, δ] is right zip.

Proof. Note that the zero ideal of R is an (α, δ)-compatible semiprime ideal if

and only if R is an (α, δ)-compatible reduced ring. Hence the result follows from

Proposition 3.4. �

Corollary 3.6. Let U be a semiprime ideal of R. Then we have the following:

(1) If U is an α-compatible ideal, then the skew polynomial ring R[x;α] is

ΣU [x;α]-zip if and only if R is ΣU -zip.

(2) If U is an δ-compatible ideal, then the differential polynomial ring R[x; δ]

is ΣU [x;δ]-zip if and only if R is ΣU -zip.

(3) the polynomial ring R[x] is ΣU [x]-zip if and only if R is ΣU -zip.
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4. Skew generalized power series extension of Σ-zip rings

Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly

decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every

subset of pairwise order-incomparable elements of S is finite. Let S be a com-

mutative monoid. Unless stated otherwise, the operation of S shall be denoted

additively, and the neutral element by 0. The following definition is due to [7], [9],

[12] and [13].

Let R be a ring, (S,≤) a strictly ordered monoid (that is, (S,≤) is an ordered

monoid satisfying the condition that, if s, s′, t ∈ S and s < s′, then s+ t < s′ + t),

and ω : S −→ End(R) a monoid homomorphism with ω(0) is the identity map

of R. For any s ∈ S, let ωs denote the image of s under ω, that is, ωs = ω(s),

and 1 = ω0 = ω(0). Consider the set A of all maps f : S −→ R whose support

supp(f) = {s ∈ S | f(s) 6= 0} is artinian and narrow. Then for any s ∈ S and f ,

g ∈ A, the set

Xs(f, g) = {(u, v) ∈ S × S | u+ v = s, f(u) 6= 0, g(v) 6= 0}

is finite [13]. This fact allows to define the operation of convolution as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)), if Xs(f, g) 6= ∅,

and (fg)(s) = 0 if Xs(f, g) = ∅. With this operation of convolution, and pointwise

addition, A becomes a ring, which is called the ring of skew generalized power series

with coefficients in R and exponents in S, and we denote by [[RS,≤, ω]].

The skew generalized power series construction embraces a wide range of classical

ring-theoretic extensions, including skew polynomial rings, skew power series rings,

skew Laurent polynomial rings, skew group rings, Malcev-Neumann Laurent series

rings and of courses the untwisted versions of all of these.

If (S,≤) is a strictly totally ordered monoid and 0 6= f ∈ [[RS,≤, ω]], then supp(f)

is a nonempty well-ordered subset of (S,≤). For any r ∈ R and any s ∈ S, we define

λsr ∈ [[RS,≤, ω]] via

λsr(t) =

{
r t = s

0 t 6= s
t ∈ S.

It is clear that r −→ λ0
r is a ring embedding of R into [[RS,≤, ω]], and for any

r ∈ R, f ∈ [[RS,≤, ω]], we have rf = λ0
rf.

Let U be a nonempty subset of R. We define [[US,≤, ω]] = {f ∈ [[RS,≤, ω]] |
f(s) ∈ U ∪ {0} for all s ∈ S}. In particular, we have [[(nil(R))S,≤, ω]] = {f ∈
[[RS,≤, ω]] | f(s) ∈ nil(R) for all s ∈ S}.



EXTENSIONS OF Σ-ZIP RINGS 19

Definition 4.1. Let ω : S −→ End(R) be a monoid homomorphism and U an

ideal of R. We say that U is Σ-compatible if for each a, b ∈ R and each s ∈ S,

ab ∈ U ⇔ aωs(b) ∈ U .

Lemma 4.2. Let ω : S −→ End(R) be a monoid homomorphism and U an ideal

of R. If U is Σ-compatible, then for each a, b ∈ R and each s ∈ S, ab ∈ U ⇔
ωs(a)b ∈ U .

Proof. Since U is Σ-compatible, we have ab = 1 · ab ∈ U ⇔ 1 · ωs(ab) = ωs(ab) =

ωs(a)ωs(b) ∈ U ⇔ ωs(a)b ∈ U . �

Proposition 4.3. Let (S,≤) be a strictly totally ordered monoid, and U a Σ-

compatible semiprime ideal of R. Then the following condition are equivalent:

(1) R is ΣU -zip.

(2) The skew generalized power series ring [[RS,≤, ω]] is Σ[[US,≤,ω]]-zip.

Proof. (1) ⇒ (2) Suppose that R is ΣU -zip and X is a subset of [[RS,≤, ω]] with

X 6⊆ [[US,≤, ω]] and [[US,≤, ω]] : X = [[US,≤, ω]]. For any f ∈ [[RS,≤, ω]], let Cf

denote the subset {f(s) | s ∈ S} and for any subset V ⊆ [[RS,≤, ω]], let CV denote

the subset
⋃
f∈V Cf . Now we show that U : CX = U . If r ∈ U : CX , then ar ∈ U

for all a ∈ CX . By the condition that U is Σ-compatible, we have that for any

f ∈ X and any s ∈ S,

(fr)(s) = (fλ0
r)(s) = f(s)ωs(r) ∈ U.

So fr ∈ [[US,≤, ω]] and hence r ∈ [[US,≤, ω]] : X = [[US,≤, ω]]. Thus r ∈ U and so

U : CX = U . Since R is ΣU -zip, there exists a finite subset Y0 = {q1, q2, . . . , qk} ⊆
CX such that U : Y0 = U . For each qi ∈ Y0, there exists fi ∈ X such that

f(si) = qi for some si ∈ supp(fi). Let X0 be a minimal subset of X such that

for each qi ∈ Y0, fi ∈ X0. Then X0 is a finite subset of X. Since CX0
⊇ Y0, we

have U : CX0 ⊆ U : Y0 = U . Now we show that [[US,≤, ω]] : X0 = [[US,≤, ω]].

Since [[US,≤, ω]] : X0 ⊇ [[US,≤, ω]] is clear, it suffices to show that [[US,≤, ω]] :

X0 ⊆ [[US,≤, ω]]. Let g ∈ [[US,≤, ω]] : X0. Then fg ∈ [[US,≤, ω]] for each f ∈ X0.

We proceed by transfinite induction on the strictly totally set (S,≤) to show that

f(u)g(v) ∈ U for any u ∈ supp(f) and v ∈ supp(g). Let s and t denote the minimal

elements of supp(f) and supp(g) in the ≤ order, respectively. Thus

(fg)(s+ t) =
∑

(u,v)∈Xs+t(f,g)

f(u)ωu(g(v)) = f(s)ωs(g(t)) ∈ U,

and so f(s)g(t) ∈ U since U is Σ-compatible.
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Now suppose that w ∈ S is such that for any u ∈ supp(f) and v ∈ supp(g) with

u+ v < w, f(u)g(v) ∈ U . We will show that f(u)g(v) ∈ U for any u ∈ supp(f) and

v ∈ supp(g) with u+ v = w. We write

Xw(f, g) = {(u, v) | u+ v = w, u ∈ supp(f), v ∈ supp(g)},

as {(ui, vi) | i = 1, 2, . . . , n} such that

u1 < u2 < · · · < un.

Since (S,≤) is a strictly totally ordered monoid, we have

vn < vn−1 < · · · < v2 < v1.

Now

(fg)(w) =
∑

(u,v)∈Xw(fg)

f(u)ωu(g(v)) =

n∑
i=1

f(ui)ωui(g(vi)) = a1 (1)

where a1 ∈ U . For any i ≥ 2, u1 +vi < ui+vi = w, and thus, by induction hypoth-

esis, we have f(u1)g(vi) ∈ U . Since U is semiprime, we also have g(vi)f(u1) ∈ U .

Since U is Σ-compatible, by Lemma 4.2, we have ωui(g(vi))f(u1) ∈ U . Hence

multiplying (1) on the right by f(u1), we obtain f(u1)ωu1
(g(v1))f(u1) ∈ U , and so

f(u1)ωu1(g(v1))ωu1(f(u1)) = f(u1)ωu1(g(v1)f(u1)) ∈ U.

Thus we obtain f(u1)g(v1)f(u1) ∈ U . Since U is semiprime, we have f(u1)g(v1) ∈
U , and g(v1)f(u1) ∈ U . Now (1) becomes

n∑
i=2

f(ui)ωui(g(vi)) = a1 − f(u1)ωu1(g(v1)) = a2, where a2 ∈ U. (2)

Multiplying (2) on the right by f(u2), we obtain f(u2)g(v2) ∈ U, g(v2)f(u2) ∈ U
by the same way as above. Continuing this procedure yields that f(ui)g(vi) ∈ U
for all 1 ≤ i ≤ n. Thus f(u)g(v) ∈ U for any u ∈ supp(f) and v ∈ supp(g) with

u+ v = w. Therefore by transfinite induction, f(u)g(v) ∈ U any u ∈ supp(f) and

v ∈ supp(g). So for any s ∈ S, g(s) ∈ U : CX0 ⊆ U . Thus g ∈ [[US,≤, ω]] and

so [[US,≤, ω]] : X0 ⊆ [[US,≤, ω]]. Hence [[US,≤, ω]] : X0 = [[US,≤, ω]]. Therefore

[[RS,≤, ω]] is Σ[[US,≤,ω]]-zip.

(2) ⇒ (1) Assume that [[RS,≤, ω]] is Σ[[US,≤,ω]]-zip. We will show that R is

ΣU -zip. Let Y ⊆ R with Y 6⊆ U and U : Y = U . If f ∈ [[US,≤, ω]] : Y , then

yf = λ0
yf ∈ [[US,≤, ω]] for each y ∈ Y , and so for any s ∈ S, (yf)(s) = yf(s) ∈

U . Thus for any s ∈ S, f(s) ∈ U : Y = U , and so f ∈ [[US,≤, ω]]. Hence

[[US,≤, ω]] : Y = [[US,≤, ω]]. Since [[RS,≤, ω]] is Σ[[US,≤,ω]]-zip, there exists a finite
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subset Y0 ⊆ Y such that [[US,≤, ω]] : Y0 = [[US,≤, ω]]. Then it is easy to see that

U : Y0 = ([[US,≤, ω]] : Y0) ∩R = [[US,≤, ω]] ∩R = U . Therefore R is ΣU -zip. �

Proposition 4.4. Let (S,≤) be a strictly totally ordered monoid, and the zero ideal

of R is Σ-compatible semiprime. Then the following condition are equivalent:

(1) R is right zip.

(2) the skew generalized power series ring [[RS,≤, ω]] is right zip.

Proof. Let U = 0. Then we complete the proof by Proposition 4.3. �

Let α be a ring endomorphism of R. Let S = N ∪ {0} be endowed with the

usual order, and define ω : S −→ End(R) via ω(0) = 1, the identity map of R,

and ω(k) = αk for k ∈ N. Then [[RS,≤, ω]] ∼= R[[x;α]], the usual skew power series

rings.

Let α be a ring automorphism of R. Let S = Z be endowed with the usual order,

and define ω : S −→ End(R) via ω(s) = αs. Then [[RS,≤, ω]] ∼= R[[x, x−1;α]], the

usual skew Laurent power series rings.

As an immediate consequence of Proposition 4.3, we obtain the following corol-

lary.

Corollary 4.5. Let U be an α-compatible semiprime ideal. Then the following

conditions are equivalent:

(1) R is ΣU -zip.

(2) The skew power series ring R[[x;α]] is ΣU [[x;α]]-zip.

(3) The skew Laurent power series ring R[[x, x−1;α]] is ΣU [[x,x−1;α]]-zip.
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