Turk. J. Math. Comput. Sci. 15(2)(2023) 110–117 © MatDer DOI : 10.47000/tjmcs.1214202

The Minus Partial Order on Endomorphism Rings

Tufan Özdin 问

Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.

Received: 03-12-2022 • Accepted: 31-01-2023

ABSTRACT. Let S = End(M) be the ring of endomorphisms of a right *R*-module M. In this paper we define the minus parital order for the endomorphism ring of modules. Also, we extend study of minus partial order to the endomorphism ring of a (Rickart) module. Thus, several well-known results concerning minus partial order are generalized.

2010 AMS Classification: 16D80, 16D40, 16W20

Keywords: Endomorphism ring, minus partial order operator, Rickart ring.

1. INTRODUCTION

Throughout this article rings are associative with nonzero unity, modules are right modules unless otherwise specified, and morphisms will be written on the left of their arguments. We write S = End(M) for the ring of all endomorphisms of a module M. For a submodule N of M, we use $N \le M(N < M)$ to mean that N is a submodule of M(respectively, proper submodule), and we write $N \le^{\oplus} M$ to indicate that N is a direct summand of M. We always use \mathbb{M} to stand for the ring of all $n \times n$ matrices over a ring R. The left annihilator of $\alpha \in S = End(M)$ is denoted by $l_S(\alpha)$. Similarly, the right annihilator of $\alpha \in S = End(M)$ is denoted by $r_S(\alpha)$. The set of idempotents of a ring is denoted by E(-). General background material can be found in [1].

The shorted operators have been introduce in [2] and [3]. The shorted operators are related to electrical network theory, especially computing to a shorted electrical circuit. Also, they used to parallel connections and electrical duality to further algebraic theorems. (see eg. [2, 3, 11]). In [12] and [13], the authors studied the partial order (called the natural partial order) on regular semigroup *S*. The minus partial order was extensively studied in [5] and [11]. Šemrl defined in [17] the minus partial order on *B*(*H*). Let *H* be a Hilbert space and *B*(*H*) the algebra of all bounded linear operators on *H*. For *A*, $B \in B(H)$ we write $A \leq B$ if and only if there exist idempotent operators *P*, $Q \in B(H)$ such that $ImP = \overline{ImA}$, Ker(A) = Ker(Q), PA = PB and AQ = BQ. Following Šemrl's approach, the authors introduced in [4] the minus partial order on a ring: Let R be a ring with the unity 1 and $a, b \in R$, then we write $a \leq b$ if there exist idempotent elements $p, q \in R$ such that $l_R(a) = R(1 - p)$, $r_R(a) = (1 - q)R$, pa = pb and aq = bq.

In this paper, we will introduce the minus partial order for modules using their endomorphism rings: Let M be a module, S = End(M) with identity 1_M and $\alpha, \beta \in S = End(M)$. Then, we write $\alpha \leq \beta$ if and only if there exist idempotents $p, q \in S$ such that the following hold:

- (1) $l_S(\alpha) = S(1-p)$
- (2) $Ker(\alpha) = (1 q)(M)$
- (3) $p\alpha = p\beta$

Email address: tufan.ozdin@hotmail.com; tozdin@erzincan.edu.tr (T. Özdin)

(4) $\alpha q = \beta q$

In Theorem 2.4, we will present another equivalent definition of the minus partial order over endomorphism ring of a module *M* as: Let α, β be idempotents in S = End(M). Then, $\alpha \leq \beta$ iff $\alpha\beta = \beta\alpha = \alpha$. Among other results, some known results are generalized. For example, we show that the partial order \leq^- is equivalent to the minus partial order \leq on a von Neumann regular ring: For a module *M* and $\alpha, \beta \in S = End(M)$, if $\alpha + \beta$ is regular, then $\alpha \leq^{\oplus} \alpha + \beta$ iff $\alpha \leq^- \alpha + \beta$, and if *S* is a von Neumann regular ring with unit 1_S , then $\alpha \leq \beta$ iff $\alpha \leq^- \beta$ (Theorem 2.5).

A ring *R* is called right Rickart if the right annihilator of any single element of *R* is generated by an idempotent as a right ideal. A left Rickart ring is defined similarly. In [4], the authors proved that this is indeed a partial order when *R* is a Rickart ring. Let *M* be an *R*-module with S = End(M). We say that *M* is a Rickart module if the right annihilator in *M* of any single element of *S* is generated by an idempotent of *S*; or equivalently, $r_S(\alpha) = Ker(\alpha) \leq^{\oplus} M$ for every $\alpha \in S$; or equivalently, for every $\varphi \in S$, $r_M(\varphi) = Ker(\varphi) = eM$ for some $e^2 = e \in S$. The notion of Rickart module has been recently studied in [9] and also partial order has been studied on Rickart rings in [10, 18, 19]. In [15] and [16] the authors studied regular homomorphism and give some characterizations of regular homomorphism. In the third section, the notion of the module-theoretic version of the minus partial order is extended to endomorphism rings of (Rickart modules) which are Rickart rings. It is shown that if S = End(M) is a Rickart ring and $\alpha, \beta \in S$. Then $\alpha \leq \beta$ iff $\beta - \alpha \leq \beta$ (Corollary 3.5). Recall that S = End(M) is a Von Neumann regular ring with unit 1_S, then $\alpha \leq \beta$ iff $\alpha \leq^- \beta$ (Theorem 2.5). We also obtain that if S = End(M) is a Rickart ring and $\alpha, \beta \in S$ then the operator \leq is a partial order in *S*, then $\alpha \leq \beta$ iff $\beta - \alpha \leq \beta$ (Corollary 3.5).

2. The Minus Partial Order for End(-) of a Module

Let *M* be a right *R*-module and S := End(M). We define the minus partial order \leq for S = End(M).

Definition 2.1. Let *M* be a module, S = End(M) with identity 1_M and $\alpha, \beta \in S = End(M)$. Then, we write $\alpha \leq \beta$ if and only if there exist idempotents $p, q \in S$ such that the followings hold:

(1) $l_{S}(\alpha) = S(1 - p)$ (2) $Ker(\alpha) = (1 - q)(M)$ (3) $p\alpha = p\beta$ (4) $\alpha q = \beta q$.

Remark 2.2. By Definition 2.1, one can see that $\alpha = p\alpha$ and $\alpha = \alpha q$.

Lemma 2.3. Let M be a module, p and q be two idempotents in S = End(M) and $\alpha \in S$. Then,

(1) $l_{S}(p) = S(1 - p)$ (2) (1 - q)(M) = Ker(q)(3) $Ker(l_{S}(p)) = p(M)$ (4) $l_{S}(\alpha) = S(1 - p) \Leftrightarrow Ker(l_{S}(\alpha)) = Ker(l_{S}(p)).$

Proof.

(1) If $u \in l_S(p)$, then $u = u(1-p) \in S(1-p)$. Since (1-p)p = 0, we get $S(1-p) \subseteq l_S(p)$.

(2) It is obvious by [1, Lemma 5.6].

(3) The claim is

$$\begin{aligned} Ker(l_S(p)) &= Ker(S(1-p)) &= \{m \in M : \gamma(1-p)(m) = 0 \text{ for every } \gamma \in S \} \\ &= \{m \in M : (1-p)(m) = 0 \} \\ &= \{m \in M : p(m) = m\} = p(M). \end{aligned}$$

(4) (\Rightarrow :) By (1), we have $l_S(\alpha) = S(1-p) = l_S(p)$ so $Ker(l_S(\alpha)) = Ker(l_S(p))$.

(\Leftarrow :) Assume $Ker(l_S(\alpha)) = Ker(l_S(p))$. Then $Ker(l_S(\alpha)) = p(M)$ by (3). Let $\gamma \in l_S(\alpha)$. Since $p(m) \in p(M) = Ker(l_S(\alpha))$ we have $\gamma(p(m)) = 0$ which implies $\gamma = \gamma(1-p) \in S(1-p)$. On the other hand, suppose now $\gamma \in S(1-p) = l_S(p)$. As $\alpha(M) \subseteq Ker(l_S(\alpha)) = Ker(l_S(p)) = p(M)$, we have, for every $\alpha(m) \in \alpha(M)$, there exists $m^* \in M$ such that $\alpha(m) = p(m^*)$. So $\gamma\alpha(m) = \gamma p(m^*) = 0$ by $\gamma p = 0$ which completes the proof.

Theorem 2.4. Let M be a module, α, β be idempotents in S = End(M). Then, $\alpha \leq \beta$ iff $\alpha\beta = \beta\alpha = \alpha$.

Proof. Let α, β be idempotent morphisms in *S* and $\alpha\beta = \beta\alpha = \alpha$. Then by Lemma 2.3, $l_S(\alpha) = S(1 - \alpha)$ and $(1 - \beta)(M) = Ker(\beta)$. So $\alpha \leq \beta$ by assumption. On the other hand, suppose $\alpha \leq \beta$. So there exist idempotents $p, q \in S$ as in Definition 2.1. Therefore $\alpha\beta = (p\alpha)\beta = p\beta = \alpha$ and $\beta\alpha = \beta(\alpha q) = \beta(\beta q) = \beta q = \alpha$.

Following von Neumann [20], an element *a* in a ring *R* is regular if a = aba for some $b \in R$ and *R* is called a regular ring if every element is regular. Let *M* and *N* be right *R*-modules and $\alpha : M \to N$ be a homomorphism. The homomorphism α is called regular if, there exists a homomorphism $\gamma : N \to M$ such that $\alpha = \alpha \gamma \alpha$ by [8]. According to [7] and [6], for any two elements *a*, *b* in a von Neumann regular ring *R*, the relations \leq^{\oplus} and \leq^{-} on *R* are defined as follows:

 $a \leq^{\oplus} b$ if and only if $bR = aR \oplus (b - a)R$, and called it the direct sum partial order.

 $a \leq b$ if there exists an $x \in R$ such that ax = bx and xa = xb, where axa = a, and we say that a is less than or equal to b under the minus partial order.

Let *M* and *N* be right *R*-modules. For any $\alpha, \beta \in Hom(M, N)$, we define the partial order \leq^{\oplus} and the minus partial order \leq^{-} as follows:

$$\alpha \leq^{\oplus} \beta \Leftrightarrow \beta S = \alpha S \oplus (\beta - \alpha)S$$

and

 $\alpha \leq \beta$ if there exists a $\gamma \in Hom(N, M)$ such that $\gamma \alpha = \gamma \beta$ and $\alpha \gamma = \beta \gamma$, where $\alpha = \alpha \gamma \alpha$.

Theorem 2.5. Let *M* a module and $\alpha, \beta \in S = End(M)$. Then,

- (1) If $\alpha + \beta$ is regular, then $\alpha \leq^{\oplus} \alpha + \beta$ iff $\alpha \leq^{-} \alpha + \beta$.
- (2) If *S* is a von Neumann regular ring then $\alpha \leq \beta$ iff $\alpha \leq \beta$.

Proof.

(1) The claim follows from [14, Theorem 10].

(2) (:=) Let p, q be idempotents of S as in Definition 2.1. Since S is von Neumann regular there exists $\gamma \in S$ such that $\alpha \gamma \alpha = \alpha$. Let $\tau = q\gamma p$. Then, we have $\alpha \tau \alpha = \alpha(q\gamma p)\alpha = \alpha\gamma\alpha = \alpha$, $\alpha \tau = \alpha q\gamma p = \beta q\gamma p = \beta\tau$, $\tau \alpha = q\gamma p\alpha = q\gamma p\beta = \tau\beta$. Hence $\alpha \leq \beta$.

(\Leftarrow :) Suppose $\alpha \leq \beta$. So there exists $\gamma \in S$ such that $\alpha \gamma \alpha = \alpha$, $\alpha \gamma = \beta \gamma$, $\gamma \alpha = \gamma \beta$. Let $p = \alpha \gamma$ and $q = \gamma \alpha$. Clearly, p is an idempotent in S and $1 - p \in l_S(\alpha)$. If $\eta \in l_S(\alpha)$, then $\eta p = \eta(\alpha \gamma) = 0$ so $\eta = \eta(1 - p) \in S(1 - p)$. Moreover, $p\alpha = \alpha \gamma \alpha = \alpha \gamma \beta = p\beta$. Similarly, q is an idempotent in S and $(1 - q)(m) \in Ker(\alpha)$. If $m \in Ker(\alpha)$ then $\alpha(m) = 0$ which implies $\gamma(\alpha(m)) = q(m) = 0$. So for $m \in Ker(\alpha)$, $m = m - q(m) = (1 - q)(m) \in (1 - q)(M)$. Now, it is easy to see that $\alpha q = \beta q$ as above.

Let 1_S be the identity of *S* then for the orthogonal idempotents of *S* there exists a decomposition of the identity 1_S , i.e., $1_S = e_1 + \cdots + e_n$. Let $1_S = e_1 + \cdots + e_n$ and $1_S = f_1 + \cdots + f_n$ be two decomposition of the identity of a ring *S*. Then, for any $\alpha \in S$, we have

$$\alpha = 1_S \alpha 1_S = (e_1 + \ldots + e_n) \alpha (f_1 + \ldots + f_n) = \sum_{i,j=1}^n e_i \alpha f_j,$$

and by the above

$$S = \bigoplus_{i,j=1}^{n} e_i S f_j.$$

Let $\alpha_{ij} = e_i \alpha f_j$ then one can write α as $e \times f$ matrix:

$$\begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}.$$

Theorem 2.6. Let *M* be a module and let $\alpha, \beta \in S = End(M)$. Then, $\alpha \leq \beta$ if and only if there exist idempotents $p, q \in S$ such that the following hold:

(1) $\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\beta = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}$. In fact you can easily see that $\alpha_1 = \alpha$ and $\beta_1 = \beta(1-q)$; (2) If $v \in Sp$ and $v\alpha_1 = 0$ then v = 0; (3) If $v(m) \in q(M)$ and $\alpha_1 v(m) = 0$ for any $m \in M$ and $v \in S$ then v = 0.

Proof. Suppose that $\alpha, \beta \in S$ and $p, q \in S$ are idempotents as in Definition 2.1. We know that $\alpha = p\alpha = \alpha q = p\alpha q$, so for decompositions $1_S = p + (1 - p)$ and $1_S = q + (1 - q)$ one has $p \times q$ matrix

$$\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Let

$$\beta = \begin{pmatrix} \beta_4 & \beta_2 \\ \beta_3 & \beta_1 \end{pmatrix}$$

be $p \times q$ matrix. We get

$$\begin{pmatrix} p & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \beta_4 - \alpha_1 & \beta_2\\ \beta_3 & \beta_1 \end{pmatrix} = \begin{pmatrix} p(\beta_4 - \alpha_1) & p\beta_2\\ 0 & 0 \end{pmatrix} = 0$$

by writing $p(\beta - \alpha) = 0$ in matrix form. Therefore, $p(\beta_4 - \alpha_1) = 0$ and $p\beta_2 = 0$. Since $p\alpha_1 = \alpha_1$, $p\beta_4 = \beta_4$, and $p\beta_2 = \beta_2$, we get $\alpha_1 = \beta_4$ and $\beta_2 = 0$. Analogously, from $(\beta - \alpha)q = 0$ we get $\beta_3 = 0$. So we have the statement (1). For the statement (2), suppose $v \in Sp$ and $v\alpha_1 = 0$. From (1), we $\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}$ so $v\alpha = 0$ which implies $v \in l_S(\alpha) = S(1 - p) = l_S(p)$, that is v = vp = 0. For the statement (3), suppose $v(m) \in q(M)$ and $\alpha_1 v(m) = 0$, we have $\alpha v(m) = 0$ by (1). So $v(m) \in Ker(\alpha) = (1 - q)(M) = Ker(q)$ which gives $v(m) \in Ker(q) \cap q(M) = 0$.

For the converse, let the statements (1) - (3) hold for idempotents $p, q \in S$. It is easy to see that $p(\alpha - \beta) = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -\beta_1 \end{pmatrix} = 0$ and $(\alpha - \beta)q = \begin{pmatrix} 0 & 0 \\ 0 & -\beta_1 \end{pmatrix} \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix} = 0$. So statements (3) and (4) of Definition 2.1 are verified. Now, we prove $l_S(\alpha) = S(1 - p)$. If $\gamma \in S(1 - p)$ then one can write γ as $q \times p$ martix:

$$\gamma = \begin{pmatrix} 0 & \gamma_2 \\ 0 & \gamma_4 \end{pmatrix}$$

Clearly $\gamma \alpha = 0$, that is $\gamma \in l_S(\alpha)$. For the reverse inclusion, let $\omega \in l_S(\alpha)$ then for $\omega = \begin{pmatrix} \omega_1 & \omega_2 \\ \omega_3 & \omega_4 \end{pmatrix}$,

$$\omega \alpha = \begin{pmatrix} \omega_1 \alpha_1 & 0 \\ \omega_3 \alpha_1 & 0 \end{pmatrix} = 0.$$

So, we get $\omega_1 \alpha_1 = 0$ and $\omega_3 \alpha_1 = 0$. But $\omega_1, \omega_3 \in Sp$ so $\omega_1 = \omega_3 = 0$ by (2). Hence, $\omega = \begin{pmatrix} 0 & \omega_2 \\ 0 & \omega_4 \end{pmatrix} \in S(1-p)$. Now we prove $Ker(\alpha) = (1-q)(M)$. For $p \times q$ matrix $\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $q \times q$ matrix $1 - q = \begin{pmatrix} 0 & 0 \\ 0 & 1 - q \end{pmatrix}$ direct calculation gives the equality. More precisely, let $m \in Ker(\alpha)$, then $0 = \alpha(m) = \alpha(q(m)) = \alpha_1(q(m))$. But q = 0 by (3) which gives $Ker(\alpha) \subseteq (1-q)(M)$. For the reverse inclusion let $m \in (1-q)(M)$ that is m = (1-q)(m*). Then, $\alpha(m) = \alpha((1-q)(m*)) = (\alpha(1-q))(m*) = 0$ by calculation of matrix representation of α and 1 - q. So we are done. \Box

3. THE MINUS PARTIAL ORDER IN ENDOMORPHISM RINGS OF RICKART MODULES

According to [9], a right *R*-module *M* with $S = End_R(M)$ is called Rickart if the right annihilator in *M* of any single element of *S* is generated by an idempotent of *S*. Equivalently, for every $\varphi \in S$, $r_M(\varphi) = Ker(\varphi) = eM$ for some $e^2 = e \in S$.

Let us also denote:

$$LP(\alpha) = \{ p \in E(S) : l_S(\alpha) = S(1-p) \},\$$

$$RP(\alpha) = \{ q \in E(S) : Ker(\alpha) = (1-q)M \}.$$

By Lemma 2.3, we get

$$LP(\alpha) = \{ p \in E(S) : l_S(\alpha) = l_S(p) \},\$$
$$RP(\alpha) = \{ q \in E(S) : Ker(\alpha) = Ker(q) \}.$$

We also note that by [9] if *M* is a Rickart module, then *S* is a right Rickart ring. Thus, we see that if *M* is a Rickart module, then $RP(\alpha)$ is nonempty.

Lemma 3.1. Let $\alpha \in S$, $p \in LP(\alpha)$ and $q \in RP(\alpha)$. Then, (1) $LP(\alpha) = \{ \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix} : p_1 \in pS(1-p) \},$ (2) $RP(\alpha) = \{ \begin{pmatrix} q & 0 \\ q_1 & 0 \end{pmatrix} : q_1 \in (1-q)Sq \}.$

Proof. Suppose that $p \in LP(\alpha)$ and $q \in RP(\alpha)$. Then, $(1-p)\alpha = 0$ and $\alpha(1-q) = 0$. Let $p' = \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix}$ as a $p \times p$ matrix. We get $p'^2 = p'$. By using $1 = \begin{pmatrix} p & 0 \\ 0 & 1-p \end{pmatrix}$ and $(1-p') \in l_S(\alpha)$, we obtain $(1-p')\alpha = \begin{pmatrix} 0 & -p_1 \\ 0 & 1-p \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$ If $\omega = \begin{pmatrix} \omega_1 & \omega_2 \\ \omega_3 & \omega_4 \end{pmatrix} \in l_S(\alpha)$ is a $p \times p$ matrix, then $\begin{pmatrix} \omega_1 & \omega_2 \\ \omega_3 & \omega_4 \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix} = 0$ and $\omega_1 \alpha_1 = 0$ ($\omega_1 \alpha = 0$), $\omega_3 \alpha_1 = 0$ ($\omega_3 \alpha = 0$).

Thus, $\omega_1 = \omega_1 p = 0$ and $\omega_3 = \omega_3 p = 0$. Also suppose that $\omega_1 = 0$ and $\omega_3 = 0$. So $\omega \alpha = 0$. From $\begin{pmatrix} 0 & \omega_2 \\ 0 & \omega_4 \end{pmatrix} \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix} = 0$, we get $\omega \in l_S(p')$, so $l_S(\alpha) \subseteq l_S(p')$. By using $(1 - p')\alpha = 0$ and Lemma 2.3, $l_S(p') = S(1 - p') \subseteq l_S(\alpha)$. Then, $l_S(\alpha) = S(1 - p')$ and $p' \in LP(\alpha)$.

Assume that $p' = \begin{pmatrix} p_2 & p_1 \\ p_3 & p_4 \end{pmatrix} \in LP(\alpha)$ be a $p \times p$ matrix. Also we have $l_S(\alpha) = S(1 - p') = l_S(p')$ and $l_S(\alpha) = l_S(p)$. Thus,

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$0 = (1 - p')p = \begin{pmatrix} p - p_2 & -p_1 \\ -p_3 & 1 - p - p_4 \end{pmatrix} \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} p - p_2 \\ -p_3 \end{pmatrix}$$

and $p_2 = p$ and $p_3 = 0$. Considering $l_S(\alpha) \subseteq l_S(p')$, we get

$$0 = \begin{pmatrix} 0 & \omega_2 \\ 0 & \omega_4 \end{pmatrix} \begin{pmatrix} p & p_1 \\ 0 & p_4 \end{pmatrix} = \begin{pmatrix} 0 & \omega_2 p_4 \\ 0 & \omega_4 p_4 \end{pmatrix}$$

and $\omega_4 p_4 = 0$ from $\omega_4 \in (1-p)S(1-p)$. If $\omega_4 = 1-p$, we get $p_4 = 0$. Hence, $p' = \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix}$, this completes the proof. Similarly, we can obtain the statement (2).

Corollary 3.2. Let $\alpha \leq \beta$ for $\alpha, \beta \in S$ and let $p, q \in E(S)$ be the corresponding idempotents. Then,

$$\{p' \in LP(\alpha) : \alpha = p'\beta\} = \{ \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix} : p_1 \in pS(1-p) \text{ and } p_1\beta_1 = 0 \}$$

and

$$\{q' \in RP(\alpha) : \alpha = \beta q'\} = \{ \begin{pmatrix} q & 0 \\ q_1 & 0 \end{pmatrix} : q_1 \in (1-q)Sq \text{ and } \beta_1 q_1 = 0 \},$$

where β_1 is as in Theorem 2.6.

Proof. From $\alpha \leq \beta$, we have

$$\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}, \beta = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}.$$

If $p' = \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix}$ with $p_1 \in pS(1-p)$ and $p_1\beta_1 = 0$ and by Lemma 3.1, then $p' \in LP(\alpha)$. We get

$$p'\beta = \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix} = \begin{pmatrix} p\alpha_1 & p_1\beta_1 \\ 0 & 0 \end{pmatrix}$$

Since $\alpha_1 = p\alpha q$, we have $p\alpha_1 = \alpha_1$. Then,

$$p'\beta = \begin{pmatrix} \alpha_1 & 0\\ 0 & 0 \end{pmatrix} = \alpha.$$

For the converse, assume that $p' \in LP(\alpha)$ and $\alpha = p'\beta$. From Lemma 3.1, we have $p' = \begin{pmatrix} p & p_1 \\ 0 & 0 \end{pmatrix}$. Thus, we write

$$\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}_{p \times q} = p'\beta = \begin{pmatrix} \alpha_1 & p_1\beta_1 \\ 0 & 0 \end{pmatrix}.$$

Hence, $p_1\beta_1 = 0$.

We proceed to obtain an equivalent condition of the minus partial order in endomorphism rings of Rickart modules. **Theorem 3.3.** Let *S* be a Rickart ring and $\alpha, \beta \in S$. Then, $\alpha \leq \beta$ iff α, β have the matrix form as follows:

$$\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}_{p \times q}, \quad \beta = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}_{p \times q}$$

where $p, q \in E(S)$.

Proof. Let $\alpha, \beta \in S$ and $\alpha \leq \beta$. There exist $p, q \in E(S)$ such that $\alpha = p\beta = \beta q$. Then, $p\alpha = \alpha$ and $\alpha = \alpha q$. Thus, $(1-p)\alpha = 0$ and $\alpha(1-q) = 0$ which implies that $\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}_{p \times q}$ where $\alpha_1 = p\alpha q$. Let $\begin{pmatrix} \beta_4 & \beta_2 \\ \beta_3 & \beta_1 \end{pmatrix}_{p \times q}$. Then,

$$\begin{aligned} \beta_4 &= p\beta q = p\alpha q = \alpha_1, \\ \beta_3 &= (1-p)\beta q = (1-p)p\beta = 0, \\ \beta_2 &= p\beta(1-q) = \beta q(1-q) = 0. \end{aligned}$$

Thus, $\beta = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}_{p \times q}$.

For the converse, let α and β have the stated above matrix forms. From $p\alpha_1 = pp\alpha q = \alpha_1 = p\alpha qq = \alpha_1 q$, then

$$p\beta = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}_{p \times p} \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}_{p \times q} = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}_{p \times q} = \alpha,$$

$$\beta q = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}_{p \times q} \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}_{q \times q} = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}_{p \times q} = \alpha.$$

So, $\alpha \leq \beta$.

Recall that *R* is a right Rickart ring with only two idempotents 0 and 1 iff *R* is a domain (see [9, Remark 4.10]).

Theorem 3.4. Let *S* be Rickart ring and $\alpha, \beta \in S$. Then, $\alpha \leq \beta$ if and only if there exists $1_S = e_1 + e_2 + e_3$ and $1_S = f_1 + f_2 + f_3$ such that the following conditions hold $(\alpha, 0, 0)$ $(\alpha, 0, 0)$

$$(1) \alpha = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} and \beta = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \beta_1 & 0 \\ 0 & 0 & 0 \end{pmatrix} as e \times f matrix,$$

(2) If $v \in Se_1$ and $v\alpha_1 = 0$, then $v = 0$,
(3) If $v \in f_1S$ and $\alpha_1v = 0$, then $v = 0$,
(4) If $v \in Se_2$ and $v\beta_1 = 0$, then $v = 0$,
(5) If $v \in f_2S$ and $\beta_1v = 0$, then $v = 0$.

Proof. (\Leftarrow :) This implication follows from Theorem 2.6.

Proof. (\Leftarrow :) This implication follows from Frederic 2.0. (\Rightarrow :) Let $\alpha \leq \beta$. Considering Theorem 2.6, we have $\alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\beta = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \beta_1 \end{pmatrix}_{p \times q}$ as $p \times q$ matrix, if $v \in Sp$ and $v\alpha_1 = 0$ then v = 0, if $v(m) \in q(M)$ and $\alpha_1 v(m) = 0$ for any $m \in M$ then v = 0. Since S is Rickart ring, there exists $r, s \in E(R)$ such that $l_S(\beta_1) = S(1-r) = l_S(r)$ and $r_M(\beta_1) = Ker(\beta_1) = (1-s)(M)$. From $\beta_1 \in (1-p)S(1-q)$, we write $p\beta_1 = 0$. Then, $p \in l_S(\beta_1) = l_S(r)$, so pr = 0. Suppose that r' = r - rp(1 - r) = r - rp = r(1 - p). We get $r'^2 = (r - rp)(r - rp) = r - rp = r(1 - p) = r'$, so $r' \in E(S)$. On the other hand, if $\omega\beta_1 = 0$, then $\omega \in l_S(\beta_1) = l_S(r)$ and $\omega r = 0$. So $\omega r' = 0$. Then, we have $(1 - r')\beta_1 = 0$ from $\beta_1 = r\beta_1$. Thus, $l_S(\beta_1) = l_S(r') = S(1 - r')$. Also if pr = 0, then $p \in l_{S}(r) = l_{S}(\beta_{1}) = l_{S}(r')$ and pr' = 0. Then, r'p = r(1-p)p = 0. Set $e_{1} = p$, $e_{2} = r'$ and $e_{3} = 1 - p - r'$. Thus, $1_S = e_1 + e_2 + e_3$ is decomposition of the identity of the ring S and by $l_S(\beta_1) = l_S(r') = S(1 - r')$, we conclude that $\omega\beta_1 = 0$ implies $\omega = 0$ when $\omega \in Se_2$.

Moreover, set $f_1 = q$, $f_2 = (1 - q)s$ and $f_3 = 1 - f_1 - f_2$. We get $1_s = f_1 + f_2 + f_3$ decomposition of the identity of the ring S. Thus, we obtain the statement (5). Since $e_1 = p$ and $f_1 = q$, the statement (2) and (3) are satisfied from Theorem 2.6. We have $e_2\beta_1 f_2 = r(1-p)\beta_1(1-q)s = r\beta_1 s = \beta_1 s = \beta_1 s$ ince $l_s(\beta_1) = S(1-r)$ and $Ker(\beta_1) = (1-s)(M)$. This show that the statement (1) holds.

Moreover, from Theorem 3.4 it follows that the statement (1) - (5) are equivalent to $e_1 \in LP(\alpha), e_2 \in LP(\beta - \alpha)$, $f_1 \in RP(\alpha)$ and $f_2 \in RP(\beta - \alpha)$.

Corollary 3.5. Let *S* be Rickart ring and $\alpha, \beta \in S$. Then, $\alpha \leq \beta$ iff $\beta - \alpha \leq \beta$.

Theorem 3.6. Suppose that S is Rickart ring and $\alpha, \beta \in S$. Then, $\alpha \leq \beta$ if and only if there exists idempotents $e_1 \in LP(\alpha), e_2 \in LP(\beta - \alpha), f_1 \in RP(\alpha) and f_2 \in RP(\beta - \alpha) such that e_1e_2 = 0 and f_2f_1 = 0.$

Proof. (\Rightarrow :) Suppose that $e_1 \in LP(\alpha), e_2 \in LP(\beta - \alpha)$ and $e_1e_2 = 0$. Then, $(1 - e_1)\alpha = 0$ and $(1 - e_1)(\beta - \alpha) = 0$, so $e_1\beta = e_1\alpha + e_1(\beta - \alpha) = \alpha + e_1e_2(\beta - \alpha) = \alpha$. Also assume that $f_1 \in RP(\alpha), f_2 \in RP(\beta - \alpha)$ and $f_2f_1 = 0$. We write $\alpha f_1 = \alpha$ and $\beta f_1 = \alpha f_1 + (\beta - \alpha) f_1 = \alpha + (\beta - \alpha) f_2 f_1$. Thus, we get $\alpha \leq \beta \in S$. (\Leftarrow :) It follows from Theorem 3.4.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

AUTHORS CONTRIBUTION STATEMENT

The author confirms sole responsibility for the following: study conception, data collection, analysis and interpretation of results, and manuscript preparation. I confirm that the data supporting the findings of this study are available within the article.

REFERENCES

- [1] Anderson, F.W., Fuller, K.R., Rings and Categories of Modules, New York: Springer-Verlag, 1974.
- [2] Anderson Jr., W.N., Shorted operators, SIAM Journal on Applied Mathematics, 20(3)(1971), 522-525.
- [3] Anderson, W.N., Trapp, G.E., Shorted operators II, SIAM Journal on Applied Mathematics, 28(1)(1975), 60-71.
- [4] Djordjevic, D.S., Rakic, D.S., Marovt, J., Minus partial order in Rickart rings, Publ. Math. Debrecen, 87(3-4)(2015), 291–305.
- [5] Hartwig, R.E., *How to partially order regular elements*, Math. Japonica, **25**(1980), 1–13.
- [6] Jain, S.K., Blackwood, B., Prasad, K.M., Srivastava, A. K., Shorted operators relative to a partial order in a regular ring, Comm. Algebra, 37(11)(2009), 4141-4152.
- [7] Jain, S.K., Prasad, K.M., Right-left symmetry of $aR \oplus bR = (a + b)R$ in regular rings, J. Pure Appl. Algebra, 133(1-2)(1998), 141–142.
- [8] Kasch, F., Mader, A., Regularity and Substructures of Hom, Frontiers in Mathematics Basel, Switzerland: Birkhäuser, 2009.
- [9] Lee, G., Rizvi, S.T., Roman, C.S., Rickart modules, Comm. Algebra, 38(11)(2010), 4005–4027.
- [10] Marovt, J., On partial orders in Rickart rings, Linear and Multilinear Algebra, 63(9)(2015), 1707–1723.
- [11] Mitra, S.K., The minus partial order and shorted matrix, Linear Algebra Appl., 83(1986), 1–27.
- [12] Mitsch, H., A natural partial order for semigroups, Proc. Am. Math. Soc., 97(3)(1986), 384-388.
- [13] Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(3)(1980), 249--260.
- [14] Quynh, T.C., Abyzov, A., Koşan, M.T., On (unit-)regular morphisms, Lobachevskii Journal of Mathematics, 40(12)(2019), 2103--2110.
- [15] Quynh, T.C., Koşan, M.T., Hai, P.T., A note on regular morphisms, Ann. Univ. Sci. Budapest. Sect. Comput., 41(2013), 249--260.
- [16] Quynh, T.C., Koşan, M.T., Thuyet, L.V., On (semi)regular morphisms, Comm. Algebra, 41(8)(2013),

- [17] Šemrl, P., Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl., 369(1)(2010), 205-213.
- [18] Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., Minus partial order in regular modules, Comm. Algebra, 48(10)(2020), 4542–4553.
- [19] Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96(1-2)(2020), 149–159.
- [20] von Neumann, J., On Regular ring, Proc. Nat. Acad. Sci., 22(12)(1936), 707–713.