International Electronic Journal of Algebra
Volume 21 (2017) 1-22

EXTENSIONS OF Σ-ZIP RINGS

Ouyang Lunqun, Zhou Qiong and Wu Jinfang

Received: 9 January 2016; Revised: 24 July 2016
Communicated by A. Çiğdem Özcan

Abstract

In this note we consider a new concept, so called Σ-zip ring, which unifies zip rings and weak zip rings. We observe the basic properties of Σ-zip rings, constructing typical examples. We study the relationship between the Σ-zip property of a ring R and that of its Ore extensions and skew generalized power series extensions. As a consequence, we obtain a generalization of several known results relating to zip rings and weak zip rings.

Mathematics Subject Classification (2010): 16D25
Keywords: Σ-zip ring, Ore extension, generalized power series extension

1. Introduction

Throughout this paper all rings R are associative with identity. The set of all nilpotent elements of R is denoted by $\operatorname{nil}(R)$. Recall that R is reduced if for all $a \in R, a^{2}=0$ implies $a=0 ; R$ is reversible if for all $a, b \in R, a b=0$ implies $b a=0 ;$ R is an $N I$ ring if $\operatorname{nil}(R)$ forms an ideal [8]. Let U and V be two nonempty subsets of R. We define $U: V=\{x \in R \mid V x \subseteq U\}$. If V is singleton, i.e. $V=\{m\}$, we use $U: m$ in place of $U:\{m\}$. It is easy to see that if U and V are two right ideals of R, then $U: V$ is an ideal of R and such an ideal is usually called the quotient of U by V.

For any nonempty subset X of a ring $R, r_{R}(X)=\{a \in R \mid X a=0\}$ denotes the right annihilator of X in R. Faith in [3] called a ring R right zip if the right annihilator $r_{R}(X)$ of a subset X of R is zero, then $r_{R}(Y)=0$ for a finite subset $Y \subseteq X$. Left zip rings are defined analogously. R is zip if it is both right and left zip. Zelmanowitz stated that any ring satisfying the descending chain condition on right annihilators is a right zip ring, but the converse does not hold [14]. Examples of right zip rings that do not satisfy the descending chain condition on right annihilators can be found in [3] and [14]. Extensions of zip rings were studied by several authors.

[^0]Beachy and Blair [1] showed that if R is a commutative zip ring, then the polynomial ring $R[x]$ over R is zip. Faith in [3] proved that if R is a commutative zip ring and G a finite abelian group, then the group ring $R[G]$ of G over R is zip. Cedo in [2] proved that there exist right (left) zip rings R such that $M_{2}(R)$ is not right (left) zip. Also, he proved that if R is a commutative zip ring, then the $n \times n$ full matrix ring $M_{n}(R)$ over R is a zip ring. For more details and properties of zip rings (see $[1,2,3,6,14])$.

For a nonempty subset X of a ring R, we define $N_{R}(X)=\{a \in R \mid x a \in \operatorname{nil}(R)$ for all $x \in X\}$, which is called the weak annihilator of X in R [10]. If X is a finite set, i.e. $X=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$, we use $N_{R}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ in place of $N_{R}\left(\left\{r_{1}, r_{2}\right.\right.$, $\left.\left.\ldots, r_{n}\right\}\right)$. Obviously, for any subset X of a ring $R, N_{R}(X)=\{a \in R \mid x a \in \operatorname{nil}(R)$ for all $x \in X\}=\{b \in R \mid b x \in \operatorname{nil}(R)$ for all $x \in X\}$, and $r_{R}(X) \subseteq N_{R}(X)$, $l_{R}(X) \subseteq N_{R}(X)$. If R is reduced, then $r_{R}(X)=N_{R}(X)=l_{R}(X)$ for any subset X of R. It is easy to see that for any subset $X \subseteq R, N_{R}(X)$ is an ideal of R whenever $\operatorname{nil}(R)$ is an ideal.

A ring R is called weak zip provided that for any subset X of R, if $N_{R}(X) \subseteq$ $\operatorname{nil}(R)$, then there exists a finite subset $Y \subseteq X$ such that $N_{R}(Y) \subseteq \operatorname{nil}(R)$. L. Ouyang [10] proved that for an endomorphism α and an α-derivation δ of a ring R, if R is (α, δ)-compatible and reversible, then R is weak zip if and only if the Ore extension $R[x ; \alpha, \delta]$ is weak zip.

Motivated by the results in $[1,2,3,6,14]$, in this article, we continue the study of Σ-zip rings. We first introduce the notion of a Σ-zip ring, which is a generalization of both zip rings and weak zip rings, and investigate their properties. We next extend the class of Σ-zip rings through various ring extensions.

2. Σ-zip rings

In this section, U always denotes a proper ideal of a ring R unless otherwise stated. We start this section with the following definition.

Definition 2.1. Let U be an ideal of R. The ring R is called Σ_{U}-zip provided that for any subset X of R with $X \nsubseteq U$, if $U: X=U$, then there exists a finite subset $Y \subseteq X$ such that $U: Y=U$.

Clearly, if $U=0$, then for any subset X of R, we have $U: X=r_{R}(X)$, and so R is Σ_{0}-zip if and only if R is right zip. Let R be an $N I$ ring and $U=\operatorname{nil}(R)$. Then for any subset X of R, we have $\operatorname{nil}(R): X=N_{R}(X)$, and so R is $\Sigma_{n i l(R)}$-zip if and
only if R is weak zip. So both right zip rings and weak zip rings are special Σ-zip rings.

In the following we offer some examples of Σ-zip rings.
Example 2.2. (1) Recall that an ideal P of R is completely prime if $P \neq R$, and $a b \in P$ implies $a \in P$ or $b \in P$, for $a, b \in R$. So if U is a completely prime ideal of R, then R is a Σ_{U}-zip ring since $U: X=U$ for each subset $X \nsubseteq U$. By the fact that the zero ideal of any domain is completely prime, we have that any domain is $\Sigma_{0}-z i p$ as well as zip.
(2) Let R be a domain and $S=R[x] /\left(x^{n}\right)$, where $\left(x^{n}\right)$ is the ideal generated by x^{n}. Denote \bar{x} in $S=R[x] /\left(x^{n}\right)$ by α. Thus $S=R[x] /\left(x^{n}\right)=R[\alpha]=R+R \alpha+\cdots+$ $R \alpha^{n-1}$, where α commutes with elements of R and $\alpha^{n}=0$. Let $U=\left\{\sum_{i=1}^{n-1} r_{i} \alpha^{i} \mid\right.$ $\left.r_{i} \in R\right\}$. Then U is a completely prime ideal of S. So $S=R[x] /\left(x^{n}\right)=R[\alpha]$ is $\Sigma_{U-z i p .}$
(3) Let k be any field, and consider the ring $R=\left(\begin{array}{ll}k & 0 \\ k & k\end{array}\right)$ of 2×2 lower triangular matrices over k. We can write all the proper nonzero ideals of R as follows:

$$
\left\{m_{1}=\left(\begin{array}{cc}
0 & 0 \\
k & k
\end{array}\right), m_{2}=\left(\begin{array}{cc}
k & 0 \\
k & 0
\end{array}\right), m_{3}=\left(\begin{array}{cc}
0 & 0 \\
k & 0
\end{array}\right)\right\}
$$

Since m_{1} and m_{2} are completely prime ideals of R, we have that R are $\Sigma_{m_{1}}-z i p$ and $\Sigma_{m_{2}}-z i p$, respectively. Now we show that R is $\Sigma_{m_{3}}-z i p$. In fact, let X be any subset of R with $X \nsubseteq m_{3}$, and $m_{3}: X=m_{3}$. Then we consider the sets W and V defined as follow:

$$
W=\left\{a \in R \left\lvert\,\left(\begin{array}{cc}
a & 0 \\
b & c
\end{array}\right) \in X\right.\right\}, \quad V=\left\{c \in R \left\lvert\,\left(\begin{array}{cc}
a & 0 \\
b & c
\end{array}\right) \in X\right.\right\}
$$

Since $m_{3}: X=m_{3}$, we must have $W \neq 0$ and $V \neq 0$. Hence there exist $p=$ $\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in X$ with $a \neq 0$, and $q=\left(\begin{array}{cc}x & 0 \\ y & z\end{array}\right) \in X$ with $z \neq 0$. Let $X_{0}=\{p, q\}$. Then X_{0} is a finite subset of X. By a routine computation, we have $m_{3}: X_{0}=m_{3}$. So R is $\Sigma_{m_{3}}-z i p$. Note that R is an NI ring and $m_{3}=\operatorname{nil}(R)$. Then by Definition 2.1, R is also weak zip.

Using the same way as above, we can show that R is $\Sigma_{0}-z i p$. Then by Definition 2.1, R is also right zip.

Let U be an ideal of R, and let

$$
\begin{aligned}
& R_{n}=\left\{\left.\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \right\rvert\, a_{i j} \in R\right\}, \quad D U_{n}= \\
& \left\{\left.\left(\begin{array}{ccccc}
u_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & u_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & u_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & u_{n n}
\end{array}\right) \right\rvert\, u_{i i} \in U, a_{i j} \in R, 1 \leq i \leq n, 2 \leq j \leq n\right\} \text {, } \\
& L R_{n}=\left\{\left.\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \right\rvert\, a_{i j} \in R\right\}, \quad L D U_{n}= \\
& \left\{\left.\left(\begin{array}{ccccc}
u_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & u_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & u_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & u_{n n}
\end{array}\right) \right\rvert\, u_{i i} \in U, a_{i j} \in R, 1 \leq i \leq n, 2 \leq j \leq n\right\} .
\end{aligned}
$$

Then under usual matrix operations, $D U_{n}$ is an ideal of R_{n} and $L D U_{n}$ is also an ideal of $L R_{n}$. The following proposition gives more examples of Σ-zip rings.

Proposition 2.3. Let U be an ideal of R. Then the following conditions are equivalent:
(1) R is Σ_{U}-zip;
(2) R_{n} is $\Sigma_{\left(D U_{n}\right)}-z i p$;
(3) $L R_{n}$ is $\Sigma_{\left(L D U_{n}\right)}-z i p$.

Proof. $(1) \Rightarrow(2)$ Suppose that R is Σ_{U}-zip and V is a subset of R_{n} with $V \nsubseteq D U_{n}$ and $D U_{n}: V=D U_{n}$. Let

$$
Y_{i}=\left\{a_{i i} \in R \left\lvert\,\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \in V\right.\right\}, 1 \leq i \leq n
$$

Then $Y_{i} \subseteq R, 1 \leq i \leq n$. If $Y_{i} \subseteq U$ for some $1 \leq i \leq n$, then $V \cdot E_{i i} \subseteq D U_{n}$, where $E_{i j}$ is the usual matrix unit with 1 in the (i, j) coordinate and zero elsewhere.

Thus $E_{i i} \in D U_{n}: V=D U_{n}$, and so $1 \in U$, this contradicts the fact that U is a proper ideal of R. Hence $Y_{i} \nsubseteq U$ for all $1 \leq i \leq n$. Now we show that for each $1 \leq i \leq n, U: Y_{i}=U$. In fact, $U: Y_{i} \supseteq U$ is clear, it suffices to show the reverse inclusion. Suppose that $b \in U: Y_{i}$. Then $\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right) \cdot\left(b E_{i i}\right) \in D U_{n}$ for each $\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right) \in V$. Thus $b E_{i i} \in D U_{n}: V=D U_{n}$ and we have that $b \in U$. Hence $U: Y_{i} \subseteq U$ and for each $1 \leq i \leq n, U: Y_{i}=U$. Since R is Σ_{U}-zip, there exists a finite subset $Y_{i}^{\prime} \subseteq Y_{i}$ such that $U: Y_{i}^{\prime}=U$, $1 \leq i \leq n$. For each $c \in Y_{i}^{\prime}$, there exists $A_{c}=\left(\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\ 0 & c_{22} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{n n}\end{array}\right) \in V$ such that $c_{i i}=c$. Let V_{i}^{\prime} be a minimal subset of V such that $A_{c} \in V_{i}^{\prime}$ for each $c \in Y_{i}^{\prime}$. Then V_{i}^{\prime} is a finite subset of V. Let $V_{0}=\bigcup_{1 \leq i \leq n} V_{i}^{\prime}$. Then V_{0} is also a finite subset of V. If $B=\left(\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ 0 & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{n n}\end{array}\right) \in D U_{n}: V_{0}$, then $A^{\prime} B \in D U_{n}$ for each $A^{\prime}=\left(\begin{array}{cccc}a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\ 0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}^{\prime}\end{array}\right) \in V_{0}$. Let

$$
W_{i}=\left\{a_{i i}^{\prime} \in R \left\lvert\,\left(\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}^{\prime}
\end{array}\right) \in V_{0}\right.\right\}, \quad 1 \leq i \leq n
$$

Clearly, $Y_{i}^{\prime} \subseteq W_{i}$ for each $1 \leq i \leq n$. So $U: W_{i} \subseteq U: Y_{i}^{\prime}=U$ for each $1 \leq i \leq n$. Since $A^{\prime} B \in D U_{n}$ implies that $a_{i i}^{\prime} b_{i i} \in U$ for all $1 \leq i \leq n$, we obtain
$b_{i i} \in U: W_{i} \subseteq U: Y_{i}^{\prime}=U$. Thus $b_{i i} \in U$ for each $1 \leq i \leq n$, and hence $B \in D U_{n}$. Therefore $D U_{n}: V_{0}=D U_{n}$, and so R_{n} is $\Sigma_{\left(D U_{n}\right)}$-zip.
$(2) \Rightarrow(1)$ Assume that R_{n} is $\Sigma_{\left(D U_{n}\right)}$-zip and $X \subseteq R$ with $X \nsubseteq U$ and U : $X=U$. Let $V=\{a I \mid a \in X\} \subseteq R_{n}$, where I is the $n \times n$ identity matrix. If $B=\left(\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ 0 & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{n n}\end{array}\right) \in D U_{n}: V$, then $a I \cdot B \in D U_{n}$ for all $a \in X$. Thus $a b_{i i} \in U$ for all $1 \leq i \leq n$ and all $a \in X$, and it follows that $b_{i i} \in U: X=U$. Hence $B \in D U_{n}$ which implies that $D U_{n}: V=D U_{n}$. Since R_{n} is $\Sigma_{\left(D U_{n}\right)}$-zip, there exists a finite subset $V_{0}=\left\{a_{1} I, a_{2} I, \ldots, a_{m} I\right\} \subseteq V$ such that $D U_{n}: V_{0}=D U_{n}$. Let $X_{0}=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\} \subseteq X$. If $c \in U: X_{0}$, then $\left(a_{k} I\right) \cdot\left(c E_{11}\right) \in D U_{n}$ for all $k=1,2, \ldots, m$. Thus $c E_{11} \in D U_{n}: V_{0}=D U_{n}$ and so $c \in U$. Hence $U: X_{0}=U$. Therefore R is Σ_{U}-zip.
$(1) \Leftrightarrow(3)$ is analogous to $(1) \Leftrightarrow(2)$.

Corollary 2.4. [10, Proposition 2.1] Let R be an NI ring. Then the following conditions are equivalent:
(1) R is weak zip;
(2) R_{n} is weak zip;
(3) $L R_{n}$ is weak zip.

Proof. Let $U=\operatorname{nil}(R)$. Then $D U_{n}=\operatorname{nil}\left(R_{n}\right), L D U_{n}=\operatorname{nil}\left(L R_{n}\right)$ and both R_{n} and $L R_{n}$ are $N I$ rings. Note that for any ring R, we have that R is $\Sigma_{n i l(R)}$-zip if and only if R is weak zip. Therefore we complete the proof by Proposition 2.3.

Based on the preceding results, we consider the following subrings of $n \times n$ upper (lower) triangular matrix rings. Let U be an ideal of R and

$$
\begin{aligned}
S_{n} & =\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}, \\
U_{n} & =\left\{\left.\left(\begin{array}{cccc}
u & u_{12} & \cdots & u_{1 n} \\
0 & u & \cdots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u
\end{array}\right) \right\rvert\, u, u_{i i} \in U\right\},
\end{aligned}
$$

$$
\begin{gathered}
L S_{n}=\left\{\left.\left(\begin{array}{cccc}
a & 0 & \cdots & 0 \\
a_{21} & a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}, \\
L U_{n}=\left\{\left.\left(\begin{array}{cccc}
u & 0 & \cdots & 0 \\
u_{21} & u & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
u_{n 1} & u_{n 2} & \cdots & u
\end{array}\right) \right\rvert\, u, u_{i i} \in U\right\},
\end{gathered}
$$

where $n \geq 2$ is a positive integer. Then we have the following.

Proposition 2.5. Let U be an ideal of R. Then the following conditions are equivalent:
(1) R is $\Sigma_{U-z i p ; ~}$
(2) S_{n} is $\Sigma_{U_{n}}$ zip;
(3) $L S_{n}$ is $\Sigma_{\left(L U_{n}\right)}$-zip.

Proof. $(1) \Rightarrow(2)$ Suppose that R is Σ_{U}-zip and V is a subset of S_{n} with $V \nsubseteq U_{n}$ and $U_{n}: V=U_{n}$. Consider the following set

$$
X=\left\{v \in R \left\lvert\,\left(\begin{array}{cccc}
v & v_{12} & \cdots & v_{1 n} \\
0 & v & \cdots & v_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & v
\end{array}\right) \in V\right.\right\}
$$

that is, X is the set of all elements in the ring R, which occurs as diagonal entries of elements in V. If $X \subseteq U$, then $V \cdot E_{1 n} \subseteq U_{n}$. Thus $E_{1 n} \in U_{n}: V=U_{n}$ and so $1 \in U$ which contradicts the fact that U is a proper ideal of R. Thus we obtain $X \nsubseteq U$. Now we show that $U: X=U$. Since $U: X \supseteq U$ is clear, it suffices to show that $U: X \subseteq U$. Suppose that $a \in U: X$. Then $a E_{1 n} \in U_{n}: V=U_{n}$, and so $a \in U$. Thus $U: X=U$. Since R is Σ_{U}-zip, there exists a finite subset $X_{0}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq X$ such that $U: X_{0}=U$. For each $v_{i} \in X_{0}, 1 \leq i \leq k$, there exists $A_{v_{i}}=\left(\begin{array}{cccc}v_{i} & v_{12}^{i} & \cdots & v_{1 n}^{i} \\ 0 & v_{i} & \cdots & v_{2 n}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & v_{i}\end{array}\right) \in V$. Let V_{0} be the minimal subset of V such that $A_{v_{i}} \in V_{0}$ for each $v_{i} \in X_{0}$. Then V_{0} is a finite subset of V. Without
loss of generality, we may write V_{0} as follow:

$$
V_{0}=\left\{\left.\left(\begin{array}{cccc}
v_{i} & v_{12}^{i} & \cdots & v_{1 n}^{i} \\
0 & v_{i} & \cdots & v_{2 n}^{i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & v_{i}
\end{array}\right) \in V \right\rvert\, v_{i} \in X_{0}, 1 \leq i \leq k\right\}
$$

Now we show that $U_{n}: V_{0}=U_{n}$. We proceed by induction on n. Suppose that $\left(\begin{array}{cc}v_{i} & v_{12}^{i} \\ 0 & v_{i}\end{array}\right)\left(\begin{array}{cc}a & a_{12} \\ 0 & a\end{array}\right) \in U_{2}$ for $\left(\begin{array}{cc}a & a_{12} \\ 0 & a\end{array}\right) \in R_{2}$ and $1 \leq i \leq k$. Then $v_{i} a \in U$ and $v_{i} a_{12}+v_{12}^{i} a \in U$ for all $1 \leq i \leq k$. From $v_{i} a \in U$ for all $1 \leq i \leq k$, we obtain $a \in U: X_{0}=U$. Then from $v_{i} a_{12}+v_{12}^{i} a \in U$ for all $1 \leq i \leq k$ and $a \in U$, we get $a_{12} \in U: X_{0}=U$. Hence $\left(\begin{array}{cc}a & a_{12} \\ 0 & a\end{array}\right) \in U_{2}$ and so $U_{2}: V_{0} \subseteq U_{2}$. Note that $U_{2}: V_{0} \supseteq U_{2}$ is clear. Thus $U_{2}: V_{0}=U_{2}$. Next let $\left(\begin{array}{cccc}v_{i} & v_{12}^{i} & \cdots & v_{1 n}^{i} \\ 0 & v_{i} & \cdots & v_{2 n}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & v_{i}\end{array}\right)$ $\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in U_{n}$ for $\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in S_{n}$ and $1 \leq i \leq k$.
Then we get $\left(\begin{array}{cccc}v_{i} & v_{12}^{i} & \cdots & v_{1(n-1)}^{i} \\ 0 & v_{i} & \cdots & v_{2(n-1)}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & v_{i}\end{array}\right)\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1(n-1)} \\ 0 & a & \cdots & a_{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in U_{n-1}$ for
all $1 \leq i \leq k$. By the induction hypothesis, we obtain $a \in U$ and $a_{s t} \in U$ for all $1 \leq s, t \leq n-1$. On the other hand, from $a \in U$ and for all $1 \leq i \leq k$,

$$
\left(\begin{array}{cccc}
v_{i} & v_{12}^{i} & \cdots & v_{1 n}^{i} \\
0 & v_{i} & \cdots & v_{2 n}^{i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & v_{i}
\end{array}\right)\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right) \in U_{n}
$$

we have that for all $1 \leq i \leq k, v_{i} a_{1 n}+v_{12}^{i} a_{2 n}+\cdots+v_{1(n-1)}^{i} a_{(n-1) n} \in U, \ldots$, $v_{i} a_{(n-2) n}+v_{(n-2)(n-1)}^{i} a_{(n-1) n} \in U$ and $v_{i} a_{(n-1) n} \in U$. From $v_{i} a_{(n-1) n} \in U$ for all $1 \leq i \leq k$, we get $a_{(n-1) n} \in U: X_{0}=U$. Then from $v_{i} a_{(n-2) n}+$
$v_{(n-2)(n-1)}^{i} a_{(n-1) n} \in U$ and $a_{(n-1) n} \in U$, we get $a_{(n-2) n} \in U: X_{0}=U$. Inductively, we obtain $a_{i n} \in U$ for $i=1,2, \ldots, n-1$, concluding that $U_{n}: V_{0}=U_{n}$. Therefore R_{n} is $\Sigma_{U_{n}}$-zip.
(2) \Rightarrow (1) Assume that R_{n} is $\Sigma_{U_{n}}$-zip, and $X \nsubseteq U$ with $U: X=U$. Let $X_{n}=\left\{\left.\left(\begin{array}{cccc}x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & x\end{array}\right) \right\rvert\, x \in X\right\}$ and $\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in U_{n}: X_{n}$.
Then

$$
\left(\begin{array}{cccc}
x & 0 & \cdots & 0 \\
0 & x & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & x
\end{array}\right)\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right) \in U_{n}
$$

for each $\left(\begin{array}{cccc}x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & x\end{array}\right) \in X_{n}$, and so $x a \in U$ and $x a_{i j} \in U$ for each $x \in X$.
Thus $a \in U: X=U$ and $a_{i j} \in U: X=U$, which implies that $\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in$ U_{n}. Hence $U_{n}: X_{n}=U_{n}$. Since R_{n} is $\Sigma_{U_{n}}$-zip, there exists a finite subset $V=\left\{\left.\left(\begin{array}{cccc}x_{i} & 0 & \cdots & 0 \\ 0 & x_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & x_{i}\end{array}\right) \in X_{n} \right\rvert\, 1 \leq i \leq k\right\} \subseteq X_{n}$ such that $U_{n}: V=U_{n}$. Let $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Then $X_{0} \subseteq X$ is a finite subset of X. If $a \in U: X_{0}$, then $a E_{1 n} \in U_{n}: V=U_{n}$, and so $a \in U$. Hence $U: X_{0}=U$. Therefore R is Σ_{U}-zip.
$(1) \Leftrightarrow(3)$ is proved in the same manner.
Corollary 2.6. [6, Theorem 5] Let R be a ring. Then the following conditions are equivalent:
(1) R is a right zip ring.
(2) S_{n} is a right zip ring.
(3) $L S_{n}$ is a right zip ring.

Proof. Let U be the zero ideal of R. Then U_{n} and $L U_{n}$ are the zero ideals of S_{n} and $L S_{n}$, respectively. Note that R is Σ_{0}-zip if and only if R is right zip. Therefore we complete the proof by Proposition 2.5.

Corollary 2.7. Let U be an ideal of R. Then we have the following:
(1) R is Σ_{U}-zip if and only if the trivial extension $T(R, R)=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in R\right\}$ of R by R is $\Sigma_{T(U, U)}$-zip, where $T(U, U)=\left\{\left.\left(\begin{array}{cc}u & v \\ 0 & u\end{array}\right) \right\rvert\, u, v \in U\right\}$.
(2) $[6$, Corollary 6$] R$ is a right zip ring if and only if $T(R, R)$ is right zip.

Proof. According to Proposition 2.5 and Corollary 2.6, we obtain the results.
Let R be a ring and

$$
\begin{gathered}
T_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right) \right\rvert\, a_{i j} \in R\right\}, \\
W_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a_{21} & a & a_{23} \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{21}, a_{23} \in R\right\} .
\end{gathered}
$$

Then under usual matrix operations, $T_{3}(R)$ and $W_{3}(R)$ are subrings of the 3×3 matrix ring $M_{3}(R)$. Let U be an ideal of R and

$$
\begin{gathered}
D T_{3}(U)=\left\{\left.\left(\begin{array}{ccc}
u_{11} & 0 & 0 \\
a_{21} & u_{22} & a_{23} \\
0 & 0 & u_{33}
\end{array}\right) \right\rvert\, u_{11}, u_{22}, u_{33} \in U, a_{21}, a_{23} \in R\right\} \\
W_{3}(U)=\left\{\left.\left(\begin{array}{ccc}
u & 0 & 0 \\
u_{21} & u & u_{23} \\
0 & 0 & u
\end{array}\right) \right\rvert\, u, u_{21}, u_{23} \in U\right\}
\end{gathered}
$$

Then $D T_{3}(U)$ is an ideal of $T_{3}(R)$ and $W_{3}(U)$ is an ideal of $W_{3}(R)$.
Proposition 2.8. Let U be an ideal of R. Then the following conditions are equivalent:
(1) R is $\Sigma_{U}-z i p$.
(2) $T_{3}(R)$ is $\Sigma_{\left(D T_{3}(U)\right)}-z i p$.
(3) $W_{3}(R)$ is $\Sigma_{\left(W_{3}(U)\right)}-z i p$.

Proof. The argument for this claim is similar to that used in the proof of Proposition 2.3 and Proposition 2.5.

Corollary 2.9. Let R be a ring. Then we have the following:
(1) If R is an NI ring, then R is weak zip if and only if $T_{3}(R)$ is weak zip.
(2) R is right zip if and only if $W_{3}(R)$ is right zip.

Proof. (1) Let $U=\operatorname{nil}(R)$. Then $D T_{3}(U)=\operatorname{nil}\left(T_{3}(R)\right)$ and therefore we complete the proof by Proposition 2.8.
(2) Let $U=0$. Then the result is an immediate consequence of Proposition 2.8 and the fact that R is Σ_{0}-zip if and only if R is right zip.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension of R by S is the ring $D=R \times S$ with operations $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$ and $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}+s_{1} r_{2}+s_{2} r_{1}, s_{1} s_{2}\right)$, where $r_{i} \in R$ and $s_{i} \in S$. Let U be an ideal of S. We define $R \times U$ as follow:

$$
R \times U=\{(r, s) \in D \mid r \in R, s \in U\}
$$

Then $R \times U$ is an ideal of D.
Proposition 2.10. Let D be the Dorroh extension of R by S and U an ideal of S. Then D is $\Sigma_{(R \times U)}-z i p$ if and only if S is $\Sigma_{U}-z i p$.

Proof. (\Rightarrow) Suppose that D is $\Sigma_{(R \times U)}$-zip and Y is a subset of S with $Y \nsubseteq U$ and $U: Y=U$. Let $R \times Y=\{(r, s) \in D \mid r \in R, s \in Y\}$. Then $R \times Y \subseteq D$ and $R \times Y \nsubseteq R \times U$. If $(u, v) \in(R \times U):(R \times Y)$, then $(r, s)(u, v)=(r u+$ $s u+v r, s v) \in R \times U$ for each $(r, s) \in R \times Y$. Thus $s v \in U$ for each $s \in Y$, and so $v \in U: Y=U$. Hence $(u, v) \in R \times U$ and so $(R \times U):(R \times Y)=R \times U$. Since D is $\Sigma_{(R \times U)}$-zip, there exists a finite subset $(R \times Y)_{0} \subseteq R \times Y$ such that $(R \times U):(R \times Y)_{0}=R \times U$. Without loss of generality, we may assume that $(R \times Y)_{0}=\left\{\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right), \ldots,\left(r_{k}, s_{k}\right)\right\}$. Then $Y_{0}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a finite subset of Y. If $r \in U: Y_{0}$, then $(0, r) \in(R \times U):(R \times Y)_{0}=R \times U$, and so $r \in U$. Hence $U: Y_{0}=U$. Therefore S is Σ_{U}-zip.
(\Leftarrow) Assume that S is Σ_{U}-zip and V is a subset of D with $V \nsubseteq R \times U$ and $(R \times U): V=R \times U$. Let $X=\{s \in S \mid(r, s) \in V\}$. Then by the condition that $V \nsubseteq R \times U$, we have $X \nsubseteq U$. If $a \in U: X$, then $(0, a) \in(R \times U): V=R \times U$ and so $a \in U$. Thus $U: X=U$. Since S is Σ_{U}-zip, there exists a finite subset $X_{0}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq X$ such that $U: X_{0}=U$. For each $s_{i} \in X_{0}$, there exists $v_{s_{i}}=\left(r_{i}, s_{i}\right) \in V$. Let V_{0} be the minimal subset of V such that $v_{s_{i}} \in V_{0}$ for each
$s_{i} \in X_{0}$. Then V_{0} is a finite subset of V. Now we show that $(R \times U): V_{0}=R \times U$. If $(a, b) \in(R \times U): V_{0}$, then $(r, s)(a, b)=(r a+s a+b r, s b) \in R \times U$ for each $(r, s) \in V_{0}$. Then $s b \in U$ for each $s \in X_{0}$. Hence $b \in U: X_{0}=U$, and so $(R \times U): V_{0}=R \times U$. Therefore D is $\Sigma_{(R \times U)}$-zip.

Let R be a ring and Δ a multiplicatively closed subset of R consisting of central regular elements. $\Delta^{-} R$ denotes the classical quotient ring of R. If U is an ideal of R, then $\Delta^{-} U$ is an ideal of $\Delta^{-} R$.

Proposition 2.11. Let U be an ideal of R. Then R is Σ_{U}-zip if and only if $\Delta^{-} R$ is $\Sigma_{\left(\Delta^{-U}\right)}$-zip.

Proof. Suppose that R is Σ_{U}-zip and V is a subset of $\Delta^{-} R$ with $V \nsubseteq \Delta^{-} U$ and $\Delta^{-} U: V=\Delta^{-} U$. Let $X=\left\{a \mid u^{-1} a \in V\right\} \subseteq R$. Then $X \nsubseteq U$. If $r \in U: X$, then $V r \subseteq \Delta^{-} U$. Thus $r \in \Delta^{-} U: V=\Delta^{-} U$, and so $r \in U$. Hence $U: X=U$. Since R is Σ_{U}-zip, there exists a finite subset X_{0} of X such that $U: X_{0}=U$. Let $X_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then there exist elements $\alpha_{1}, \alpha_{2}, \ldots$, α_{n} in V be such that $\alpha_{1}=u_{1}^{-1} a_{1}, \alpha_{2}=u_{2}^{-1} a_{2}, \ldots, \alpha_{n}=u_{n}^{-1} a_{n}$, where u_{1}, u_{2}, $\ldots, u_{n} \in \Delta$. Let $V_{0}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. Then V_{0} is a finite subset of V. Now if $\beta \in \Delta^{-} U: V_{0}$ and $\beta=v^{-1} b$, then $u_{i}^{-1} a_{i} v^{-1} b \in \Delta^{-} U$ for all $1 \leq i \leq n$, and so $a_{i} b \in U$ for all $1 \leq i \leq n$. Thus $b \in U: X_{0}=U$ and so $\beta=v^{-1} b \in \Delta^{-} U$. Hence $\Delta^{-} U: V_{0}=\Delta^{-} U$. Therefore $\Delta^{-} R$ is $\Sigma_{\left(\Delta^{-} U\right)^{-}}$zip.
(\Leftarrow) Assume that $\Delta^{-} R$ is $\Sigma_{\left(\Delta^{-} U\right)}$-zip and X is a subset of R with $X \nsubseteq U$ and $U: X=U$. If $X\left(u^{-1} a\right) \subseteq \Delta^{-} U$ for some $u^{-1} a \in \Delta^{-} R$, then $X a \subseteq U$ and so $a \in U: X=U$. Thus it is easy to see that $\Delta^{-} U: X=\Delta^{-} U$. Since $\Delta^{-} R$ is $\Sigma_{\left(\Delta^{-} U\right)}$-zip, there exists a finite subset $X_{0} \subseteq X$ such that $\Delta^{-} U: X_{0}=\Delta^{-} U$. If $r \in U: X_{0}$, then $r \in \Delta^{-} U: X_{0}=\Delta^{-} U$, and so $r \in U$. Hence $U: X_{0}=U$. Therefore R is Σ_{U}-zip.

Corollary 2.12. Let R be a ring and Δ be a multiplicatively closed subset of R consisting of central regular elements. Then we have the following:
(1) [6, Proposition 12] R is right zip if and only if $\Delta^{-} R$ is right zip.
(2) If R is an NI ring, then R is weak zip if and only if $\Delta^{-} R$ is weak zip.

Proof. (1) Let $U=0$. Then the result is an immediate consequence of Proposition 2.11.
(2) Let $U=\operatorname{nil}(R)$. Then $\Delta^{-} U=\operatorname{nil}\left(\Delta^{-} R\right)$. In view of Proposition 2.11, we obtain the result.

Let $\phi: R \longrightarrow S$ be a surjective ring homomorphism. For any subset $V \subseteq S$, we define $V^{c}=\{r \in R \mid \phi(r) \in V\}$, and for any subset $T \subseteq R$, we define $T^{e}=\{\phi(t) \mid$ $t \in T\}$. Clearly, if V is an ideal of S, then V^{c} is an ideal of R.

The following proposition reveals the relationship between the Σ-zip property of the ring R and that of its homomorphic image.

Proposition 2.13. Let $\phi: R \longrightarrow S$ be a ring homomorphism, and M an ideal of S. Then the following conditions are equivalent:
(1) R is $\Sigma_{M^{c}-z i p . ~}^{\text {. }}$
(2) S is $\Sigma_{M}-z i p$.

Proof. (1) \Rightarrow (2) Let $X \subseteq S$ with $X \nsubseteq M$ and $M: X=M$. Now we show that $M^{c}: X^{c}=M^{c}$. Suppose that $r \in M^{c}: X^{c}$. Then $X^{c} r \subseteq M^{c}$, and so $X \phi(r) \subseteq M$. Then $\phi(r) \in M: X=M$, concluding that $r \in M^{c}$. Thus $M^{c}: X^{c}=M^{c}$. Since R is
 that $M: V^{e}=M$, where V^{e} is a finite subset of X. If $r \in M: V^{e}$, then $V^{e} r \subseteq M$ and so $V r^{c} \subseteq M^{c}$, where $r^{c}=\{a \in R \mid \phi(a)=r\}$. Hence $r^{c} \subseteq M^{c}: V=M^{c}$, and so $r \in M$. Hence $M: V^{e}=M$. Therefore S is Σ_{M}-zip.
$(2) \Rightarrow(1)$ Assume that S is Σ_{M}-zip, and $X \subseteq R$ with $X \nsubseteq M^{c}$ and $M^{c}: X=$ M^{c}. Now we show that $M: X^{e}=M$. Suppose that $r \in M: X^{e}$. Then $X^{e} r \subseteq M$, and so $X r^{c} \subseteq M^{c}$. Thus $r^{c} \subseteq M^{c}: X=M^{c}$, and so $r \in M$, concluding that $M: X^{e}=M$. Since S is Σ_{M}-zip, there exists a finite subset $V \subseteq X^{e}$ such that $M: V=M$. Without loss of generality, we may assume that $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Consider the following subset

$$
W=\left\{x_{1}, x_{2}, \ldots, x_{k} \mid x_{i} \in X, \phi\left(x_{i}\right)=v_{i}, 1 \leq i \leq k\right\} \subseteq X
$$

Then W is a finite subset of X and $W^{e}=V$. Now we show that $M^{c}: W=M^{c}$. Suppose that $a \in M^{c}: W$. Then $W a \subseteq M^{c}$, and so $W^{e} \phi(a)=V \phi(a) \subseteq M$. Thus we obtain $\phi(a) \in M: V=M$, and so $a \in M^{c}$. Hence $M^{c}: W=M^{c}$. Therefore R is $\Sigma_{M^{c}-\text { Zip }}$.

Corollary 2.14. Let M be an ideal of R. Then the following conditions are equivalent:
(1) R is $\Sigma_{M^{-}}$zip.
(2) R / M is $\Sigma_{0}-z i p$.
(3) R / M is right zip.

Proof. (1) $\Leftrightarrow(2)$ is an immediate consequence of Proposition 2.13. (2) $\Leftrightarrow(3)$ is trivial.

Corollary 2.15. Let R be a commutative ring and U an ideal of R. If R is Σ_{U}-zip, then $M_{n}(R)$ is $\Sigma_{M_{n}(U) \text {-zip, where }} M_{n}(U)=\left\{\left(a_{i j}\right)_{n \times n} \in M_{n}(R) \mid a_{i j} \in U\right.$ for all $i, j=1,2, \ldots, n\}$.

Proof. Suppose that R is Σ_{U}-zip. Then by Corollary 2.14, we have that R / U is zip, and so by [2, Proposition 1], $M_{n}(R / U) \cong M_{n}(R) / M_{n}(U)$ is zip. Hence the result follows from Corollary 2.14.

Rege and Chhawchharia in [11] introduced the notion of an Armendariz ring. A ring R is called Armendariz if whenever polynomials $\sum_{i=0}^{m} a_{i} x^{i}, \sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each $0 \leq i \leq m$ and $0 \leq j \leq n$. Hong [6] showed that if R is an Armendariz ring, then R is right zip if and only if the polynomial ring $R[x]$ is right zip, if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is right zip. Let U be an ideal of R. Let $U[x]$ and $U\left[x, x^{-1}\right]$ denote the subsets $U[x]=\left\{f(x)=\sum_{i=0}^{m} a_{i} x^{i} \in R[x] \mid a_{i} \in U, 0 \leq i \leq m\right\}$ and $U\left[x, x^{-1}\right]=$ $\left\{f(x)=\sum_{i=m}^{n} a_{i} x^{i} \in R\left[x, x^{-1}\right] \mid a_{i} \in U, m \leq i \leq n\right\}$, respectively. Then we have the following proposition.

Proposition 2.16. Let U be an ideal of R and R / U an Armendariz ring. Then the following conditions are equivalent:
(1) R is $\Sigma_{U-z i p . ~}^{\text {. }}$
(2) $R[x]$ is $\Sigma_{U[x]-z i p .}$.
(3) $R\left[x, x^{-1}\right]$ is $\Sigma_{U\left[x, x^{-1}\right]-z i p}$.

Proof. (1) $\Leftrightarrow(2)$ Since R / U is Armendariz, by [6, Theorem 11], we have that R / U is right zip if and only if $(R / U)[x] \cong R[x] / U[x]$ is right zip, and therefore we complete the proof by Corollary 2.14 .
$(1) \Leftrightarrow(3)$ is proved in the same manner.

3. Ore extension of Σ-zip rings

In this section we always denote the Ore extension ring by $R[x ; \alpha, \delta]$, where $\alpha: R \longrightarrow R$ is an endomorphism and $\delta: R \longrightarrow R$ is an α-derivation. Recall that an α-derivation δ is an additive operator on R with the property that $\delta(a b)=$ $\alpha(a) \delta(b)+\delta(a) b$ for all $a, b \in R$. The elements of $R[x ; \alpha, \delta]$ are polynomials in x with coefficients written on the left. Multiplication in $R[x ; \alpha, \delta]$ is given by the multiplication in R and the condition $x a=\alpha(a) x+\delta(a)$ for all $a \in R$.

For any $0 \leq i \leq j, f_{i}^{j} \in \operatorname{End}(R,+)$ will denote the map which is the sum of all possible words in α and δ built with i letters α and $j-i$ letters δ.

Using recursive formulas for the f_{i}^{j},s and induction (see [5]), one can show with a routine computation that

$$
x^{j} a=\sum_{i=0}^{j} f_{i}^{j}(a) x^{i}
$$

This formula uniquely determines a general product of polynomials in $R[x ; \alpha, \delta]$ and will be used freely in what follows.

Let I be a subset of $R, I[x ; \alpha, \delta]$ means the set $\left\{u_{0}+u_{1} x+\cdots+u_{n} x^{n} \in R[x ; \alpha, \delta] \mid\right.$ $\left.u_{i} \in I, 0 \leq i \leq n\right\}$, that is, for any skew polynomial $f(x)=u_{0}+u_{1} x+\cdots+u_{n} x^{n} \in$ $R[x ; \alpha, \delta], f(x) \in I[x ; \alpha, \delta]$ if and only if $u_{i} \in I$ for all $0 \leq i \leq n$.

Let α be an endomorphism and δ an α-derivation of R. Following Hashemi and Moussavi [5], a ring R is said to be α-compatible if for each $a, b \in R, a b=0 \Leftrightarrow$ $a \alpha(b)=0$. Moreover, R is called to be δ-compatible if for each $a, b \in R, a b=$ $0 \Rightarrow a \delta(b)=0$. If R is both α-compatible and δ-compatible, then R is said to be (α, δ)-compatible.

Let I be an ideal of R. Due to Hashemi [4], I is said to be α-compatible if for each $a, b \in R, a b \in I \Leftrightarrow a \alpha(b) \in I$. Moreover, I is called to be δ-compatible if for each $a, b \in R, a b \in I \Rightarrow a \delta(b) \in I$. If I is both α-compatible and δ-compatible, then I is said to be (α, δ)-compatible. Clearly, a ring R is an (α, δ)-compatible ring if and only if the zero ideal is an (α, δ)-compatible ideal. Let U be an ideal of R, we say that U is a semiprime ideal if for any $a \in R, a^{2} \in U$ implies $a \in U$.

The following lemma appears in [4].
Lemma 3.1. [4, Proposition 2.3] Let I be an (α, δ)-compatible ideal, and $a, b \in R$.
(1) If $a b \in I$, then $a \alpha^{n}(b) \in I$ and $\alpha^{n}(a) b \in I$ for every positive integer n. Conversely, if $a \alpha^{k}(b)$ or $\alpha^{k}(a) b \in I$ for some positive integer k, then $a b \in I$.
(2) If $a b \in I$, then $\alpha^{m}(a) \delta^{n}(b) \in I$ and $\delta^{m}(a) \alpha^{n}(b) \in I$ for any nonnegative integers m, n.

Lemma 3.2. Let I be an (α, δ)-compatible ideal and $a, b \in R$. If $a b \in I$, then $a f_{i}^{j}(b) \in I$ and $f_{i}^{j}(a) b \in I$ for all $0 \leq i \leq j$.

Proof. It is clear by Lemma 3.1.
Lemma 3.3. Let U be an (α, δ)-compatible ideal of R. Then for each $Y \subseteq R$, we have $(U[x ; \alpha, \delta]: Y) \cap R=U: Y$.

Proof. It is trivial.

Proposition 3.4. Let α be an endomorphism and δ an α-derivation of R. If U is an (α, δ)-compatible semiprime ideal, then the following conditions are equivalent:
(1) R is $\Sigma_{U}-z i p$.
(2) $R[x ; \alpha, \delta]$ is $\Sigma_{U[x ; \alpha, \delta]}-z i p$.

Proof. (1) \Rightarrow (2) Suppose that R is Σ_{U}-zip and V is a subset of $R[x ; \alpha, \delta]$ with $V \nsubseteq U[x ; \alpha, \delta]$ and $U[x ; \alpha, \delta]: V=U[x ; \alpha, \delta]$. For a skew polynomial $f(x)=$ $\sum_{i=0}^{n} a_{i} x^{i} \in R[x ; \alpha, \delta], C_{f}$ denotes the set of coefficients of $f(x)$, and for a subset X of $R[x ; \alpha, \delta], C_{X}$ denotes the set $\bigcup_{f \in X} C_{f}$. Then $C_{V} \subseteq R$ and $C_{V} \nsubseteq U$. Now we show that $U: C_{V}=U$. If $r \in U: C_{V}$, then $a r \in U$ for any $a \in C_{V}$. So by Lemma 3.2 , we obtain

$$
f(x) r=\left(\sum_{i=0}^{n} a_{i} x^{i}\right) r=\sum_{k=0}^{n}\left(\sum_{s=k}^{n} a_{s} f_{k}^{s}(r) x^{k}\right) \in U[x ; \alpha, \delta]
$$

for any skew polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in V$. Hence $r \in U[x ; \alpha, \delta]: V=$ $U[x ; \alpha, \delta]$, and so $r \in U$. Thus $U: C_{V}=U$. Since R is Σ_{U}-zip, there exists a finite subset $Y_{0} \subset C_{V}$ such that $U: Y_{0}=U$. For each $a \in Y_{0}$, there exists $g_{a}(x) \in V$ such that some of the coefficients of $g_{a}(x)$ are a. Let V_{0} be a minimal subset of V such that $g_{a}(x) \in V_{0}$ for each $a \in Y_{0}$. Then V_{0} is a finite subset of V. Let $Y_{1}=\bigcup_{g_{a}(x) \in V_{0}} C_{g_{a}(x)}$. Then $Y_{0} \subseteq Y_{1}$, and so $U: Y_{1} \subseteq U: Y_{0}=U$. If $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in U[x ; \alpha, \delta]: V_{0}$, then $f(x) g(x) \in U[x ; \alpha, \delta]$ for each $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i} \in V_{0}$. We have

$$
\begin{aligned}
& f(x) g(x)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right) \\
= & \sum_{k=0}^{m+n}\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k} \in U[x ; \alpha, \delta] .
\end{aligned}
$$

Thus we obtain

$$
\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) \in U, \quad k=0,1, \ldots, m+n, 0 \leq s \leq m, 0 \leq t \leq n
$$

Set $k=m+n$. Then $a_{m} \alpha^{m}\left(b_{n}\right) \in U$. By Lemma 3.1, we obtain $a_{m} b_{n} \in U$, and so $b_{n} a_{m} \in U$ since U is a semiprime ideal.

Set $k=m+n-1$. We have

$$
a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)+a_{m} f_{m-1}^{m}\left(b_{n}\right) \in U
$$

Then

$$
b_{n} a_{m} \alpha^{m}\left(b_{n-1}\right)+b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right)+b_{n} a_{m} f_{m-1}^{m}\left(b_{n}\right) \in U
$$

and so $b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right) \in U$. By using Lemma 3.1 again, we obtain $b_{n} a_{m-1} b_{n} \in U$, and so $\left(b_{n} a_{m-1}\right)^{2} \in U,\left(a_{m-1} b_{n}\right)^{2} \in U$. Since U is semiprime, we obtain $b_{n} a_{m-1} \in$ U and $a_{m-1} b_{n} \in U$.

Continuing this procedure yields that $a_{i} b_{n} \in U$ for all $0 \leq i \leq m$, and so $a_{i} f_{s}^{t}\left(b_{n}\right) \in U$ for every $t \geq s \geq 0$ and every $0 \leq i \leq m$. Thus it is easy to verify that $\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} b_{j} x^{j}\right) \in U[x ; \alpha, \delta]$. Applying the preceding method repeatedly, we obtain $a_{i} b_{j} \in U$ for each $0 \leq i \leq m$ and $0 \leq j \leq n$. Thus $b_{j} \in U: Y_{1} \subseteq U: Y_{0}=U$ for all $0 \leq j \leq n$, and so $g(x) \in U[x ; \alpha, \delta]$. Hence $U[x ; \alpha, \delta]: V_{0}=U[x ; \alpha, \delta]$. Therefore $R[x ; \alpha, \delta]$ is $\Sigma_{U[x ; \alpha, \delta]}$-zip.
(\Leftarrow) Conversely, assume that $R[x ; \alpha, \delta]$ is $\Sigma_{U[x ; \alpha, \delta]}$-zip. Let Y be a subset of R with $Y \nsubseteq U$ and $U: Y=U$. If $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in U[x ; \alpha, \delta]: Y$, then for each $r \in Y$,

$$
r f(x)=r\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} r a_{i} x^{i} \in U[x ; \alpha, \delta] .
$$

So $r a_{i} \in U$ for each $0 \leq i \leq n$ and each $r \in Y$. Thus for each $0 \leq i \leq n$, we obtain $a_{i} \in U: Y=U$, and it follows that $f(x) \in U[x ; \alpha, \delta]$. Thus we obtain $U[x ; \alpha, \delta]: Y=U[x ; \alpha, \delta]$. Since $R[x ; \alpha, \delta]$ is $\Sigma_{U[x ; \alpha, \delta]-\text { zip, }}$ there exists a finite subset $Y_{0} \subset Y$ such that $U[x ; \alpha, \delta]: Y_{0}=U[x ; \alpha, \delta]$. By Lemma 3.3, we obtain $U: Y_{0}=\left(U[x ; \alpha, \delta]: Y_{0}\right) \cap R=U$. Therefore R is Σ_{U}-zip.

Corollary 3.5. Let R be an (α, δ)-compatible reduced ring. Then the following conditions are equivalent:
(1) R is right zip.
(2) $R[x ; \alpha, \delta]$ is right zip.

Proof. Note that the zero ideal of R is an ($\alpha, \delta)$-compatible semiprime ideal if and only if R is an (α, δ)-compatible reduced ring. Hence the result follows from Proposition 3.4.

Corollary 3.6. Let U be a semiprime ideal of R. Then we have the following:
(1) If U is an α-compatible ideal, then the skew polynomial ring $R[x ; \alpha]$ is $\Sigma_{U[x ; \alpha]}-z i p$ if and only if R is $\Sigma_{U}-z i p$.
(2) If U is an δ-compatible ideal, then the differential polynomial ring $R[x ; \delta]$ is $\Sigma_{U[x ; \delta]}-z i p$ if and only if R is $\Sigma_{U}-z i p$.
(3) the polynomial ring $R[x]$ is $\Sigma_{U[x]-z i p}$ if and only if R is Σ_{U}-zip.

4. Skew generalized power series extension of Σ-zip rings

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0 . The following definition is due to $[7],[9]$, [12] and [13].

Let R be a ring, (S, \leq) a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$), and $\omega: S \longrightarrow \operatorname{End}(R)$ a monoid homomorphism with $\omega(0)$ is the identity map of R. For any $s \in S$, let ω_{s} denote the image of s under ω, that is, $\omega_{s}=\omega(s)$, and $1=\omega_{0}=\omega(0)$. Consider the set A of all maps $f: S \longrightarrow R$ whose support $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. Then for any $s \in S$ and f, $g \in A$, the set

$$
X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=s, f(u) \neq 0, g(v) \neq 0\}
$$

is finite [13]. This fact allows to define the operation of convolution as follows:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) \omega_{u}(g(v)), \text { if } X_{s}(f, g) \neq \emptyset
$$

and $(f g)(s)=0$ if $X_{s}(f, g)=\emptyset$. With this operation of convolution, and pointwise addition, A becomes a ring, which is called the ring of skew generalized power series with coefficients in R and exponents in S, and we denote by $\left[\left[R^{S, \leq}, \omega\right]\right]$.

The skew generalized power series construction embraces a wide range of classical ring-theoretic extensions, including skew polynomial rings, skew power series rings, skew Laurent polynomial rings, skew group rings, Malcev-Neumann Laurent series rings and of courses the untwisted versions of all of these.

If (S, \leq) is a strictly totally ordered monoid and $0 \neq f \in\left[\left[R^{S, \leq}, \omega\right]\right]$, then $\operatorname{supp}(f)$ is a nonempty well-ordered subset of (S, \leq). For any $r \in R$ and any $s \in S$, we define $\lambda_{r}^{s} \in\left[\left[R^{S, \leq}, \omega\right]\right]$ via

$$
\lambda_{r}^{s}(t)=\left\{\begin{array}{ll}
r & t=s \\
0 & t \neq s
\end{array} \quad t \in S\right.
$$

It is clear that $r \longrightarrow \lambda_{r}^{0}$ is a ring embedding of R into $\left[\left[R^{S, \leq}, \omega\right]\right]$, and for any $r \in R, f \in\left[\left[R^{S, \leq}, \omega\right]\right]$, we have $r f=\lambda_{r}^{0} f$.

Let U be a nonempty subset of R. We define $\left[\left[U^{S, \leq}, \omega\right]\right]=\left\{f \in\left[\left[R^{S, \leq}, \omega\right]\right] \mid\right.$ $f(s) \in U \cup\{0\}$ for all $s \in S\}$. In particular, we have $\left[\left[(\operatorname{nil}(R))^{S, \leq}, \omega\right]\right]=\{f \in$ $\left[\left[R^{S, \leq}, \omega\right]\right] \mid f(s) \in \operatorname{nil}(R)$ for all $\left.s \in S\right\}$.

Definition 4.1. Let $\omega: S \longrightarrow \operatorname{End}(R)$ be a monoid homomorphism and U an ideal of R. We say that U is Σ-compatible if for each $a, b \in R$ and each $s \in S$, $a b \in U \Leftrightarrow a \omega_{s}(b) \in U$.

Lemma 4.2. Let $\omega: S \longrightarrow \operatorname{End}(R)$ be a monoid homomorphism and U an ideal of R. If U is Σ-compatible, then for each $a, b \in R$ and each $s \in S, a b \in U \Leftrightarrow$ $\omega_{s}(a) b \in U$.

Proof. Since U is Σ-compatible, we have $a b=1 \cdot a b \in U \Leftrightarrow 1 \cdot \omega_{s}(a b)=\omega_{s}(a b)=$ $\omega_{s}(a) \omega_{s}(b) \in U \Leftrightarrow \omega_{s}(a) b \in U$.

Proposition 4.3. Let (S, \leq) be a strictly totally ordered monoid, and U a Σ compatible semiprime ideal of R. Then the following condition are equivalent:
(1) R is $\Sigma_{U-z i p . ~}^{\text {. }}$
(2) The skew generalized power series ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ is $\Sigma_{\left[\left[U^{S, \leq, \omega]]}\right.\right.}-z i p$.

Proof. $(1) \Rightarrow(2)$ Suppose that R is Σ_{U}-zip and X is a subset of $\left[\left[R^{S, \leq}, \omega\right]\right]$ with $X \nsubseteq\left[\left[U^{S, \leq}, \omega\right]\right]$ and $\left[\left[U^{S, \leq}, \omega\right]\right]: X=\left[\left[U^{S, \leq}, \omega\right]\right]$. For any $f \in\left[\left[R^{S, \leq}, \omega\right]\right]$, let C_{f} denote the subset $\{f(s) \mid s \in S\}$ and for any subset $V \subseteq\left[\left[R^{S, \leq}, \omega\right]\right.$, let C_{V} denote the subset $\bigcup_{f \in V} C_{f}$. Now we show that $U: C_{X}=U$. If $r \in U: C_{X}$, then $a r \in U$ for all $a \in C_{X}$. By the condition that U is Σ-compatible, we have that for any $f \in X$ and any $s \in S$,

$$
(f r)(s)=\left(f \lambda_{r}^{0}\right)(s)=f(s) \omega_{s}(r) \in U
$$

So $f r \in\left[\left[U^{S, \leq}, \omega\right]\right]$ and hence $r \in\left[\left[U^{S, \leq}, \omega\right]\right]: X=\left[\left[U^{S, \leq}, \omega\right]\right]$. Thus $r \in U$ and so $U: C_{X}=U$. Since R is Σ_{U}-zip, there exists a finite subset $Y_{0}=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\} \subseteq$ C_{X} such that $U: Y_{0}=U$. For each $q_{i} \in Y_{0}$, there exists $f_{i} \in X$ such that $f\left(s_{i}\right)=q_{i}$ for some $s_{i} \in \operatorname{supp}\left(f_{i}\right)$. Let X_{0} be a minimal subset of X such that for each $q_{i} \in Y_{0}, f_{i} \in X_{0}$. Then X_{0} is a finite subset of X. Since $C_{X_{0}} \supseteq Y_{0}$, we have $U: C_{X_{0}} \subseteq U: Y_{0}=U$. Now we show that $\left[\left[U^{S, \leq}, \omega\right]\right]: X_{0}=\left[\left[U^{S, \leq}, \omega\right]\right]$. Since $\left[\left[U^{S, \leq}, \omega\right]\right]: X_{0} \supseteq\left[\left[U^{S, \leq}, \omega\right]\right]$ is clear, it suffices to show that $\left[\left[U^{S, \leq}, \omega\right]\right]$: $X_{0} \subseteq\left[\left[U^{S, \leq}, \omega\right]\right]$. Let $g \in\left[\left[U^{S, \leq}, \omega\right]\right]: X_{0}$. Then $f g \in\left[\left[U^{S, \leq}, \omega\right]\right]$ for each $f \in X_{0}$. We proceed by transfinite induction on the strictly totally set (S, \leq) to show that $f(u) g(v) \in U$ for any $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$. Let s and t denote the minimal elements of $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$ in the \leq order, respectively. Thus

$$
(f g)(s+t)=\sum_{(u, v) \in X_{s+t}(f, g)} f(u) \omega_{u}(g(v))=f(s) \omega_{s}(g(t)) \in U
$$

and so $f(s) g(t) \in U$ since U is Σ-compatible.

Now suppose that $w \in S$ is such that for any $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$ with $u+v<w, f(u) g(v) \in U$. We will show that $f(u) g(v) \in U$ for any $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$ with $u+v=w$. We write

$$
X_{w}(f, g)=\{(u, v) \mid u+v=w, u \in \operatorname{supp}(f), v \in \operatorname{supp}(g)\}
$$

as $\left\{\left(u_{i}, v_{i}\right) \mid i=1,2, \ldots, n\right\}$ such that

$$
u_{1}<u_{2}<\cdots<u_{n}
$$

Since (S, \leq) is a strictly totally ordered monoid, we have

$$
v_{n}<v_{n-1}<\cdots<v_{2}<v_{1} .
$$

Now

$$
\begin{equation*}
(f g)(w)=\sum_{(u, v) \in X_{w}(f g)} f(u) \omega_{u}(g(v))=\sum_{i=1}^{n} f\left(u_{i}\right) \omega_{u_{i}}\left(g\left(v_{i}\right)\right)=a_{1} \tag{1}
\end{equation*}
$$

where $a_{1} \in U$. For any $i \geq 2, u_{1}+v_{i}<u_{i}+v_{i}=w$, and thus, by induction hypothesis, we have $f\left(u_{1}\right) g\left(v_{i}\right) \in U$. Since U is semiprime, we also have $g\left(v_{i}\right) f\left(u_{1}\right) \in U$. Since U is Σ-compatible, by Lemma 4.2, we have $\omega_{u_{i}}\left(g\left(v_{i}\right)\right) f\left(u_{1}\right) \in U$. Hence multiplying (1) on the right by $f\left(u_{1}\right)$, we obtain $f\left(u_{1}\right) \omega_{u_{1}}\left(g\left(v_{1}\right)\right) f\left(u_{1}\right) \in U$, and so

$$
f\left(u_{1}\right) \omega_{u_{1}}\left(g\left(v_{1}\right)\right) \omega_{u_{1}}\left(f\left(u_{1}\right)\right)=f\left(u_{1}\right) \omega_{u_{1}}\left(g\left(v_{1}\right) f\left(u_{1}\right)\right) \in U .
$$

Thus we obtain $f\left(u_{1}\right) g\left(v_{1}\right) f\left(u_{1}\right) \in U$. Since U is semiprime, we have $f\left(u_{1}\right) g\left(v_{1}\right) \in$ U, and $g\left(v_{1}\right) f\left(u_{1}\right) \in U$. Now (1) becomes

$$
\begin{equation*}
\sum_{i=2}^{n} f\left(u_{i}\right) \omega_{u_{i}}\left(g\left(v_{i}\right)\right)=a_{1}-f\left(u_{1}\right) \omega_{u_{1}}\left(g\left(v_{1}\right)\right)=a_{2}, \quad \text { where } a_{2} \in U \tag{2}
\end{equation*}
$$

Multiplying (2) on the right by $f\left(u_{2}\right)$, we obtain $f\left(u_{2}\right) g\left(v_{2}\right) \in U, g\left(v_{2}\right) f\left(u_{2}\right) \in U$ by the same way as above. Continuing this procedure yields that $f\left(u_{i}\right) g\left(v_{i}\right) \in U$ for all $1 \leq i \leq n$. Thus $f(u) g(v) \in U$ for any $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$ with $u+v=w$. Therefore by transfinite induction, $f(u) g(v) \in U$ any $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$. So for any $s \in S, g(s) \in U: C_{X_{0}} \subseteq U$. Thus $g \in\left[\left[U^{S, \leq}, \omega\right]\right]$ and so $\left[\left[U^{S, \leq}, \omega\right]\right]: X_{0} \subseteq\left[\left[U^{S, \leq}, \omega\right]\right]$. Hence $\left[\left[U^{S, \leq}, \omega\right]\right]: X_{0}=\left[\left[U^{S, \leq}, \omega\right]\right]$. Therefore $\left[\left[R^{S, \leq}, \omega\right]\right]$ is $\Sigma_{\left[\left[U^{S, \leq, \omega]]}\right.\right.}$-zip.
(2) \Rightarrow (1) Assume that $\left[\left[R^{S, \leq}, \omega\right]\right]$ is $\Sigma_{\left[\left[U^{S, \leq, \omega]]]}\right.\right.}$-zip. We will show that R is
 $y f=\lambda_{y}^{0} f \in\left[\left[U^{S, \leq}, \omega\right]\right]$ for each $y \in Y$, and so for any $s \in S,(y f)(s)=y f(s) \in$ U. Thus for any $s \in S, f(s) \in U: Y=U$, and so $f \in\left[\left[U^{S, \leq}, \omega\right]\right]$. Hence $\left[\left[U^{S, \leq}, \omega\right]\right]: Y=\left[\left[U^{S, \leq}, \omega\right]\right]$. Since $\left[\left[R^{S, \leq}, \omega\right]\right]$ is $\Sigma_{\left[\left[U^{S, \leq}, \omega\right]\right]}$-zip, there exists a finite
subset $Y_{0} \subseteq Y$ such that $\left[\left[U^{S, \leq}, \omega\right]\right]: Y_{0}=\left[\left[U^{S, \leq}, \omega\right]\right]$. Then it is easy to see that $U: Y_{0}=\left(\left[\left[U^{S, \leq}, \omega\right]\right]: Y_{0}\right) \cap R=\left[\left[U^{S, \leq}, \omega\right]\right] \cap R=U$. Therefore R is Σ_{U}-zip.

Proposition 4.4. Let (S, \leq) be a strictly totally ordered monoid, and the zero ideal of R is Σ-compatible semiprime. Then the following condition are equivalent:
(1) R is right zip.
(2) the skew generalized power series ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ is right zip.

Proof. Let $U=0$. Then we complete the proof by Proposition 4.3.
Let α be a ring endomorphism of R. Let $S=\mathbb{N} \cup\{0\}$ be endowed with the usual order, and define $\omega: S \longrightarrow \operatorname{End}(R)$ via $\omega(0)=1$, the identity map of R, and $\omega(k)=\alpha^{k}$ for $k \in \mathbb{N}$. Then $\left[\left[R^{S, \leq}, \omega\right]\right] \cong R[[x ; \alpha]]$, the usual skew power series rings.

Let α be a ring automorphism of R. Let $S=\mathbb{Z}$ be endowed with the usual order, and define $\omega: S \longrightarrow \operatorname{End}(R)$ via $\omega(s)=\alpha^{s}$. Then $\left[\left[R^{S, \leq}, \omega\right]\right] \cong R\left[\left[x, x^{-1} ; \alpha\right]\right]$, the usual skew Laurent power series rings.

As an immediate consequence of Proposition 4.3, we obtain the following corollary.

Corollary 4.5. Let U be an α-compatible semiprime ideal. Then the following conditions are equivalent:
(1) R is $\Sigma_{U-z i p . ~}^{\text {- }}$
(2) The skew power series ring $R[[x ; \alpha]]$ is $\Sigma_{U[[x ; \alpha]]}$ zip.
(3) The skew Laurent power series ring $R\left[\left[x, x^{-1} ; \alpha\right]\right]$ is $\Sigma_{U\left[\left[x, x^{-1} ; \alpha\right]\right]}-z i p$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math., 58(1) (1975), 1-13.
[2] F. Cedo, Zip rings and Mal'cev domains, Comm. Algebra, 19(7) (1991), 19831991.
[3] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra, 19(7) (1991), 1867-1892.
[4] E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math., 12 (2006), 349-356.
[5] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
[6] C. Y. Hong, N. K. Kim, T. K. Kwak and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra, 195(3) (2005), 231-242.
[7] Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.), 22(4) (2006), 989-998.
[8] G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29(5) (2001), 21132123.
[9] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra, 318(2) (2007), 737-764.
[10] L. Ouyang, Ore extensions of weak zip rings, Glasg. Math. J., 51(3) (2009), 525-537.
[11] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73(1) (1997), 14-17.
[12] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 15-33.
[13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79(3) (1992), 293-312.
[14] J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc., 57(2) (1976), 213-216.

Ouyang Lunqun (Corresponding Author), Zhou Qiong and Wu Jinfang
Department of Mathematics
Hunan University of Science and Technology
Xiangtan, Hunan 411201, P.R. China
e-mails: ouyanglqtxy@163.com (O. Lunqun)
1534048513@qq.com (Z. Qiong)
418320896@qq.com (W. Jinfang)

[^0]: This research is supported by Scientific Research Foundation of Human Provincial Education Department (12B101), the Natural Science Foundation of Hunan Province (2016JJ2050), the Teaching Reform Foundation of Hunan Province (G21316).

