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ABSTRACT

In this study, sinc-collocation method is introduced for solving Volterra integro-differential equations of fractional
order. Fractional derivative is described in the Caputo sense often used in fractional calculus. Obtained results are
given to literature as two new theorems. Some numerical examples are presented to demonstrate the theoretical results.
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Kesirli mertebeden integro-diferansiyel denklemlerin ¢oziimii icin sayisal bir
yontem
0/
Bu calismada, sinc siralama yontemi kesirli mertebeden Volterra integro-diferansiyel denklemleri yaklagik olarak
¢ozmek i¢in gelistirilmistir. Kesirli tiirev, kesirli analizde sik¢a kullanilan Caputo anlaminda tanimlanmustir. Elde

edilen sonuglar iki yeni teorem ile verilmistir. Bazi sayisal 6rnekleri teorik sonuglart géstermek i¢in sunulmustur.

Anahtar kelimeler: Integro-diferansiyel denklem, sinc-siralama yontemi, Caputo kesirli tiirevi.
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1. INTRODUCTION

Many problems, in science and engineering such as
earthquake engineering, biomedical engineering, fluid
mechanics can be modeled by fractional integro-
differential equations [34, 35, 36]. In order to better
analyze these systems, it is required to obtain the solution
of these equations. But, achieving the analytical solution
of these equations can not be possible. Therefore, finding
more accurate solutions using numerical schemes can be
helpful. Some numerical algorithm for solving integro-
differential equation of fractional order can be
summarized as follows, but not limited to; Adomian
decomposition method [1, 2, 23], Taylor expansion
method [3], differential transform method [4, 5] and
homotopy perturbation method [6, 7], Spectral
collocation method [14], Legendre wavelets method
[13], Chebyshev wavelets method [15, 29], piecewise
collocation methods[20, 21], Chebyshev pseudo-spectral
method [24, 28], homotopy analysis method [25, 26],
variational iteration method [27].

According to best knowledge of the authors, there is no
study dealing with the solution of fractional linear
Volterra integro-differential equation by means of sinc-
collocation method. The main advantage of the sinc-
collocation method than other methods is that sinc-
collocation method provides a much better rate of
convergence and more e cient results in the presence of
singularity [37]. For more details about the sinc-
collocation method see [8, 9, 10, 12].

Particulary, in the present paper, as an original
contribution to literature, sinc-collocation method is
introduced for solving linear Volterra integro-differential
equations of fractional order. Examined integro-
differential equations in the present paper have
singularities at some points. Obtained results are given in
the form of two new theorems. Some numerical examples
in the form of graphics and tables are given to illustrate
the theoretical results.

In this study, Volterra integro-differential equations of
fractional order are considered as follows:

U2 ()Y + 1y (X)y" + 1o (X)DFy + o (x)y

x 1)
=f(x)+/’1f K(x,t)y®dt ,0<a<1

in which DY is the Caputo sense fractional derivative.
Eq.1 is subject to following nonhomogeneous boundary
conditions

y(@) =y, y(b)=vy, a<x<b.

The structure of this paper is organized as follows; In
section 2, some preliminaries and basic definitions
related to fractional calculus and sinc functions are
recalled. In the next section, sinc-collocation method is
constructed for solving integro-differential equations of
fractional order. In section 4, numerical examples are
presented. Finally, conclusions and remarks are given in
the section 5.

2. PRELIMINARIES AND NOTATIONS

In this section, some preliminaries and notations related
to fractional calculus and sinc basis functions are given.
For more details see [16, 17, 18, 19, 30, 31, 32, 33].

Definition 1. Let f:[a,b] - R be a function, «
a positive real number, n the integer satisfying
n—1<a <n,and I the Euler gamma function. Then,
the left Caputo fractional derivative of order of f(x) is
given as follows:

f ‘w2

1
DifC) =t

Definition 2. The Sinc function is defined on the whole
real line —oco < x < oo hy

sin(mx)
sinc(x) = [ —  X*0
1 x=0.

Definition 3. For h>0 and k =0,+1,12,.. the
translated sinc function with space node are given by:

. x—kh
‘— kh sin(m T)

S(k,h)(x)zsinc( - ): e
h

1 x = kh.

x # kh

To construct approximation on the interval (a,b) the
conformal map

¢(z) =1n (;:Z)

is employed. The basis functions on the interval (a, b)
are derived from the composite translated sinc functions

b(2) — kh>

S (2) =S(k,h)(2) 0 p(2) = sinc( W

The inverse map of w = ¢(z) is

a+ be®

2=0T ) =
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The sinc grid points z, € (a, b) will be denoted by x;
because they are real. For the evenly spaced nodes
{kh}r-_., on the real line, the image which corresponds
to these nodes is denoted by

a + bekh

Xk ¢ l(kh) W, k= O,il,iZ,

3. THE SINC-COLLOCATION METHOD

Let us assume an approximate solution for y(x) in Eq.(1)
by finite expansion of sinc basis functions for as follows;

N

Z Sk (X)),
k=—M

yn(x) = n=M+N+1 (3)

where S, (x) is the function S(k,h) o ¢(x). Here, the
unknown coefficients ¢, in (3) are determined by sinc-
collocation method via the following theorems.

Theorem 1. The first and second derivatives of y,, (x) are
given by

N

;—xynm:k:z 0 /() 75540 @

» "

@yn(xhk:z i (qb"(xz) 13 5@ .
+ (@) ¢zsk<x>>

respectively.

Theorem 2. If ¢ is a conformal map for the interval
[a, x], then « order derivative of y,,(x) for0 < a < 1is
given by

N

DE(@) = ) 6 DES)) ©)

K=—M

where

hL - (x - xr)SI,c(xr)
M- 4 £

DY (Sk(x)) =

Proof. If we use the definition of Caputo fractional
derivative given in (2), it is written that

N

DE(R@) = ) 6 DE(S )

k=—M

where

1 X
D (Sk(x)) = mf (x — )78, (t)dt.

Now we use quadrature rule given by (2.13) in [11] to
compute the above integral which is divergent on the
interval [a, x]. For this purpose, a conformal map and its
inverse image that denotes the sinc grid points are given

by
©=1n(>=")
§0=In{o—
and

_ a+ xe™
X = 1(ThL)=m

where h;, = m/+/L. Then, according to equality (2.13) in
[11], we can write

h, N (—x)S00)

D) ~ gy 2, 8

This completes the proof.

Lemma 1. The following relation holds

fa K(x,0)y(t)dt = h Z 85" Kdgxéétl)‘)yk ()
where

. :jf‘ksimrtdt

L mt

6( V=40

T2
and y, denotes an approximate value of y(t;).
Proof. See [12]
Replacing each term of (1) with the approximation given

in (3)-(7), multiplying the resulting equation by {(1/
¢)?}, we obtain the following system
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=0
1 K&, &)

2

[ Zgi( dd)LSk +g3(x)D“(Sk(x))
b

l +g4(x)6]-k

e e,

@' (ty)

(f(x) (7% ))2)

where

2

9o(x) = po(x) (ﬁ)

1) (57 p (x)) el 7 (x))

g2(x) = pp (x)

!

g1(x) =

2

(%) = pa(x ( )
g3 a( ) ¢( )
2
X) = —Ah( ) .
ga(x) e
We know from [12] that
5](]8) 5}53)’ 5](,:) 6,3), 6](]3) 61&3)

then setting x = x;, we obtain the following theorem.

Theorem 3. If the assumed approximate solution of
boundary value problem (1) is (3), then the discrete sinc-
collocation system for the determination of the unknown
coefficients {c, }y—_,, is given by

zglhl]) 5(1) +g5(%)Dg (Sk(xj)) ]

6( 1)K(x]'tk)
o' (tx)

(f( )<¢ (x])>2> Jj=-M,..N

We now introduce some notations to rewrite in the matrix
form for system (8). Let D(y) denotes a diagonal matrix
whose diagonal elements are y(x_p), Y(X_p41)>---»
y(xy) and non-diagonal elements are zero, let

( +94(%)3; )| ®

= DZF(S,(x)))
and

K(x;, t)
B ! 2 !
(¢'(x)) o't
denote a matrix and also let I denote the matrices

10 =[5] i=-1012

where D, G, E, 19,1, 1M and I are square matrices
of order nxn. In order to calculate unknown
coefficients ¢, in linear system (8), we rewrite this
system by using the above notations in matrix form as

Ac = B )
where
2

i=0

(1D + D(g3)G + D(g,)(E o 1V)

w|,.;

B =
(reaw G2=) ) (Feaw ) )

(f (xn) (¢ <xN))2)

ICN)T

T

cC= (C_M, C—M+1’ .

The notation "o" denotes the Hadamard matrix
multiplication. Now we have linear system of n
equations in the n unknown coefficients given by (9). We
can nd the unknown coefficients ¢, by solving this
system.

4. COMPUTATIONAL EXAMPLES

In this section, some numerical examples whose exact
solutions are known are presented to show the accuracy
of the introduced method by MATHEMATICA 10. In
allexamples,d = /2, a = B =1/2, N = M are taken
into account Ey ; shows the error between the exact
solution and numerical solution by sinc-collocation
method. Also, Ry, in example 2 indicates the
experimental rate of convergence that calculates the
following formula like [22]

_ log[EM/Z,L/Z/EM,L]
ML log 2

Example 1. Consider linear fractional Volterra integro-
differential equation in the following form
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y"'(x) + Dy (x) + y(x) i
=ﬂ@—2fx@m»@Mt

subject to the nonhomogeneous boundary conditions

(10)

y0)=2, y1)=3

where f(x) = %(—x7 +x6 —4x*+7x3+18x + 6) +
G5 x>% and K(x, t) = t?(x — 1). The exact solution of

Eq.10 is y(x) = x2 + 2. In this problem, firstly, let us
convert nonhomogeneous boundary conditions to
homogeneous ones by following transformation

ux) =yx)—x—-2

Obtained numerical results are presented in the table 1
after applying the sinc-collocation method. Also,

() + DIy () + < y()
Y + - Dety(x x—lix

=ﬂ@+fK@ﬂﬂmﬁ

subject to the boundary conditions
y(0)=0, y(1)=0

1 1 24
where f(x) = x1* — gxé +5x5 +x3 + ——x%7 +

r(4.7)
12x2 — o 7)x1'7 —6x and K(x,t) = x —t. The exact

solution of this problem is y(x) = x3(x — 1). For this
problem, numerical solutions are presented in Table 2
and Table 3, and plotting of the numerical solutions are
given in Figure 2.

Table 2 Numerical results for Example 2

x  Exactso E20220 E10,10 Ess

30F 0 2 0 0 0
F | — Exact / 0.1 -0.0009 582x1077 141x10™* 546x107*
28 / 0.2 —0.0064 5.28x107° 1.01x 107* 1.56 x 1073
=== L=M=5 0.3 —0.0189 2.71x10°° 8.35x 1075 2.23x1073
26 — 0.4 -0.0384 5.40x107° 1.06 x 107* 8.78 x 107*
i L=M=10 0.5 —0.0625 6.95x107° 270x 10™*  2.39x 1073
24+ 0.6 —0.0864 1.61x107° 6.05x 107* 5.46 x 1073
i == L=M=20 0.7 -0.1029 1.02x107° 239%x10™*  521x1073
22+ 0.8 —0.1024 284x10° 4.35x107* 1.83x107°
- 0.9 -0.0729 6.72x10°° 3.88 x 107* 3.73x 1073

20 mmmmmsitaree—"" 1 0 0 0 0

0.0 02 0.4 0.6 08 1.0

Figure 1 The graphics of the exact and approximate solutions for

Example 1

the graphics of the exact and approximate solutions for

different values of L and M are given in Figure 1.

Table 1 Numerical results for Example 1

Table 3 Maximum absolute errors and rate of convergence for Example
2

Maximum absolute Rate of convergence

ML errors Ey ;. Ry
5 5.46 x 1072
10 6.05 x 107* 3.17
20 1.61 x 1075 5.23
40 1.24 x 1077 7.02

x Exacts Ez0,20 E10,10 Ess

0 2 0 0 0
0.1 2001 1.02x107° 289x10™* 6.16x1073
0.2 2008 813x107® 435x10™* 2.88x1073
0.3 2027 157x1075 1.43x10™* 236x1073
0.4 2064 838x107°® 454x10"* 259x1073
0.5 2125 439x107® 140x10"* 3.38x107*
0.6 2216 839x1077 1.80x10™* 3.28x1073
0.7 2343 218x107° 396x107° 4.24x1073
0.8 2512 221x107° 265x10™* 3.40x1073
0.9 2729 162x107° 1.60x10"* 214x1073

1 3 0 0 0

Example 2. Now, let us consider following singular
Volterra integro-differential equation of fractional order

Example 3. Finally, consider the problem

Y () + ¥DE7Y() + 1y ()
=ﬂ@—fK@0ﬂmﬂ

subject to the boundary conditions

y(0)=0, y(1) =0

1 2 24 6 2
Wheref(x)=;x7—gx6+ x5'3——x5+§x4—

r(4.3) 5
o 3)x3'3 +x3—12x%2+4+2 and K(x,t) = 2x — t2.The

exact solution of this problem y(x) = x2(1 — x2). The
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numerical solutions and graphs of the solutions are
presented in Table 4 and Figure 3.

-0.02 -

-0.04 |

-0.06 [

-0.08 |

-0.10

Figure 2 The graphics of the exact and approximate solutions for
Example 2

0.2 04 0.8 0.8 1.0
Figure 3 The graphics of the exact and approximate solutions for
Example 3

Table 4 Numerical results for Example 3

x Exact sol. E3020 E1010 Ess

0 0 0 0 0
0.1 0.0099 126 x 1077 9.85x 107> 2.83x 1073
0.2 0.0384 1.38x 107 3.69 x 10™* 1.02x 1073
0.3 0.0819 558x 107® 3.12x 10™* 581 x 1073
0.4 0.1344 1.63x 107> 558x 10™* 4.36x 1073
0.5 0.1875 217 x 1075 241x 10™* 2.10x 1073
0.6 0.2304 7.28x 107 1.07 x 10~ 870 x 1073
0.7 0.2499 751x 107  7.36x 107* 9.82 x 1073
0.8 0.2304 136 x 107*  1.65x 10™* 3.05x 1073
0.9 0.1539 1.28x 10™* 9.20x 10™* 2.65x 1073
1 0 0 0 0

5. CONCLUSION (SONUCLAR)

In recent years several numerical methods have been
applied to integro-differential equations of fractional
order. In this study, we have applied sinc-collocation
method to a class of Volterra integro-differential

equation of fractional order to obtain the approximate
solutions. In order to illustrate the accuracy of the present
method, we have compared the obtained results with the
exact ones. With respect to comparisons it has seen that
sinc-collocation method provides a good approximate
solution. Additionally, according to comparison results
one may say that proposed method promises for solving
many other types of integro differential equations.
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