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ABSTRACT. In this note we consider a new concept, so called X-zip ring, which
unifies zip rings and weak zip rings. We observe the basic properties of ¥-zip
rings, constructing typical examples. We study the relationship between the
Y.-zip property of a ring R and that of its Ore extensions and skew generalized
power series extensions. As a consequence, we obtain a generalization of several

known results relating to zip rings and weak zip rings.
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1. Introduction

Throughout this paper all rings R are associative with identity. The set of all
nilpotent elements of R is denoted by nil(R). Recall that R is reduced if for all
a € R, a®> = 0 implies a = 0; R is reversible if for all a, b € R, ab = 0 implies ba = 0;
R is an NI ring if nil(R) forms an ideal [8]. Let U and V be two nonempty subsets
of R. We define U : V ={z € R|Vz CU}. If V is singleton, i.e. V = {m}, we
use U : m in place of U : {m}. It is easy to see that if U and V are two right ideals
of R, then U : V is an ideal of R and such an ideal is usually called the quotient of
U by V.

For any nonempty subset X of a ring R, rr(X) = {a € R | Xa = 0} denotes
the right annihilator of X in R. Faith in [3] called a ring R right zip if the right
annihilator rg(X) of a subset X of R is zero, then rr(Y) = 0 for a finite subset
Y C X. Left zip rings are defined analogously. R is zip if it is both right and left zip.
Zelmanowitz stated that any ring satisfying the descending chain condition on right
annihilators is a right zip ring, but the converse does not hold [14]. Examples of right
zip rings that do not satisfy the descending chain condition on right annihilators

can be found in [3] and [14]. Extensions of zip rings were studied by several authors.
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Beachy and Blair [1] showed that if R is a commutative zip ring, then the polynomial
ring R[x] over R is zip. Faith in [3] proved that if R is a commutative zip ring and
G a finite abelian group, then the group ring R[G] of G over R is zip. Cedo in [2]
proved that there exist right (left) zip rings R such that M>(R) is not right (left)
zip. Also, he proved that if R is a commutative zip ring, then the n x n full matrix
ring M, (R) over R is a zip ring. For more details and properties of zip rings (see
1,2, 3,6, 14]).

For a nonempty subset X of a ring R, we define Np(X) = {a € R | za € nil(R)
for all € X}, which is called the weak annihilator of X in R [10]. If X is a finite
set, i.e. X = {ry, ra, ..., rn}, we use Ng(r1, ra, ..., my) in place of Nr({r1, re,
..., 'n}). Obviously, for any subset X of a ring R, Ng(X) = {a € R | za € nil(R)
forall z € X} = {b € R | bx € nil(R) for all z € X}, and rr(X) C Ng(X),
Ir(X) C Nr(X). If R is reduced, then rg(X) = Ng(X) = Igr(X) for any subset X
of R. Tt is easy to see that for any subset X C R, Ng(X) is an ideal of R whenever
nil(R) is an ideal.

A ring R is called weak zip provided that for any subset X of R, if Ng(X) C
nil(R), then there exists a finite subset ¥ C X such that Nr(Y) C nil(R). L.
Ouyang [10] proved that for an endomorphism « and an a-derivation ¢ of a ring R,
if R is («,d)-compatible and reversible, then R is weak zip if and only if the Ore
extension R[z;a,d] is weak zip.

Motivated by the results in [1, 2, 3, 6, 14], in this article, we continue the study of
>-zip rings. We first introduce the notion of a -zip ring, which is a generalization
of both zip rings and weak zip rings, and investigate their properties. We next

extend the class of ¥-zip rings through various ring extensions.

2. Y-zip rings

In this section, U always denotes a proper ideal of a ring R unless otherwise

stated. We start this section with the following definition.

Definition 2.1. Let U be an ideal of R. The ring R is called Xy-zip provided that
for any subset X of R with X € U, if U : X = U, then there exists a finite subset
Y C X suchthat U : Y =U.

Clearly, if U = 0, then for any subset X of R, we have U : X = rr(X), and so R
is ¥o-zip if and only if R is right zip. Let R be an NT ring and U = nil(R). Then
for any subset X of R, we have nil(R) : X = Nr(X), and so R is X, ;;(g)-zip if and
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only if R is weak zip. So both right zip rings and weak zip rings are special -zip
rings.

In the following we offer some examples of X-zip rings.

Example 2.2. (1) Recall that an ideal P of R is completely prime if P # R, and
ab € P impliesa € P orb e P, fora, b e R. So if U is a completely prime ideal
of R, then R is a Xy -zip ring since U : X = U for each subset X € U. By the fact
that the zero ideal of any domain is completely prime, we have that any domain is
Yo-zip as well as zip.

(2) Let R be a domain and S = Rx]/(z™), where (x™) is the ideal generated by
x™. Denote T in S = R[z]/(2") by a. Thus S = R[z]/(z™) = Rla] = R+ Ra+---+
Ra"™™ !, where a commutes with elements of R and o™ = 0. Let U = {Z?;ll riat |
r; € R}. Then U is a completely prime ideal of S. So S = R[z]/(z™) = R|a] is
Yy-zip.

k 0
(8) Let k be any field, and consider the ring R = ( Lo > of 2 x 2 lower

triangular matrices over k. We can write all the proper nonzero ideals of R as

e (2 2) (2 ) (220}

Since my and mo are completely prime ideals of R, we have that R are 3,,, -zip

follows:

and X,,,-2ip, respectively. Now we show that R is Xp,,-zip. In fact, let X be any
subset of R with X € mg, and mg : X = mg. Then we consider the sets W and V
defined as follow:

wfuen (0 )exf v=Leeni(g 2 )ex}

Since m3 : X = mg, we must have W # 0 and V # 0. Hence there exist p =

a 0 z 0
(b >€Xwitha7é0,andq< )EXwithz#O. Let Xo = {p,q}.
c y oz
Then Xy is a finite subset of X. By a routine computation, we have mz : Xg = ms.
S0 R is ¥, -zip. Note that R is an NI ring and ms = nil(R). Then by Definition
2.1, R is also weak zip.
Using the same way as above, we can show that R is ¥y-zip. Then by Definition

2.1, R is also right zip.

Let U be an ideal of R, and let
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a1 a2 - QAip
0 azg - a
Rn: . . . . |aij€R s DUn:
0 0 Ann
U1 a2 @13 - QAin
0 U2 A23 -+  0G2n
0 0 wugz -+ asn ||uy€eUaj;€eR1<i<n2<j<n,,
0 0 0 - Upn
ail 0 0
asy aze -+ 0
LR, = .. . . |la;eRy, LDU,=
anl1 Ap2 - Qpp
U1 0 0 0
asy w2 0 0
a1 azz wuzz - 0 |ui€Uya;; € R(1<i<n2<j<n
Apl  Ap2 Gp3 - Upp

Then under usual matrix operations, DU, is an ideal of R,, and LDU,, is also an

ideal of LR,,. The following proposition gives more examples of >.-zip rings.

Proposition 2.3. Let U be an ideal of R. Then the following conditions are
equivalent:

(1) R is Zy-zip;

(2) Ry is X(pu,)-2ip;

(3) LRy is X(1pu,)-2ip-

Proof. (1) = (2) Suppose that R is Xy-zip and V is a subset of R,, with V' Z DU,
and DU, : V = DU,,. Let

@11 ai2 -+ Qip
0 ap - ax ,

Y, = aii€R| . . . . eV, 1<i<n.
0 0 - apn

Then Y; C R, 1 <i<n IfY; CU forsomel <i<n,then V- E; C DU,,

where E;; is the usual matrix unit with 1 in the (¢, j) coordinate and zero elsewhere.
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Thus F;; € DU, : V = DU,, and so 1 € U, this contradicts the fact that U is a
proper ideal of R. Hence Y; € U for all 1 < i < n. Now we show that for each
1<i<n, U:Y;,=U. Infact, U : Y; D U is clear, it suffices to show the reverse

a1 a2 - QAin
0 ax - a2
inclusion. Suppose that b € U : Y;. Then ) ] ) ] - (bE;;) € DU,
0 0 ct Qpn
a11 Q12 - Glp
0 axp - a2
for each ) ] ) ] € V. Thus bE;; € DU, : V = DU, and we
0 0 - apn

have that b € U. Hence U : Y; C U and foreach 1 < ¢ < n, U :Y;, = U.
Since R is Yy-zip, there exists a finite subset ¥/ C Y; such that U : Y/ = U,

€11 Ci2 -+ Cip
0 co2 -+ cCon

1 < i < n. For each ¢ € Y/, there exists A, = ) L . € V such
0 0 - cun

that ¢;; = c¢. Let V/ be a minimal subset of V' such that A. € V/ for each ¢ € Y.
Then V is a finite subset of V. Let Vo = U;<;<,, V/'- Then Vj is also a finite subset

bir b2 -+ bin
0 bap -+ boy
of V. f B = ) o ) € DU, : Vp, then A’B € DU, for each
0 0 - buy
ay,  ay ceeoay,
O a/ “ e a/’rL
A= 2 | e V. Let
0 0 an.
ay  ap aty,
99 as
n
W,=<a,, €R]| . . eEVop, 1<i<n
0 0 al

Clearly, Y/ C W, for each 1 < i < n. SoU : W; C U :Y/ = U for each
1 <4< n. Since A'B € DU, implies that al;b; € U for all 1 < i < n, we obtain
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bi; €U : W, CU:Y/=U. Thus b;; € U for each 1 < i < n, and hence B € DU,,.
Therefore DU, : Vo = DU, and so R,, is ¥(pu,,)-2ip-

(2) = (1) Assume that R, is X(py,)-zip and X C R with X € U and U :
X =U. Let V.={al | a € X} C R, where [ is the n x n identity matrix. If

by bz -+ bin
0 by - bop

B = ) L ) € DU,, : V, then al - B € DU, for all ¢ € X. Thus
0 0 - by,

abi; € U for all 1 < i < n and all a € X, and it follows that b;; € U : X = U.
Hence B € DU,, which implies that DU,, : V = DU,,. Since R,, is ¥ (pu,)-%ip, there
exists a finite subset Vo = {a11,a2l,...,a,I} C V such that DU, : Vo = DU,,.
Let Xo = {a1,a2, - ,am} C X. If c € U : Xy, then (axI) - (cE11) € DU, for all
k=1,2,...,m. Thus cE1; € DU, : Vy = DU,, and so ¢ € U. Hence U : Xy = U.
Therefore R is Yy-zip.

(1) & (3) is analogous to (1) < (2). O

Corollary 2.4. [10, Proposition 2.1] Let R be an NI ring. Then the following
conditions are equivalent:

(1) R is weak zip;

(2) R, is weak zip;

(3) LR, is weak zip.

Proof. Let U = nil(R). Then DU, = nil(R,), LDU, = nil(LR,) and both R,
and LR, are NI rings. Note that for any ring R, we have that R is ¥, (r)-zip if
and only if R is weak zip. Therefore we complete the proof by Proposition 2.3. 0O

Based on the preceding results, we consider the following subrings of n x n upper

(lower) triangular matrix rings. Let U be an ideal of R and

a a2 - G1p
0 a e a9

S, = ) ) ' ] | a,a;; € R 7,
0 0 a
u U2 - Uln
O u “e Uom

Un = o ) | u,us; €U »,
0 0 Uu
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a 0
a21 a
LS, = \a,aijER s
apl  Ap2 a
U 0
U221 U
LU, = | U, Uiy € U ,
Up1 Up2 - U

where n > 2 is a positive integer. Then we have the following.

Proposition 2.5. Let U be an ideal of R. Then the following conditions are

equivalent:
(1) R is Xy-zip;
(2) Sy is Xy, -zip;
(3) LSy is X(ru,)-2ip.

Proof. (1) = (2) Suppose that R is Yy-zip and V is a subset of S, with V € U,
and U, : V = U,. Consider the following set

v V12 Vin

0 v - vy
X=(veER| L ] evsy,

0o 0 - v

that is, X is the set of all elements in the ring R, which occurs as diagonal entries
of elements in V. If X C U, then V - Ey,, C U,. Thus Fy, € U, : V = U, and
so 1 € U which contradicts the fact that U is a proper ideal of R. Thus we obtain
X ¢ U. Now we show that U : X = U. Since U : X D U is clear, it suffices to
show that U : X C U. Suppose that a € U : X. Then aEy, € U, : V = U,,
and so a € U. Thus U : X = U. Since R is YXy-zip, there exists a finite subset
Xo = {v1,v9,...,0} € X such that U : Xy = U. For each v; € Xp, 1 < i <k,

Ui Ui—Q e Ulin
0 v - v,

there exists A, = ) L ] € V. Let Vi be the minimal subset of
0 0 -

V such that A,, € Vp for each v; € Xg. Then V; is a finite subset of V. Without
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loss of generality, we may write V as follow:

vi vy Ui,
0 v - v,

Vo = EV|U¢EX071§i§k
0 0 -

Now we show that U, : Vi = U,. We proceed by induction on n. Suppose that

Vi Vg a a2 € U, for a a1z € Ry and 1 < 4 < k. Then
0 v 0 a 0 a

v;a € U and vialg—H}iQaE U foralll1 <i<k. Fromv,a e U forall 1 <i<Ek, we
obtain a € U : Xg = U. Then from Uialg—l—vhae Uforalll<i<kandae€cU,

a a
we get a13 € U : Xg = U. Hence ( 12 ) € Uy and so Us : Vj C Us. Note
a
T PR i
0 v - vk,
that Uy : Vi D Us is clear. Thus Us : Vi = Us. Next let
0 0 V;
a ai2 A1n a a2 A1n
0 a Qon 0 a ¢ Q2p
€ U, for L . € Spand 1 < i < k.
0 O a 0 O a
vi vy Vil a aiz v Ao
0 v - Uin, 0 a - Gomi
Then we get ] . 2(_ 2 ) o (. ) € U,_ for
o 0 - V; o o .- a

all 1 < i < k. By the induction hypothesis, we obtain a € U and ays € U for all
1 <s,t <n—1. On the other hand, from a € U and for all 1 <1 <k,

Vi Vip e Vi, a aip - a1
0 v - vy, 0 a - a

e Uy,
0 0 - 0 0 - a

we have that for all 1 < i < k, v;a1, + vigag, + -+ + v}v’(nfl)a(n,l)n el, ...,

ViG(n—2)n + Vin—2)(n—1)Wn-1)n € U and viapn—1y, € U. From vap_1), € U

forall 1 < ¢ < k, we get apm—1), € U : Xo = U. Then from vag,—_2), +
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’Uén—Q)(n—l)a’(”*l)” € U and a1y, € U, we get a2y, € U : Xg = U. In-
ductively, we obtain a;, € U for i = 1,2, ..., n — 1, concluding that U, : V = U,.
Therefore R, is Xy, -zip.

(2) = (1) Assume that R, is Xy, -zip, and X € U with U : X = U. Let

z 0 --- 0 a a2 - Gin
0 =x 0 0 a - a9y
X, = |z € X 3 and L ] e U, : Xp.
0 . . .. .
0 0 x 0 0 a
Then
x 0 a ai2 -+ Qip
0 =z 0 0 a - a9y
e U,
0
0 0 T 0 O a
0
T 0
for each € X, and so za € U and za;; € U for each € X.
0
0 0 T
a aiz2 -+ Qinp
O a aon
Thusa € U : X =Uanda,;; € U: X =U, which implies that
0 0 --- a
U,. Hence U, : X, = U,. Since R, is Xy, -zip, there exists a finite subset
z; 0 -+ 0
0 = --- 0
V= ) o €X,|1<i<kj) CX,suchthat U, :V =U,. Let
. . .. O
0 0 - mz

Xo = {x1,22,...,x}. Then Xy C X is a finite subset of X. If a € U : Xy, then
aF, €U, :V =U,,and so a € U. Hence U : Xo = U. Therefore R is Xy-zip.

(1) & (3) is proved in the same manner. O

Corollary 2.6. [6, Theorem 5] Let R be a ring. Then the following conditions are
equivalent:

(1) R is a right zip ring.

(2) S, is a right zip ring.

(3) LS, is a right zip ring.
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Proof. Let U be the zero ideal of R. Then U,, and LU, are the zero ideals of .S,
and LS, respectively. Note that R is X-zip if and only if R is right zip. Therefore
we complete the proof by Proposition 2.5. (]

Corollary 2.7. Let U be an ideal of R. Then we have the following:

b
(1) Ris Xy-zip if and only if the trivial extension T(R, R) = { ( g ) | a,b € R}
a

of R by R is Xp,uy-2ip, where T(U,U) = {( 1(; Y ) | u,v € U}.
u
(2) [6, Corollary 6] R is a right zip ring if and only if T(R, R) is right zip.
Proof. According to Proposition 2.5 and Corollary 2.6, we obtain the results. [

Let R be a ring and

a1 O 0
T3(R) = asi azy asz |lay; €Ry,
0 0 as3
a 0 O
W3(R) = as1 a ass | |a,as,a3 € R
0 0 a

Then under usual matrix operations, T3(R) and W3(R) are subrings of the 3 x 3
matrix ring M3(R). Let U be an ideal of R and

u;; 0 0
DT3(U) = a91  Uss  ags | | ui1,use,usz € Uyasy,as3 € R 3,
0 0 uss
u 0 0
W3(U) = Uy u usy | |, u2y,u03 €U
0 0 wu

Then DT5(U) is an ideal of T3(R) and W3(U) is an ideal of W3(R).

Proposition 2.8. Let U be an ideal of R. Then the following conditions are
equivalent:

(1) R is Zy-zip.

(2) T5(R) is E(pry(ur))-2ip-

(3) W3(R) is Xy, (uvy)-2ip-
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Proof. The argument for this claim is similar to that used in the proof of Propo-

sition 2.3 and Proposition 2.5. (I

Corollary 2.9. Let R be a ring. Then we have the following:
(1) If R is an NI ring, then R is weak zip if and only if T3(R) is weak zip.
(2) R is right zip if and only if W3(R) is right zip.

Proof. (1) Let U = nil(R). Then DT5(U) = nil(T5(R)) and therefore we complete
the proof by Proposition 2.8.
(2) Let U = 0. Then the result is an immediate consequence of Proposition 2.8

and the fact that R is ¥g-zip if and only if R is right zip. |

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension
of R by S is the ring D = R xS with operations (71, s1)+ (72, s2) = (r1 +72, 51+ 52)
and (71, $1)(r2, $2) = (r1r2 + s172 + S271, S182), where r; € R and s; € S. Let U be
an ideal of S. We define R x U as follow:

RxU={(r,s)eD|reR,scU}.
Then R x U is an ideal of D.

Proposition 2.10. Let D be the Dorroh extension of R by S and U an ideal of S.
Then D is X(rxuy-2ip if and only if S is Yy -zip.

Proof. (=) Suppose that D is X(gyy)-zip and Y is a subset of S with Y € U
and U :Y =U. Let RxY ={(r,s) e D|r e R,s €Y} Then RxY C D
and RxY € RxU. If (u,v) € (RxU) : (RxY), then (r,s)(u,v) = (ru+
su+vr,sv) € R x U for each (r,s) € RxY. Thus sv € U for each s € Y, and
soveU:Y =U. Hence (u,v) € RxU andso (RxU): (RxY)=RxU.
Since D is ¥(gxy)-zip, there exists a finite subset (R x Y)o € R x Y such that
(RxU): (RxY)y = RxU. Without loss of generality, we may assume that
(RxY)o = {(r1,s1),(re,s2),...,(rk,sk)}. Then Yy = {s1,2,...,8} is a finite
subset of Y. If r € U : Yy, then (0,7) € (RxU): (RxY)g=RxU,andsor € U.
Hence U : Yy = U. Therefore S is Xy-zip.

(<) Assume that S is ¥y-zip and V is a subset of D with V' € R x U and
(RxU):V=RxU. Let X ={s €S| (r,s) € V}. Then by the condition that
VZRXxU,wehave X € U. If a € U : X, then (0,a) € (RxU):V =RxU
and so a € U. Thus U : X = U. Since S is Xy-zip, there exists a finite subset
Xo = {s1,82,...,8k} C X such that U : Xy = U. For each s; € Xy, there exists
vs, = (r4,8;) € V. Let V be the minimal subset of V such that vs, € Vp for each
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s; € Xo. Then Vj is a finite subset of V. Now we show that (RxU) : Vo = RxU. If
(a,b) € (RxU) : V, then (r,s)(a,b) = (ra+sa+br,sb) € RxU for each (r,s) € V.
Then sb € U for each s € Xy. Hencebe U : Xg =U, andso (RxU) : Vo =RxU.
Therefore D is Y gy y)-2ip. ([

Let R be a ring and A a multiplicatively closed subset of R consisting of central
regular elements. A~ R denotes the classical quotient ring of R. If U is an ideal of
R, then A~U is an ideal of A™R.

Proposition 2.11. Let U be an ideal of R. Then R is Yy-zip if and only if AR

18 X(A-1U)-21p-

Proof. Suppose that R is Yy-zip and V is a subset of ATR with V. ¢ A~U
and AU : V. = A7U. Let X = {a | u'a €V} CR Then X ¢ U. If
relU :X,then Vir C A U. Thusr € AU : V. = AU, and so r € U. Hence
U : X =U. Since R is Xy-zip, there exists a finite subset Xy of X such that
U:Xy=U. Let Xg = {a1,as,...,a,}. Then there exist elements a1, as, ...,

La,, where ui, us,

o, in V be such that oy = ul_lal, g = u;lag, ceny Oy = U

oo Up € AL Let Vo = {a1,09,...,a,}. Then Vj is a finite subset of V. Now if
B € AU :Vyand 8 = v~ b, then ui_laﬂflb € AU for all 1 < i < n, and so
abeUforalll <i<mn. ThusbeU:Xo=U andso 8 =uv"tb € A~U. Hence
A7U : Vo = A7U. Therefore A™ R is ¥(a-p)-zip.

(<) Assume that A™R is ¥(o-y)-zip and X is a subset of R with X € U and
U:X=U. If X(uta) C AU for some u ta € A™R, then Xa C U and so
a € U: X =U. Thus it is easy to see that A—U : X = A~U. Since A" R is
Y (a-v)-zip, there exists a finite subset Xo C X such that AU : Xo = AU. If
relU : Xg,thenr € AU : Xog = A U, and sor € U. Hence U : Xo = U.

Therefore R is Yg-zip. (]

Corollary 2.12. Let R be a ring and A be a multiplicatively closed subset of R
consisting of central reqular elements. Then we have the following:

(1) [6, Proposition 12] R is right zip if and only if A~ R is right zip.

(2) If R is an NI ring, then R is weak zip if and only if A~ R is weak zip.

Proof. (1) Let U = 0. Then the result is an immediate consequence of Proposition
2.11.

(2) Let U = nil(R). Then A~U = nil(A~R). In view of Proposition 2.11, we
obtain the result. ]
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Let ¢ : R — S be a surjective ring homomorphism. For any subset V C S, we
define V¢ = {r € R| ¢(r) € V}, and for any subset T' C R, we define T° = {¢(t) |
t € T}. Clearly, if V is an ideal of S, then V¢ is an ideal of R.

The following proposition reveals the relationship between the X-zip property of

the ring R and that of its homomorphic image.

Proposition 2.13. Let ¢ : R — S be a ring homomorphism, and M an ideal of

S. Then the following conditions are equivalent:

(1) R is Xppe-zip.
(2) S is Xpr-zip.

Proof. (1) = (2) Let X C S with X € M and M : X = M. Now we show that
Me¢: X°= M¢°. Suppose that € M¢: X° Then X C M€, and so X¢(r) C M.
Then ¢(r) € M : X = M, concluding that » € M¢. Thus M°: X¢ = M¢. Since R is
Y pre-zip, there exists a finite subset V' C X ¢ such that M°: V = M¢. Now we show
that M : V¢ = M, where V¢ is a finite subset of X. If r € M : V¢ then Vér C M
and so Vr¢ C M¢, where r° = {a € R | ¢(a) = r}. Hence v C M°:V = M, and
sor € M. Hence M : V¢ = M. Therefore S is ¥p;-zip.

(2) = (1) Assume that S is Xp-zip, and X C R with X € M¢ and M°: X =
M¢€. Now we show that M : X¢ = M. Suppose that r € M : X°. Then X°r C M,
and so Xr¢ C M€ Thus r© C M¢: X = M€ and so r € M, concluding that
M : X¢ = M. Since S is Xp;-zip, there exists a finite subset V' C X°€ such that
M :V = M. Without loss of generality, we may assume that V = {v1,v9,..., 0%}

Consider the following subset
W = {3?1,5(12,...,3% | x; 6X,¢($i) =v;,1 <1< k‘} C X.

Then W is a finite subset of X and W¢ = V. Now we show that M°: W = M°.
Suppose that @ € M¢: W. Then Wa C M¢, and so W¢¢(a) = Vp(a) C M. Thus
we obtain ¢(a) € M : V = M, and so a € M. Hence M¢: W = M¢. Therefore R
is X ppe-zip. ]

Corollary 2.14. Let M be an ideal of R. Then the following conditions are equiv-

alent:
(1) R is Xpr-zip.
(2) R/M is Xg-zip.
(3) R/M is right zip.



14 OUYANG LUNQUN, ZHOU QIONG AND WU JINFANG

Proof. (1) & (2) is an immediate consequence of Proposition 2.13. (2) < (3) is
trivial. 0

Corollary 2.15. Let R be a commutative ring and U an ideal of R. If R is Xy -zip,
then My(R) is X, vy-2ip, where Mp(U) = {(aij)nxn € Mn(R) | a; € U for all
i,j=1,2,...,n}

Proof. Suppose that R is Xy-zip. Then by Corollary 2.14, we have that R/U is
zip, and so by [2, Proposition 1], M,(R/U) = M,(R)/M,(U) is zip. Hence the
result follows from Corollary 2.14. O

Rege and Chhawchharia in [11] introduced the notion of an Armendariz ring. A
ring R is called Armendariz if whenever polynomials > 31" a;a’, 377 bja’ € Rlz]
satisfy f(x)g(x) = 0, then a;b; = 0 for each 0 < i < m and 0 < j < n. Hong
[6] showed that if R is an Armendariz ring, then R is right zip if and only if
the polynomial ring R[x] is right zip, if and only if the Laurent polynomial ring
R[z,z7 ] is right zip. Let U be an ideal of R. Let U[z] and U[z,z~!] denote the
subsets Ulz] = {f(z) = " qaiz’ € Rlz] | a; € U,0 < i < m} and Ulz,z™ '] =
{f() =0, aix’ € Rlz,x7 '] | a; € Uym < i < n}, respectively. Then we have
the following proposition.

Proposition 2.16. Let U be an ideal of R and R/U an Armendariz ring. Then
the following conditions are equivalent:

(1) R is Xy -zip.

(2) R[z] is Yyig)-2ip.

(3) R,z is Syy,p-1)-2ip.

Proof. (1) & (2) Since R/U is Armendariz, by [6, Theorem 11], we have that
R/U is right zip if and only if (R/U)[z] = R[z]/U][x] is right zip, and therefore we
complete the proof by Corollary 2.14.

(1) & (3) is proved in the same manner. O

3. Ore extension of X-zip rings

In this section we always denote the Ore extension ring by R[z;a,d], where
a : R — R is an endomorphism and § : R — R is an a-derivation. Recall
that an a-derivation ¢ is an additive operator on R with the property that §(ab) =
a(a)d(b) + d(a)b for all a, b € R. The elements of R[z;«,d] are polynomials in
x with coefficients written on the left. Multiplication in R[z; «, ] is given by the

multiplication in R and the condition za = a(a)z + 6(a) for all a € R.
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For any 0 < < 7, fij € End(R,+) will denote the map which is the sum of all
possible words in a and § built with ¢ letters a and j — ¢ letters 4.

Using recursive formulas for the ff ’s and induction (see [5]), one can show with
a routine computation that 4

zla = z]: f(a)z’
i=0
This formula uniquely determines a general product of polynomials in Rx;c,d]
and will be used freely in what follows.

Let I be a subset of R, I[z; a, 6] means the set {ug+uiz+---+upz™ € Rz;a, ] |
u; € I,0 < i < n}, that is, for any skew polynomial f(x) = up+uix+---+u,z™ €
Rlz;, 0], f(x) € I|z; , 6] if and only if u; € T for all 0 <4 < n.

Let a be an endomorphism and ¢ an a-derivation of R. Following Hashemi and
Moussavi [5], a ring R is said to be a-compatible if for each a,b € R,ab = 0 <
aa(b) = 0. Moreover, R is called to be §-compatible if for each a,b € R,ab =
0 = ad(b) = 0. If R is both a-compatible and d-compatible, then R is said to be
(a, 6)-compatible.

Let I be an ideal of R. Due to Hashemi [4], I is said to be a-compatible if for
each a,b € R,ab € I & aa(b) € I. Moreover, [ is called to be d-compatible if for
each a,b € R,ab € I = ad(b) € I. If I is both a-compatible and d-compatible, then
I is said to be (a, d)-compatible. Clearly, a ring R is an («, d)-compatible ring if
and only if the zero ideal is an («, §)-compatible ideal. Let U be an ideal of R, we
say that U is a semiprime ideal if for any a € R, a® € U implies a € U.

The following lemma appears in [4].

Lemma 3.1. [4, Proposition 2.3] Let I be an («, §)-compatible ideal, and a, b € R.
(1) If ab € I, then aa™(b) € I and a™(a)b € I for every positive integer n.

Conversely, if aa®(b) or o (a)b € I for some positive integer k, then ab € I.
(2) If ab € I, then a™(a)0™(b) € I and §™(a)a™(b) € I for any nonnegative

mtegers m, n.

Lemma 3.2. Let I be an (o, d)-compatible ideal and a, b € R. If ab € I, then
af!(b) € I and fl(a)b € I for all 0 <i < j.

Proof. It is clear by Lemma 3.1. ]

Lemma 3.3. Let U be an («, §)-compatible ideal of R. Then for each Y C R, we
have (Ulz;a, 8] : Y)NR=U:Y.

Proof. It is trivial. O
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Proposition 3.4. Let a be an endomorphism and § an «-derivation of R. If U is
an (a, d)-compatible semiprime ideal, then the following conditions are equivalent:
(1) R is Xy-zip.
(2) R[z;,9] is y[za,5)-2ip-

Proof. (1) = (2) Suppose that R is Yy-zip and V is a subset of R[z;a, ] with
V € Ulz;a,d] and Ulz;,0] : V = Ulx;a,68]. For a skew polynomial f(z) =
S gaixt € R[z;a, 6], Cf denotes the set of coefficients of f(z), and for a subset
X of R[z; , d], Cx denotes the set Ufex Cy. Then Cy C R and Cy € U. Now we
show that U : Cy =U. If r € U : Cy, then ar € U for any a € Cy. So by Lemma
3.2, we obtain

n

fayr=Q_a'yr =3 (3 asfi(r)a®) € Ulz; a, 4]
k=0

=0 s=k
for any skew polynomial f(z) = Y. ja;z’ € V. Hence r € Ulz;a,d] : V =
Ulz;a,d], and so r € U. Thus U : Cy = U. Since R is Xy-zip, there exists
a finite subset Yy C Cy such that U : Yy = U. For each a € Yy, there exists
gao(z) € V such that some of the coefficients of gq(z) are a. Let Vj be a minimal
subset of V such that g,(z) € Vj for each a € Yy. Then Vj is a finite subset of
V. Let Y] = Uga(:v)EVo Cgo()- Then Yo C Yy, andso U : Yy CU : Yy =U. If
g(x) = 37, bjzl € Ulz;a,d] : Vo, then f(z)g(z) € Ulx;a,d] for each f(z) =
g aixt € Vy. We have

flx)gx) = (X aiﬂﬂi)(zo bj’)

i=0 j=
m—+n m

= 2 (X (X aifib)))a* € Ulz; e, ).
k=0 s+t=k i=s
Thus we obtain
m .
SO aifib) €U, k=0,1,....m+n0<s<m0<t<n
s+t=k i=s
Set k = m +n. Then a,,a™(b,) € U. By Lemma 3.1, we obtain a,,b,, € U, and
80 bna,, € U since U is a semiprime ideal.

Set Kk =m +mn — 1. We have
amam(bn—l) + am—lamil(bn) + amf:r?—l(bn) ev.

Then
bnamam(bn—l) + bnam—lamil(bn) + bnamf:rr;,l_l(bn) S Uv
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and 80 b, a,, 1™ 1(b,) € U. By using Lemma 3.1 again, we obtain b, a,,_1b, € U,
and s0 (bpam—1)% € U, (am—_1b,)? € U. Since U is semiprime, we obtain b, a,, 1 €
U and a,,_1b, € U.

Continuing this procedure yields that a;b, € U for all 0 < ¢ < m, and so
a;ft(b,) € U for every t > s > 0 and every 0 < i < m. Thus it is easy to
verify that (3°7~, aixi)(zyz_ol bjzl) € Ulz;a,d]. Applying the preceding method
repeatedly, we obtain a;b; € U for each 0 < 7 < m and 0 < j < n. Thus
bj e U :Y1 CU:Yy=Uforall 0 <j <n, and so g(z) € Ulz;,d]. Hence
Ulz; @, 0] : Vo = Ulz; o, §]. Therefore R[x; o, 0] is Xyg;a,6-21D-

(<) Conversely, assume that R[z;a,0] is Xy(z.a,5-2ip. Let Y be a subset of R
withY U and U : Y = U. If f(z) = 31" ja;z* € Ulz;,8] : Y, then for each
rey,

rf(z) = r(z a;x’) = Zraixi € Ulz;a, 4.
i=0 i=0
So ra; € U for each 0 < ¢ < n and each r € Y. Thus for each 0 < i < n, we
obtain a; € U : Y = U, and it follows that f(x) € Ulx;a,0]. Thus we obtain
Ulr;a,d] Y = Ulz;a,d]. Since R[x;a,d] is Ey[sa,s-2ip, there exists a finite
subset Yy C Y such that Ulz;a,d] : Yo = Ulz;,d]. By Lemma 3.3, we obtain
U:Yy=(Ulz;a,d]: Yo) N R =U. Therefore R is Xy-zip. O

Corollary 3.5. Let R be an («,d)-compatible reduced ring. Then the following

conditions are equivalent:

(1) R is right zip.
(2) Rlz;a,d] is right zip.

Proof. Note that the zero ideal of R is an («,d)-compatible semiprime ideal if
and only if R is an (a,d)-compatible reduced ring. Hence the result follows from

Proposition 3.4. (]

Corollary 3.6. Let U be a semiprime ideal of R. Then we have the following:

(1) If U is an a-compatible ideal, then the skew polynomial ring R[x;a] is
Y Ulwsa)-#ip if and only if R is Yy -zip.

(2) If U is an 6-compatible ideal, then the differential polynomial ring R[x;d]
i8 By (a;5)-21p if and only if R is Yy -zip.

(3) the polynomial ring R[z] is Yy(g)-2ip if and only if R is Yy -zip.
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4. Skew generalized power series extension of -zip rings

Let (S,<) be an ordered set. Recall that (S, <) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S, <) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a com-
mutative monoid. Unless stated otherwise, the operation of S shall be denoted
additively, and the neutral element by 0. The following definition is due to [7], [9],
[12] and [13].

Let R be a ring, (S5, <) a strictly ordered monoid (that is, (S, <) is an ordered
monoid satisfying the condition that, if s, s’, t € S and s < &, then s+t < ' + 1),
and w : S — End(R) a monoid homomorphism with w(0) is the identity map
of R. For any s € S, let w; denote the image of s under w, that is, ws = w(s),
and 1 = wg = w(0). Consider the set A of all maps f : S — R whose support
supp(f) = {s € S| f(s) # 0} is artinian and narrow. Then for any s € S and f,
g € A, the set

Xs(f,9) ={(u,0) € S XS [utv=s,f(u) #0,9(v) # 0}
is finite [13]. This fact allows to define the operation of convolution as follows:

(f9)(s) = 2 fwwulg(v)), if X(f,9) #0,

(u,v)EXs(f,9)
and (fg)(s) = 0 if Xs(f,g) = 0. With this operation of convolution, and pointwise

addition, A becomes a ring, which is called the ring of skew generalized power series
with coefficients in R and exponents in S, and we denote by [[R¥<,w]].

The skew generalized power series construction embraces a wide range of classical
ring-theoretic extensions, including skew polynomial rings, skew power series rings,
skew Laurent polynomial rings, skew group rings, Malcev-Neumann Laurent series
rings and of courses the untwisted versions of all of these.

If (S, <) is a strictly totally ordered monoid and 0 # f € [[R*'=, w]], then supp(f)
is a nonempty well-ordered subset of (S, <). For any r € R and any s € S, we define
A8 € [[RYS,w]] via

AS(t) = { TEES e
0 t#s

It is clear that 7 — A is a ring embedding of R into [[R®<,w]], and for any
r € R, f €[[R%S,w]], we have rf = \2f.

Let U be a nonempty subset of R. We define [U%< w]] = {f € [[RS=,uw]] |
f(s) € UU{0} for all s € S}. In particular, we have [[(nil(R))><,w]] = {f €
[[R=,w]] | f(s) € nil(R) for all s € S}.
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Definition 4.1. Let w : S — End(R) be a monoid homomorphism and U an
ideal of R. We say that U is X-compatible if for each a, b € R and each s € S,
abe U & aws(b) € U.

Lemma 4.2. Let w: S — End(R) be a monoid homomorphism and U an ideal
of R. If U is X-compatible, then for each a, b € R and each s € S, ab € U <
ws(a)b e U.

Proof. Since U is X-compatible, we have ab=1-ab € U < 1 - wy(ab) = ws(ab) =
ws(a)ws(b) €U & ws(a)b e U. O

Proposition 4.3. Let (S,<) be a strictly totally ordered monoid, and U a 3-
compatible semiprime ideal of R. Then the following condition are equivalent:
(1) R is Xy -zip.

(2) The skew generalized power series ring [[R®

’S,w]] 18 Z[[Us,gw” —Zip.

Proof. (1) = (2) Suppose that R is Yy-zip and X is a subset of [[R®S,w]] with
X ¢ [[US=,w]] and [[U%=,w]] : X = [[U%=,w]]. For any f € [[RSS,w]], let C;
denote the subset {f(s) | s € S} and for any subset V C [[R%=,w]], let Cy denote
the subset Ufev Cy. Now we show that U : Cx =U. If r €¢ U : Cx, then ar €¢ U
for all @ € Cx. By the condition that U is 3-compatible, we have that for any
f€ X and any s € S,

(fr)(s) = (FAD)(s) = f(s)ws(r) € U.
So fr € [[U%<,w]] and hence r € [[USS,w]] : X = [[U%=,w]]. Thus r € U and so
U:Cx =U. Since R is Xy-zip, there exists a finite subset Yy = {¢1,¢2,...,¢x} C
Cx such that U : Yy = U. For each q; € Yj, there exists f; € X such that
f(s;) = ¢; for some s; € supp(f;). Let Xy be a minimal subset of X such that
for each ¢; € Yy, fi € Xo. Then Xy is a finite subset of X. Since Cx, 2 Yp, we
have U : Cx, C U : Yy = U. Now we show that [[USS,w]] @ Xo = [[USS,w]].
Since [[U%=,w]] @ Xo 2 [[US=,w]] is clear, it suffices to show that [[U%<,w]] :
Xo C[[US=,w]]. Let g € [[USS,w]] : Xo. Then fg € [[U=,w]] for each f € X,.
We proceed by transfinite induction on the strictly totally set (S, <) to show that
f(u)g(v) € U for any u € supp(f) and v € supp(g). Let s and ¢t denote the minimal
elements of supp(f) and supp(g) in the < order, respectively. Thus
(fo)(s +1) = Yo fwwu(gw) = fls)ws(g(t) €U,
(u,v)EXsye(f9)

and so f(s)g(t) € U since U is L-compatible.
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Now suppose that w € S is such that for any u € supp(f) and v € supp(g) with
utv < w, f(u)g(v) € U. We will show that f(u)g(v) € U for any u € supp(f) and
v € supp(g) with u + v = w. We write

Xuw(f,9) ={(w,v) [u+v=w,u e supp(f),v € supp(g)},
as {(us,v;) |i=1,2,...,n} such that
U < Uz < -+ < Up-
Since (S5, <) is a strictly totally ordered monoid, we have
Up < Up—1 < - < V2 < 1.

Now

n

)= > fwug®) =D fludw,(9(vi)) = a1 (1)

(u,0)€Xw (f9) =1
where a1 € U. For any ¢ > 2, uy +v; < u; +v; = w, and thus, by induction hypoth-
esis, we have f(u1)g(v;) € U. Since U is semiprime, we also have g(v;)f(u1) € U.
Since U is X-compatible, by Lemma 4.2, we have w,,(g(v;))f(u1) € U. Hence
multiplying (1) on the right by f(u1), we obtain f(u1)wy, (g(v1))f(u1) € U, and so

f(un)wu, (9(v01))wu, (f(u1)) = f(ur)wu, (9(v1) f(u1)) € U.

Thus we obtain f(u1)g(vi)f(u1) € U. Since U is semiprime, we have f(u1)g(vy) €
U, and g(v1)f(u1) € U. Now (1) becomes

n

Zf(uz)wu (9(vi)) = a1 — f(u1)wy, (g(v1)) = a2, where ay € U. (2)

i=2

Multiplying (2) on the right by f(us), we obtain f(uz)g(ve) € U, g(ve)f(uz) € U
by the same way as above. Continuing this procedure yields that f(u;)g(v;) € U
for all 1 < i < n. Thus f(u)g(v) € U for any u € supp(f) and v € supp(g) with
u + v = w. Therefore by transfinite induction, f(u)g(v) € U any u € supp(f) and
v € supp(g). So for any s € S, g(s) € U : Cx, € U. Thus g € [[U%=,w]] and
so [[US=,w]] : Xo C [[USS,w]]. Hence [[U%=,w]] : Xo = [[U%=,w]]. Therefore
[R5, w]] is Bprs.< op-2ip.

(2) = (1) Assume that [[R¥= w]] is Ys.<.op-zip- We will show that R is
Yy-zip. Let Y C RwithY  Uand U : Y =U. If f € [[U%S,w]] : Y, then
yf = MNf € [[US=,w]] for each y € Y, and so for any s € S, (yf)(s) = yf(s) €
U. Thus for any s € S, f(s) € U : Y = U, and so f € [[U%=,w]]. Hence
[[US=,w]] 1 Y = [[U%S,w]]. Since [[RS=,w]] is Y([us.< .7-7ip, there exists a finite
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subset Yy C Y such that [[U%S w]] : Yy = [[US=,w]]. Then it is easy to see that
U:Yy = ([USS,0]]: Yo)N R = [[U%S,w]]N R =U. Therefore R is Sy-zip. O

Proposition 4.4. Let (S, <) be a strictly totally ordered monoid, and the zero ideal
of R is X-compatible semiprime. Then the following condition are equivalent:
(1) R is right zip.

(2) the skew generalized power series ring [[R%<,w]] is right zip.
Proof. Let U = 0. Then we complete the proof by Proposition 4.3. O

Let « be a ring endomorphism of R. Let S = NU {0} be endowed with the
usual order, and define w : S — End(R) via w(0) = 1, the identity map of R,
and w(k) = aF for k € N. Then [[R%<,w]] = R[[z;]], the usual skew power series
rings.

Let « be a ring automorphism of R. Let S = Z be endowed with the usual order,
and define w : S — End(R) via w(s) = a®. Then [[R®=,w]] = R[[z, 271 a]], the
usual skew Laurent power series rings.

As an immediate consequence of Proposition 4.3, we obtain the following corol-

lary.

Corollary 4.5. Let U be an a-compatible semiprime ideal. Then the following
conditions are equivalent:

(1) R is Xy -zip.

(2) The skew power series ring R[[z; a]] is Xy [z;a)-2iD-

(3) The skew Laurent power series ring Rl[z, 2" o] is Sy((p,z—1,0]-2ip-
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