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ABSTRACT 

 

In this study, sinc-collocation method is introduced for solving Volterra integro-differential equations of fractional 

order. Fractional derivative is described in the Caputo sense often used in fractional calculus. Obtained results are 

given to literature as two new theorems. Some numerical examples are presented to demonstrate the theoretical results. 
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Kesirli mertebeden integro-diferansiyel denklemlerin çözümü için sayısal bir 

yöntem 
 
ÖZ 

 

Bu çalışmada, sinc sıralama yöntemi kesirli mertebeden Volterra integro-diferansiyel denklemleri yaklaşık olarak 

çözmek için geliştirilmiştir. Kesirli türev, kesirli analizde sıkça kullanılan Caputo anlamında tanımlanmıştır. Elde 

edilen sonuçlar iki yeni teorem ile verilmiştir. Bazı sayısal örnekleri teorik sonuçları göstermek için sunulmuştur. 

 

Anahtar kelimeler: Integro-diferansiyel denklem, sinc-sıralama yöntemi, Caputo kesirli türevi. 
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1. INTRODUCTION 

 

Many problems, in science and engineering such as 

earthquake engineering, biomedical engineering, fluid 

mechanics can be modeled by fractional integro-

differential equations [34, 35, 36]. In order to better 

analyze these systems, it is required to obtain the solution 

of these equations. But, achieving the analytical solution 

of these equations can not be possible. Therefore, finding 

more accurate solutions using numerical schemes can be 

helpful. Some numerical algorithm for solving integro-

differential equation of fractional order can be 

summarized as follows, but not limited to; Adomian 

decomposition method [1, 2, 23], Taylor expansion 

method [3], differential transform method [4, 5] and 

homotopy perturbation method [6, 7], Spectral 

collocation method [14], Legendre wavelets method 

[13], Chebyshev wavelets method [15, 29], piecewise 

collocation methods[20, 21], Chebyshev pseudo-spectral 

method [24, 28], homotopy analysis method [25, 26], 

variational iteration method [27]. 

 

According to best knowledge of the authors, there is no 

study dealing with the solution of fractional linear 

Volterra integro-differential equation by means of sinc-

collocation method. The main advantage of the sinc-

collocation method than other methods is that sinc-

collocation method provides a much better rate of 

convergence and more e cient results in the presence of 

singularity [37]. For more details about the sinc-

collocation method see [8, 9, 10, 12]. 

 

Particulary, in the present paper, as an original 

contribution to literature, sinc-collocation method is 

introduced for solving linear Volterra integro-differential 

equations of fractional order. Examined integro-

differential equations in the present paper have 

singularities at some points. Obtained results are given in 

the form of two new theorems. Some numerical examples 

in the form of graphics and tables are given to illustrate 

the theoretical results. 

 

In this study, Volterra integro-differential equations of 

fractional order are considered as follows: 

 

𝜇2(𝑥)𝑦
′′ + 𝜇1(𝑥)𝑦

′ + 𝜇𝛼(𝑥)𝐷𝑥
𝛼𝑦 + 𝜇0(𝑥)𝑦 

 

= 𝑓(𝑥) + 𝜆∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝛼

     , 0 < 𝛼 < 1 

(1)  

 

in which Dx
α is the Caputo sense fractional derivative. 

Eq.1 is subject to following nonhomogeneous boundary 

conditions 

 

𝑦(𝑎) = 𝑦0 ,   𝑦(𝑏) = 𝑦1 ,      𝑎 < 𝑥 < 𝑏. 

The structure of this paper is organized as follows; In 

section 2, some preliminaries and basic definitions 

related to fractional calculus and sinc functions are 

recalled. In the next section, sinc-collocation method is 

constructed for solving integro-differential equations of 

fractional order. In section 4, numerical examples are 

presented. Finally, conclusions and remarks are given in 

the section 5. 

 

2. PRELIMINARIES AND NOTATIONS  

 

In this section, some preliminaries and notations related 

to fractional calculus and sinc basis functions are given. 

For more details see [16, 17, 18, 19, 30, 31, 32, 33]. 

 

Definition 1. Let 𝑓: [𝑎, 𝑏] → ℝ be a function, 𝛼 

 a positive real number, 𝑛 the integer satisfying  

𝑛 − 1 ≤ 𝛼 < 𝑛, and Γ the Euler gamma function. Then, 

the left Caputo fractional derivative of order of 𝑓(𝑥) is 

given as follows: 

 

𝐷𝑥
𝛼𝑓(𝑥) =

1

Γ(𝑛 − 𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1
𝑥

𝛼

𝑓(𝑛)(𝑡)𝑑𝑡. (2)  

 

Definition 2. The Sinc function is defined on the whole 

real line −∞ < 𝑥 < ∞ by 

 

𝑠𝑖𝑛𝑐(𝑥) = {
sin (𝜋𝑥)

𝜋𝑥
𝑥 ≠ 0

1 𝑥 = 0.

 

 

Definition 3. For ℎ > 0 and 𝑘 = 0,±1,±2,… the 

translated sinc function with space node are given by: 

 

𝑆(𝑘, ℎ)(𝑥) = 𝑠𝑖𝑛𝑐 (
𝑥 − 𝑘ℎ

ℎ
) = {

sin (𝜋
𝑥−𝑘ℎ

ℎ
)

𝜋
𝑥−𝑘ℎ

ℎ

𝑥 ≠ 𝑘ℎ

1 𝑥 = 𝑘ℎ.

 

 

To construct approximation on the interval (𝑎, 𝑏) the 

conformal map 

 

𝜙(𝑧) = ln (
𝑧 − 𝑎

𝑏 − 𝑧
). 

 

is employed. The basis functions on the interval (𝑎, 𝑏) 
are derived from the composite translated sinc functions 

 

𝑆𝑘(𝑧) = 𝑆(𝑘, ℎ)(𝑧) 𝑜 𝜙(𝑧) = 𝑠𝑖𝑛𝑐 (
𝜙(𝑧) − 𝑘ℎ

ℎ
). 

 

The inverse map of 𝜔 = 𝜙(𝑧) is 

 

𝑧 = 𝜙−1(𝜔) =
𝑎 + 𝑏𝑒𝜔

1 + 𝑒𝜔
. 

 

83 



S. Altan / A numerical method for solution of integro-differential equations of 

fractional order 

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 2017, 82-89 

The sinc grid points 𝑧𝑘 ∈ (𝑎, 𝑏) will be denoted by 𝑥𝑘 

because they are real. For the evenly spaced nodes 

{𝑘ℎ}𝑘=−∞
∞  on the real line, the image which corresponds 

to these nodes is denoted by 

 

𝑥𝑘 = 𝜙−1(𝑘ℎ) =
𝑎 + 𝑏𝑒𝑘ℎ

1 + 𝑒𝑘ℎ
, 𝑘 = 0,±1,±2,… 

 

3. THE SINC-COLLOCATION METHOD 
 

Let us assume an approximate solution for 𝑦(𝑥) in Eq.(1) 

by finite expansion of sinc basis functions for as follows; 

 

𝑦𝑛(𝑥) = ∑ 𝑐𝑘𝑆𝑘(𝑥)

𝑁

𝑘=−𝑀

,    𝑛 = 𝑀 + 𝑁 + 1 (3)  

 

where 𝑆𝑘(𝑥) is the function 𝑆(𝑘, ℎ) 𝑜 𝜙(𝑥). Here, the 

unknown coefficients 𝑐𝑘 in (3) are determined by sinc-

collocation method via the following theorems. 

 

Theorem 1. The first and second derivatives of 𝑦𝑛(𝑥) are 

given by 

 

𝑑

𝑑𝑥
𝑦𝑛(𝑥) = ∑ 𝑐𝑘

𝑁

𝑘=−𝑀

𝜙′(𝑥)
𝑑

𝑑𝜙
𝑆𝑘(𝑥) (4)  

 

𝑑2

𝑑𝑥2
𝑦𝑛(𝑥) = ∑ 𝑐𝑘

𝑁

𝑘=−𝑀

(𝜙′′(𝑥)
𝑑

𝑑𝜙
𝑆𝑘(𝑥)

+ (𝜙′)2
𝑑2

𝑑𝜙2
𝑆𝑘(𝑥)) 

(5)  

 

respectively. 

 

Theorem 2. If 𝜉 is a conformal map for the interval 

[𝑎, 𝑥], then 𝛼 order derivative of 𝑦𝑛(𝑥) for 0 < 𝛼 < 1 is 

given by 

 

𝐷𝑥
𝛼(𝑦𝑛(𝑥)) = ∑ 𝑐𝑘

𝑁

𝑘=−𝑀

𝐷𝑥
𝛼(𝑆𝑘(𝑥)) (6)  

 

where 

 

𝐷𝑥
𝛼(𝑆𝑘(𝑥)) ≈

ℎ𝐿
Γ(1 − 𝛼)

∑
(𝑥 − 𝑥𝑟)𝑆𝑘

′ (𝑥𝑟)

 𝜉′(𝑥𝑟)

𝐿

𝑟=−𝐿

 

 

Proof. If we use the definition of Caputo fractional 

derivative given in (2), it is written that 

 

𝐷𝑥
𝛼(𝑦𝑛(𝑥)) = ∑ 𝑐𝑘

𝑁

𝑘=−𝑀

𝐷𝑥
𝛼(𝑆𝑘(𝑥)) 

 

where 

 

𝐷𝑥
𝛼(𝑆𝑘(𝑥)) =

1

Γ(1 − 𝛼)
∫ (𝑥 − 𝑡)−𝛼𝑆𝑘

′ (𝑡)𝑑𝑡
𝑥

𝛼

. 

 

Now we use quadrature rule given by (2.13) in [11] to 

compute the above integral which is divergent on the 

interval [𝑎, 𝑥]. For this purpose, a conformal map and its 

inverse image that denotes the sinc grid points are given 

by 

 

𝜉(𝑡) = ln (
𝑡 − 𝛼

𝑥 − 𝑡
) 

 

and 

 

𝑥𝑟 = 𝜉
−1(𝑟ℎ𝐿) =

𝑎 + 𝑥𝑒𝑟ℎ𝐿

1 + 𝑒𝑟ℎ𝐿
 

 

where ℎ𝐿 = 𝜋/√𝐿. Then, according to equality (2.13) in 

[11], we can write 

 

𝐷𝑥
𝛼(𝑆𝑘(𝑥)) ≈

ℎ𝐿
Γ(1 − 𝛼)

∑
(𝑥 − 𝑥𝑟)𝑆𝑘

′ (𝑥𝑟)

 𝜉′(𝑥𝑟)

𝐿

𝑟=−𝐿

 

 

This completes the proof. 

 

Lemma 1. The following relation holds 

 

∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 ≈ ℎ ∑ 𝛿𝑗𝑘
(−1) 𝐾(𝑥𝑗 , 𝑡𝑘)

𝜙′(𝑡𝑘)
𝑦𝑘

𝑁

𝑘=−𝑀

𝑥𝑗

𝛼

 (7)  

 

where 

 

𝜎𝑗𝑘 = ∫
𝑠𝑖𝑛𝜋𝑡

𝜋𝑡

𝑗−𝑘

0

𝑑𝑡 

  

𝛿𝑗𝑘
(−1) =

1

2
+ 𝜎𝑗𝑘 

 

and 𝑦𝑘  denotes an approximate value of 𝑦(𝑡𝑘). 
 

Proof. See [12] 

 

Replacing each term of (1) with the approximation given 

in (3)-(7), multiplying the resulting equation by {(1/
𝜙)2}, we obtain the following system 
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∑

[
 
 
 
 

𝑐𝑘

{
 
 

 
 ∑𝑔𝑖(𝑥)

𝑑𝑖

𝑑𝜙𝑖
𝑆𝑘

2

𝑖=0

+ 𝑔3(𝑥)𝐷𝑥
𝛼(𝑆𝑘(𝑥))

+𝑔4(𝑥)𝛿𝑗𝑘
(−1) 𝐾(𝑥, 𝑡𝑘)

𝜙′(𝑡𝑘) }
 
 

 
 

]
 
 
 
 𝑁

𝑘=−𝑀

 

 

= (𝑓(𝑥) (
1

𝜙′(𝑥)
)
2

) 

 

where 

 

𝑔0(𝑥) = 𝜇0(𝑥) (
1

𝜙′(𝑥)
)
2

 

 

𝑔1(𝑥) = [𝜇1(𝑥) (
1

𝜙′(𝑥)
) − 𝜇2(𝑥) (

1

𝜙′(𝑥)
)
′

] 

 

𝑔2(𝑥) = 𝜇2(𝑥) 
 

𝑔3(𝑥) = 𝜇𝛼(𝑥) (
1

𝜙′(𝑥)
)
2

 

 

𝑔4(𝑥) = −𝜆ℎ (
1

𝜙′(𝑥)
)
2

. 

 

We know from [12] that 

 

𝛿𝑗𝑘
(0) = 𝛿𝑘𝑗

(0), 𝛿𝑗𝑘
(1) = −𝛿𝑘𝑗

(1), 𝛿𝑗𝑘
(2) = 𝛿𝑘𝑗

(2)
 

 

then setting 𝑥 = 𝑥𝑗, we obtain the following theorem. 

 

Theorem 3. If the assumed approximate solution of 

boundary value problem (1) is (3), then the discrete sinc-

collocation system for the determination of the unknown 

coefficients {𝑐𝑘}𝑘=−𝑀
𝑁  is given by 

 

∑

[
 
 
 
 

𝑐𝑘

{
 
 

 
 ∑

𝑔𝑖(𝑥𝑗)

ℎ𝑖
𝛿𝑗𝑘
(𝑖)

2

𝑖=0

+ 𝑔3(𝑥𝑗)𝐷𝑥
𝛼 (𝑆𝑘(𝑥𝑗))

+𝑔4(𝑥𝑗)𝛿𝑗𝑘
(−1)𝐾(𝑥𝑗 , 𝑡𝑘)

𝜙′(𝑡𝑘) }
 
 

 
 

]
 
 
 
 

𝑁

𝑘=−𝑀

 

 

= (𝑓(𝑥𝑗) (
1

𝜙′(𝑥𝑗)
)

2

)    , 𝑗 = −𝑀,…𝑁 

(8)  

 

We now introduce some notations to rewrite in the matrix 

form for system (8). Let 𝑫(𝑦) denotes a diagonal matrix 

whose diagonal elements are 𝑦(𝑥−𝑀), 𝑦(𝑥−𝑀+1),…, 

𝑦(𝑥𝑁) and non-diagonal elements are zero, let 

 

𝐆 = 𝐷𝑥
𝛼(𝑆𝑘(𝑥𝑗))  

and 

 

𝐄 =
𝐾(𝑥𝑗 , 𝑡𝑘)

(𝜙′(𝑥𝑗))
2

𝜙′(𝑡𝑘)
 

 

denote a matrix and also let 𝐈(𝑖) denote the matrices 

 

 𝐈(𝑖) = [𝛿𝑗𝑘
(𝑖)
],      𝑖 = −1,0,1,2 

 

where 𝐃, 𝐆, 𝐄, 𝐈(−1), 𝐈(0), 𝐈(1) and 𝐈(2) are square matrices 

of order 𝑛 × 𝑛. In order to calculate unknown 

coefficients 𝑐𝑘 in linear system (8), we rewrite this 

system by using the above notations in matrix form as 

 

𝐀𝐜 =  𝐁 (9)  

 

where 

 

𝐀 =∑
1

ℎ𝑖
𝐃(𝑔𝑖)𝐈

(𝑖) + 𝐃(𝑔3)𝐆 + 𝐃(𝑔4)(𝐄 ∘   𝐈
(−1) )

2

𝑖=0

 

 

𝐁 =

(
(𝑓(𝑥−𝑀) (

1

𝜙′(𝑥−𝑀)
)
𝟐

) , (𝑓(𝑥−𝑀+1) (
1

𝜙′(𝑥−𝑀+1)
)
𝟐

)

, … , (𝑓(𝑥𝑁) (
1

𝜙′(𝑥𝑁)
)
𝟐

)
)

𝑇

  

 

𝐜 = (𝑐−𝑀, 𝑐−𝑀+1, … , 𝑐𝑁)
𝑇 

 

The notation " ∘ " denotes the Hadamard matrix 

multiplication. Now we have linear system of 𝑛 

equations in the 𝑛 unknown coefficients given by (9). We 

can nd the unknown coefficients 𝑐𝑘 by solving this 

system. 

 

4. COMPUTATIONAL EXAMPLES  
 

In this section, some numerical examples whose exact 

solutions are known are presented to show the accuracy 

of the introduced method by MATHEMATICA 10. In 

all examples, 𝑑 = 𝜋/2, 𝛼 = 𝛽 = 1/2, 𝑁 = 𝑀 are taken 

into account 𝑬𝑴,𝑳 shows the error between the exact 

solution and numerical solution by sinc-collocation 

method. Also, 𝑹𝑴,𝑳 in example 2 indicates the 

experimental rate of convergence that calculates the 

following formula like [22] 

 

𝑹𝑴,𝑳 =
log[𝑬𝑴/𝟐,𝑳/𝟐/𝑬𝑴,𝑳]

log 2
 

 

Example 1. Consider linear fractional Volterra integro-

differential equation in the following form 
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𝑦′′(𝑥) + 𝐷𝑥
0.5𝑦(𝑥) + 𝑦(𝑥)

= 𝑓(𝑥) − 2∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0

 
(10)  

 

subject to the nonhomogeneous boundary conditions 

 

𝑦(0) = 2,    𝑦(1) = 3 
 

where 𝑓(𝑥) =
1

3
(−𝑥7 + 𝑥6 − 4𝑥4 + 7𝑥3 + 18𝑥 + 6) +

6

Γ(3.5)
𝑥2.5 and 𝐾(𝑥, 𝑡) = 𝑡2(𝑥 − 1). The exact solution of 

Eq.10 is 𝑦(𝑥) = 𝑥2 + 2. In this problem, firstly, let us 

convert nonhomogeneous boundary conditions to 

homogeneous ones by following transformation 

 

𝑢(𝑥) = 𝑦(𝑥) − 𝑥 − 2 
 

Obtained numerical results are presented in the table 1 

after applying the sinc-collocation method. Also, 
 

 
Figure 1 The graphics of the exact and approximate solutions for 
Example 1  

 

the graphics of the exact and approximate solutions for 

different values of  𝐿 and 𝑀 are given in Figure 1. 
 

Table 1 Numerical results for Example 1  

𝒙 𝐄𝐱𝐚𝐜𝐭 𝐬𝐨𝐥. 𝐄𝟐𝟎,𝟐𝟎 𝐄𝟏𝟎,𝟏𝟎 𝐄𝟓,𝟓 

𝟎 2 0 0 0 

𝟎. 𝟏 2.001 1.02 × 10−5 2.89 × 10−4 6.16 × 10−3 

𝟎. 𝟐 2.008 8.13 × 10−6 4.35 × 10−4 2.88 × 10−3 

𝟎. 𝟑 2.027 1.57 × 10−5 1.43 × 10−4 2.36 × 10−3 

𝟎. 𝟒 2.064 8.38 × 10−6 4.54 × 10−4 2.59 × 10−3 

𝟎. 𝟓 2.125 4.39 × 10−6 1.40 × 10−4 3.38 × 10−4 

𝟎. 𝟔 2.216 8.39 × 10−7 1.80 × 10−4 3.28 × 10−3 

𝟎. 𝟕 2.343 2.18 × 10−5 3.96 × 10−5 4.24 × 10−3 

𝟎. 𝟖 2.512 2.21 × 10−5 2.65 × 10−4 3.40 × 10−3 

𝟎. 𝟗 2.729 1.62 × 10−5 1.60 × 10−4 2.14 × 10−3 

𝟏 3 0 0 0 

 

Example 2. Now, let us consider following singular 

Volterra integro-differential equation of fractional order 

𝑦′′(𝑥) +
1

𝑥
𝐷𝑥
0.3𝑦(𝑥) +

1

𝑥 − 1
𝑦(𝑥)

= 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0

 

 

subject to the boundary conditions 

 

𝑦(0) = 0,   𝑦(1) = 0  

 

where 𝑓(𝑥) = 𝑥11 −
1

30
𝑥6 +

1

20
𝑥5 + 𝑥3 +

24

Γ(4.7)
𝑥2.7 +

12𝑥2 −
6

Γ(3.7)
𝑥1.7 − 6𝑥 and 𝐾(𝑥, 𝑡) = 𝑥 − 𝑡. The exact 

solution of this problem is 𝑦(𝑥) = 𝑥3(𝑥 − 1). For this 

problem, numerical solutions are presented in Table 2 

and Table 3, and plotting of the numerical solutions are 

given in Figure 2. 

 
Table 2 Numerical results for Example 2 

𝒙 𝐄𝐱𝐚𝐜𝐭 𝐬𝐨𝐥. 𝐄𝟐𝟎,𝟐𝟎 𝐄𝟏𝟎,𝟏𝟎 𝐄𝟓,𝟓 

𝟎 2 0 0 0 

𝟎. 𝟏 −0.0009 5.82 × 10−7 1.41 × 10−4 5.46 × 10−4 

𝟎. 𝟐 −0.0064 5.28 × 10−6 1.01 × 10−4 1.56 × 10−3 

𝟎. 𝟑 −0.0189 2.71 × 10−6 8.35 × 10−5 2.23 × 10−3 

𝟎. 𝟒 −0.0384 5.40 × 10−6 1.06 × 10−4 8.78 × 10−4 

𝟎. 𝟓 −0.0625 6.95 × 10−6 2.70 × 10−4 2.39 × 10−3 

𝟎. 𝟔 −0.0864 1.61 × 10−6 6.05 × 10−4 5.46 × 10−3 

𝟎. 𝟕 −0.1029 1.02 × 10−5 2.39 × 10−4 5.21 × 10−3 

𝟎. 𝟖 −0.1024 2.84 × 10−6 4.35 × 10−4 1.83 × 10−6 

𝟎. 𝟗 −0.0729 6.72 × 10−6 3.88 × 10−4 3.73 × 10−3 

𝟏 0 0 0 0 

 
Table 3 Maximum absolute errors and rate of convergence for Example 

2  

𝑴,𝑳 
Maximum absolute 

errors 𝐄𝑴,𝑳 

Rate of convergence 

𝐑𝑴,𝑳 

5 5.46 × 10−2  

10 6.05 × 10−4 3.17 

20 1.61 × 10−5 5.23 

40 1.24 × 10−7 7.02 

 

Example 3. Finally, consider the problem 

 

𝑦′′(𝑥) + 𝑥2𝐷𝑥
0.7𝑦(𝑥) + 𝑥𝑦(𝑥)

= 𝑓(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0

 

 

subject to the boundary conditions 

 

𝑦(0) = 0,   𝑦(1) = 0  
 

where 𝑓(𝑥) =
1

7
𝑥7 −

2

5
𝑥6 +

24

Γ(4.3)
𝑥5.3 −

6

5
𝑥5 +

2

3
𝑥4 −

2

Γ(2.3)
𝑥3.3 + 𝑥3 − 12𝑥2 + 2 and 𝐾(𝑥, 𝑡) = 2𝑥 − 𝑡2.The 

exact solution of this problem 𝑦(𝑥) = 𝑥2(1 − 𝑥2). The 
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numerical solutions and graphs of the solutions are 

presented in Table 4 and Figure 3. 

 

 
Figure 2 The graphics of the exact and approximate solutions for 

Example 2  

 

 
Figure 3 The graphics of the exact and approximate solutions for 

Example 3  

 
Table 4 Numerical results for Example 3 

𝒙 Exact sol. 𝑬𝟐𝟎,𝟐𝟎 𝑬𝟏𝟎,𝟏𝟎 𝑬𝟓,𝟓 

𝟎 0 0 0 0 

𝟎. 𝟏 0.0099 1.26 × 10−7  9.85 × 10−5 2.83 × 10−3 

𝟎. 𝟐 0.0384 1.38 × 10−6  3.69 × 10−4 1.02 × 10−3 

𝟎. 𝟑 0.0819 5.58 × 10−6  3.12 × 10−4 5.81 × 10−3 

𝟎. 𝟒 0.1344 1.63 × 10−5  5.58 × 10−4 4.36 × 10−3 

𝟎. 𝟓 0.1875 2.17 × 10−5  2.41 × 10−4 2.10 × 10−3 

𝟎. 𝟔 0.2304 7.28 × 10−5  1.07 × 10−3 8.70 × 10−3 

𝟎. 𝟕 0.2499 7.51 × 10−5  7.36 × 10−4 9.82 × 10−3 

𝟎. 𝟖 0.2304 1.36 × 10−4  1.65 × 10−4 3.05 × 10−3 

𝟎. 𝟗 0.1539 1.28 × 10−4  9.20 × 10−4 2.65 × 10−3 

𝟏 0 0 0 0 

 
 

5. CONCLUSION (SONUÇLAR) 

 

In recent years several numerical methods have been 

applied to integro-differential equations of fractional 

order. In this study, we have applied sinc-collocation 

method to a class of Volterra integro-differential 

equation of fractional order to obtain the approximate 

solutions. In order to illustrate the accuracy of the present 

method, we have compared the obtained results with the 

exact ones. With respect to comparisons it has seen that 

sinc-collocation method provides a good approximate 

solution. Additionally, according to comparison results 

one may say that proposed method promises for solving 

many other types of integro differential equations. 
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