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1. Introduction

Let A be a linear space over a field F (of characteristic chrF and cardinal number

crdF ) and (A, ) an algebra over this space.

For M ⊂ A , let linM be the subspace spanned on this set, and algM the

subalgebra generated by this set.

Element r ∈ A is isopotent if ∃ δ ∈ F : r2 = δr. Isopotents form three disjunct

classes:

• 0,

• isotrops: q ̸= q2 = 0,

• elements of the type λp where F ∋ λ ̸= 0 and p is an idempotent:

p = p2 ̸= 0.

Definition 1.1. F-algebra (A, ) is an isopotent algebra, if the following (obvi-

ously equivalent) conditions are fulfilled:

➢ every element is isopotent;

➢ ∀ a ∈ A : a2 ∈ lin{a};
➢ ∀ a ∈ A : alg{a} = lin{a};
➢ ∀ a ∈ A : dim alg{a} ≤ 1.

Every anticommutative algebra is an isopotent algebra. According to Definition

1.1, the following easily provable lemma tells us more about this.
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Lemma 1.2. F-algebra (A, ) is an isopotent algebra iff there exists such a func-

tional H : A → F that
∀ a ∈ A : a2 = H(a)a.

We may demand that H(0) = 0 and this functional is then unique and homoge-

neous:

∀ (λ, a) ∈ F ×A : H(λa) = λH(a).

We shall call the homogeneous functional H from Lemma 1.2 excess. Its value

H(a) is then the excess of element a.

If the excess is nonzero linear functional, we will say that the algebra is proper

isopotent algebra; if the excess is zero functional then the algebra is zeropotent

algebra (anticommutative algebra in case of chrF ̸= 2 ); and if the excess is non-

linear, we will say that the algebra is improper isopotent algebra.

a b

a α a β a+ γ b

b (α+ β + 1) a+ (α+ γ + 1) b α b

Table 1. Improper isopotent algebras;

F = Z2, (α, β, γ) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

a b

a 0 εa

b −εa 0

Table 2. Zeropotent algebras, ε ∈ {0, 1}.

a b

a a λ b

b (1− λ) b 0

Table 3

a b

a a a

b b− a 0

Table 4

Proper isopotent algebras, λ ∈ F.
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Example 1.3. All (three) algebras of dim A ≤ 1 are isopotent:

• {0} and (F{e}, e ̸= e2 = 0) are zeropotent,

• (F{e}, e = e2 ̸= 0) is proper isopotent.

Example 1.4. 2-dimensional isopotent algebras are isomorphic to exactly one

of the algebras defined in Tables 1-4. In Table 1 there are improper algebras (all

over the field Z2), since the excess H is obviously nonlinear: H(0) = 0, H(a) =

H(b) = α, H(a + b) = 1. In Table 2 there are two zeropotent algebras (in fact

Lie algebras) and so:H = 0. For algebras in Tables 3 and 4, which are all proper

isopotent algebras, we find ∀(δ, ε) ∈ F2 : H(δa+ εb) = δ.

Deriving all these facts is simple, although it requires quite a bit of work, and

we therefore omit it.

Proposition 1.5. Let (A, ) be an isopotent algebra with the excess H. The algebra

is power-associative and the following identities are valid for (a, b, c) ∈ A3:

(1) an = H(a)n−1a (n > 1),

(2) ab+ ba = [H(a+ b)−H(a)]a+ [H(a+ b)−H(b)]b

(3) [H(a+ b+ c)−H(a+ b)−H(c+ a) +H(a)]a+ [H(a+ b+ c)−H(b+ c)−
H(a+ b) +H(b)]b+ [H(a+ b+ c)−H(c+ a)−H(b+ c) +H(c)]c = 0

(4) [a, a, b] + [a, b, a] + [b, a, a] = [H(a) +H(b)−H(a+ b)](ab− ba)

Proof. Straightforward, since it follows entirely from Lemma 1.2. □

Proposition 1.6. Let (A, ) be an isopotent algebra with the excess H over a field

F ̸= Z2. Then H is a linear functional and the algebra is either a zeropotent or a

proper isopotent algebra.

Proof. Because of homogeneity of H we have to prove only the additivity

H(a+ b) = H(a) +H(b), which is obvious if a and b are colinear:

a = αc , b = βc .

From now on suppose that a, b are linearly independent. Firstly take chrF ̸= 2 .

We will use identity (2) in Proposition 1.5 for elements a, b and a,−b (respectively):

ab+ ba = [H(a+ b)−H(a)]a+ [H(a+ b)−H(b)]b

−ab− ba = [H(a− b)−H(a)]a− [H(a− b)−H(−b)]b

We add the equations:
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[H(a+ b) +H(a− b)− 2H(a)]a+ [H(a+ b)−H(a− b)− 2H(b)]b = 0

H(a+ b) +H(a− b)− 2H(a) = 0 = H(a+ b)−H(a− b)− 2H(b).

By adding the last two equations we have finished the proof if chrF ̸= 2.

The remaining possibility: chrF = 2, F ̸= Z2. Let λ /∈ {0, 1}; then 1 + λ ̸= 0.

Let us define: u = a + λ
1+λb , v = 1+λ

λ a + b , w = 1+λ
λ a + λ

1+λb . We insert these

elements into (3) of Proposition 1.5 instead of elements a, b, c:[
H(a+ b) + λ−2H(a) + 1+λ

λ H
(

1+λ
λ a+ λ

1+λb
)]
a+

+
[
H(a+ b) + (1 + λ)−2H(b) + λ

1+λ H
(

1+λ
λ a+ λ

1+λb
)]
b = 0 .

Both coefficients must be 0. The first equation thus obtained will be multiplied by

λ2 and the second by (1 + λ)2:

λ2H(a+ b) +H(a) + λ(1 + λ)H
(

1+λ
λ a+ λ

1+λb
)
= 0

(1 + λ2)H(a+ b) +H(b) + λ(1 + λ)H
(

1+λ
λ a+ λ

1+λb
)
= 0.

We only need to add these two equations and the proof is complete. □

Proposition 1.7. Let (A, ) be an isopotent algebra with the linear excess H.

The following identities are valid for (a, b, c) ∈ A3:

(1) ab+ ba = H(b)a+H(a) b,

(2) H(ab+ ba) = 2H(a)H(b),

(3) H(ab)−H(a)H(b) = H(b)H(a)−H(ba),

(4) H(ab− ba) = 2[H(ab)−H(a)H(b)],

(5) [a, a, b] + [a, b, a] + [b, a, a] = 0,

(6) [a, b, a] = [H(ab)−H(a)H(b)]a ,

(7) [a, b, c] + [c, b, a] = [H(cb)−H(c)H(b)]a + [H(ab)−H(a)H(b)]c.

Proof. Straightforward. □

2. General forms of multiplication tables

Firstly, we will find the general form of multiplication table for an improper

isopotent algebra. According to Proposition 1.6, the ground field is F = Z2. Two-

dimensional algebras are described in Table 1, hence we may assume that algebras

are at least three-dimensional.

There must exist elements a and b such that

a2 = H(a)a, b2 = H(b)b, (a+ b)2 = H(a+ b)(a+ b)
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and H(a+ b) ̸= H(a)+H(b), hence H(a+ b) = H(a)+H(b)+1. These elements

cannot be linearly dependent and may be a part of some basis (a, b, c1, c2, . . . ).

Introduce the following notations: H(a) = 1 + α, H(b) = 1 + β, ab = d, aci =

ei, bci = fi, H(ci) = 1+γi, cjck = gjk (j < k). Then, from (a+b)2 = H(a+b)(a+b)

we derive:
ba = βa+ αb+ d.

From the expansions of (a+ ci)
2 , (b+ ci)

2 and (a+ b+ ci)
2 we get:

H(a+ ci) = 1 + α+ γi = H(a) +H(ci) + 1,

H(b+ ci) = 1 + β + γi = H(b) +H(ci) + 1,

cia = γia+ αci + ei , cib = γib+ βci + fi.

Similarly, from (cj + ck)
2 and (a+ cj + ck)

2 it follows:

H(cj + ck) = 1 + γj + γk = H(γj) +H(γk) + 1,

ckcj = γkcj + γjck + gjk (j < k).

This already tells us that elements a and b are not something special and that we

may write a multiplication table as Table 5 for any algebra. Elements pjk and

scalars λi are still completely arbitrary.

Simple consequence:

(c, d) linearly independent pair ⇔ H(c+ d) = H(c) +H(d) + 1,

(c, d) linearly dependent pair ⇔ H(c+ d) = H(c) +H(d) .

. . . aj . . . ak . . .

...
. . .

...
. . .

...
. . .

aj . . . (1 + λj)aj . . . λjak + pjk . . .
...

. . .
...

. . .
...

. . .

ak . . . λkaj + pjk . . . (1 + λk)ak . . .
...

. . .
...

. . .
...

. . .

Table 5. General form of the multiplication table of an

improper isopotent algebra; F = Z2, elements pjk and scalars

λi are arbitrary.

Example 2.1. The general form of multiplication table of a 3-dimensional im-

proper isopotent algebra is described in Table 6; elements p, q, r and scalars κ, λ, µ

are completely arbitrary.

Such an algebra has only 8 elements and their excesses are
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a b c

a (1 + κ)a κb+ r κc+ q

b λa+ r (1 + λ)b λc+ p

c µa+ q µb+ p (1 + µ) c

Table 6. 3-dimensional improper isopotent algebra, F = Z2.

H(0) = 0 , H(a) = 1 + κ , H(b) = 1 + λ , H(c) = 1 + µ,

H(b+ c) = 1 + λ+ µ , H(c+ a) = 1 + µ+ κ , H(a+ b) = 1 + κ+ λ,

H(a+ b+ c) = 1 + κ+ λ+ µ.

If we review all 8 possible choices of parameters, κ, λ, µ, we quickly see that there

are only two non-isomorphic forms: Table 7 (κ = λ = µ = 0 ) and Table 8

(κ = λ = µ = 1.)

a b c

a a r q

b r b p

c q p c

Table 7

a b c

a 0 b+ r c+ q

b a+ r 0 c+ p

c a+ q b+ p 0

Table 8

Now, the proper isopotent algebras will be considered. SinceH is a nonzero linear

functional, we can find a basis (a, c1, c2, . . . ) such that H(a) = 1, H(cn) = 0. Since

we have already discussed 2-dimensional algebras in Example 1.4 (Tables 3,4), we

may suppose that all algebras are at least 3-dimensional.

It is easy to find the general multiplication table from the expansion of (a+ cn)
2

and (cj + ck)
2. The result is Table 9, where the elements qn and pjk are arbitrary.

Example 2.2. The general form of the multiplication table of 3-dimensional proper

isopotent algebra is described in Table 10; elements p, q, r are arbitrary.

3. Classification of 3-dimensional improper isopotent algebras

The first type of isopotent algebras is zeropotent algebras. Their classification

is made in [2] and there is nothing more to add here.
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a . . . cj . . . ck . . .

a a . . . qj . . . qk . . .
...

...
. . .

...
...

cj cj − qj . . . 0 . . . pjk . . .
...

...
...

. . .
...

ck ck − qk . . . −pjk . . . 0 . . .
...

...
...

...
. . .

Table 9. General proper isopotent algebra.

a b c

a a r q

b b− r 0 p

c c− q −p 0

Table 10. General 3-dimensional proper isopotent algebra.

The second type is improper isopotent algebras. Then F = Z2 as we know

from Proposition 1.6. From Example 2.1 we also know that these algebras are in

two non-isomorphic classes: Table 7 (commutative algebras) and Table 8 (strictly

non-commutative algebras).

Let us first work with the commutative case. We already know that ∀ d : d2 =

d .We will assume the labels from Table 7.

Firstly, we will prove that it is always possible to rearrange basis so that r = εc . If

we can find a linearly independent triple â, b̂, ĉ = âb̂ , then we adopt it as a new

basis. But suppose that any triple â, b̂, âb̂ is linearly dependent. Then r = γa+ δb ,

If γ = 0 , let the new basis be â = a + δb , b̂ = b , ĉ = c. And if δ = 0 ,

the new basis will be â = a , b̂ = γa + b , ĉ = c . The remaining possibility is

ab = a + b and similarly ac = a + c , bc = b + c ; then the new basis should be

â = a+ b , b̂ = a+ c , ĉ = a .

Suppose that the algebra has no divisors of zero. Then ab = c = r . After

checking all possible products, we find only two possibilities p = a+b+c , q = b+c

and p = a+ c , q = a+ b+ c, which appear to be isomorphic.

Further suppose that there exist divisors of zero, say ab = r = 0 . We shall

denote: q = ac = αa+ βb+ γc , p = bc = δa+ εb+ ζc . Suppose that α = 1 and
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let us change the basis in the following way:

If γ = 0 then: â = a, b̂ = b, ĉ = a+ c;

if γ = 1 ̸= ε then: â = b, b̂ = a, ĉ = ζb+ c;

if γ = ε = 1 ̸= ζ then: â = b, b̂ = a , ĉ = b+ c;

if γ = ε = ζ = 1 then: â = a+ b, b̂ = (1 + δ)a+ (1 + β)b+ c, ĉ = a.

In all these cases we find âĉ = q̂ = β̂b̂+ γ̂ĉ . Hence we may suppose that α = 0.

Now, it is best to use a computer. The number of different multiplication tables

(= the number of different triples r, q, p) is 29 = 512. We choose a certain triple and

express it in all possible 168 bases. Then we choose a new triple, that has not yet

appeared before, and repeat the process. We continue until we exhaust all possible

triples. In Table 11 there are all non-isomorphic types of algebra from Table 7.

r q p

1 c b+ c a+ b + c

2 0 0 0

3 0 0 b+ c

4 0 0 a

5 0 0 a+ b+ c

6 0 c b+ c

7 0 c a

8 0 c a+ b

9 0 b b+ c

10 0 b a+ b+ c

Table 11. Non-isomorphic algebras from Table 7.

Theorem 3.1. In every dimension from 0 to 3, there exists (up to isomorphism)

one isopotent algebra without zero divisors:

• {0},
• (F{e}, e = e2 ̸= 0),

• algebra from Table 1 with α = β = γ = 1,

• algebra from Table 7 with r = c, q = b+ c, p = a+ b+ c.

The best way to classify non-commutative algebras with Table 8 as a multiplica-

tion table is again by using a computer. Namely, if we insist that the multiplication

table must have zeros on its diagonal, only a, b, c, a+ b+ c can be elements of any

(24) basis. The results are in Table 12.
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Theorem 3.2. There exist 46 non-isomorphic 3-dimensional improper isopotent

algebras, all over the field Z2 . Their multiplication tables are Tables 7 and 11

(commutative case) and Tables 8 and 12 (strictly non-commutative case).

4. Classification of 3-dimensional proper isopotent algebras

A multiplication table of such an algebra is isomorphic to an algebra defined by

Table 10. We shall use the following notations:

r = ab = π0a+ π1b+ π2c,

r q p

11 0 0 0

12 0 0 c

13 0 0 b+ c

14 0 0 a

15 0 0 a+ c

16 0 0 a+ b+ c

17 0 c c

18 0 c b+ c

19 0 c a

20 0 c a+ c

21 0 c a+ b

22 0 c a+ b+ c

23 0 b b+ c

24 0 b a

25 0 b a+ b

26 0 b a+ b+ c

27 0 a+ c b+ c

28 0 a+ c a+ b+ c

29 c c c

30 c c b

31 c c a+ c

32 c c a+ b

33 c b a

34 c b a+ c

35 c b a+ b+ c
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36 c b+ c a+ c

37 c b+ c a+ b

38 c b+ c a+ b+ c

39 c a b

40 c a a+ b

41 c a+ b a+ b

42 b c b+ c

43 b b+ c b+ c

44 b a c

45 b a+ c b

46 b a+ c b+ c

Table 12. Non-isomorphic algebras from Table 8.

q = ac = ϱ0a+ ϱ1b+ ϱ2c,

p = bc = σ0a+ σ1b+ σ2c.

At the beginning we will change the basis in the following way:

σ0 ̸= 0 ⇒ â = a+ σ1σ
−1
0 b+ σ2σ

−1
0 c , b̂ = b , ĉ = σ−1

0 c;

σ0 = 0 ̸= σ1 ⇒ â = a , b̂ = σ1b+ σ2c , ĉ = σ−1
1 c;

σ0 = σ1 = 0 ̸= σ2 ⇒ â = a , b̂ = σ2c , ĉ = −σ−1
2 b.

The overall result of all these transformations is

(σ̂0, σ̂1, σ̂2) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0)}.

We will continue insisting that the triple (σ0, σ1, σ2) must have only these three

values. Additionally, we will make a small change in labelling:

σ0 = σ , σ1 = τ .

Hence, we will begin the classification with the multiplication table in Table 13.

a b c

a a π0a+ π1b+ π2c ϱ0a+ ϱ1b+ ϱ2c

b b− π0a− π1b− π2c 0 σa+ τb

c c− ϱ0a− ϱ1b− ϱ2c −σa− τb 0

Table 13. Basic multiplication table of proper isopotent

algebras; (σ, τ) ∈ {(0, 0), (1, 0), (0, 1)} .

A simple calculation: (αa+ βb+ γc)2 = α(αa+ βb+ γc) shows that

H(αa+ βb+ γc) = α .
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If U is an isomorphism of two such algebras with excesses G and H, then for any

element f from the first algebra we find:

H(U(f))U(f) = U(f)2 = U(f2) = U(G(f)f) = G(f)U(f),

H(U(f)) = G(f).

From this we conclude that any change of basis must be of the following kind:

â = a+ ub+ vc , b̂ = wb+ xc , ĉ = yb+ zc ; wz − xy ̸= 0,

where u, v, w, x, y, z are scalar coefficients. The transformations of structure con-

stants are collected in System 1.

As we can see, two algebras with different pairs (σ, τ) are non-isomorphic. We

will consider each of these three types separately.

â = a+ ub+ vc , b̂ = wb+ xc , ĉ = yb+ zc

D = wz − xy ̸= 0 = uσ = vσ = xτ , Dσ = σ , zτ = τ

π̂0 = wπ0 + xϱ0

π̂1 = D−1[(vy − uz)wπ0 + wzπ1 − wyπ2 + (vy − uz)xϱ0 + xzϱ1 − xyϱ2]− vτ

π̂2 = D−1[(ux− vw)wπ0 − wxπ1 + w2π2 + (ux− vw)xϱ0 − x2ϱ1 + wxϱ2]

ϱ̂0 = yπ0 + zϱ0

ϱ̂1 = D−1[(vy− uz)yπ0 + yzπ1 − y2π2 + (vy− uz)zϱ0 + z2ϱ1 − yzϱ2 − (vy− uz)τ]

ϱ̂2 = D−1[(ux− vw)yπ0 − xyπ1 + wyπ2 + (ux− vw)zϱ0 − xzϱ1 + wzϱ2]

σ̂ = σ , τ̂ = τ

System 1: Transformations of Table 13.

Type (σ, τ) = (0 , 0)

Suppose that π0 ̸= 0. Then we will use the transformation u = v = 0, w =

−ϱ0π−1
0 , x = 1, y = 1− ϱ0, z = π0 and get π̂0 = 0. Hence we may consider π0 = 0

as an invariant. System 1 is then simplified into System 2. From this system we

immediately find out that the (non)nullity of ϱ0 is invariant.

First suppose that ϱ0 ̸= 0. Then the transformation

u = ϱ1ϱ
−1
0 , v = ϱ2ϱ

−1
0 , w = 1 , x = y = 0 , z = ϱ−1

0

provides ϱ̂0 = 1 and ϱ̂1 = ϱ̂2 = 0.
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Further work is trivial. Results are algebras A1 and A2 in the final Table 14 .

â = a+ ub+ vc , b̂ = wb+ xc , ĉ = yb+ zc

D = wz − xy ̸= 0 = xϱ0

π̂1 = D−1[wzπ1 − wyπ2 + xzϱ1 − xyϱ2]

π̂2 = D−1[−wxπ1 + w2π2 − x2ϱ1 + wxϱ2]

ϱ̂0 = zϱ0

ϱ̂1 = D−1[yzπ1 − y2π2 + (vy − uz)zϱ0 + z2ϱ1 − yzϱ2]

ϱ̂2 = D−1[−xyπ1 + wyπ2 − vwzϱ0 − xzϱ1 + wzϱ2]

System 2.

The second possibility is ϱ0 = 0. Parameters u and v no longer play any role

and we may set u = v = 0.

In this case it holds:

[π̂1 π̂2 ϱ̂1 ϱ̂2]
T = A [π1 π2 ϱ1 ϱ2]

T , det A = 1.

Suppose that

∀(r, s) ∈ F2 : rsπ1 − r2π2 + s2ϱ1 − rsϱ2 = 0.

This property is invariant:

rsπ̂1 − r2π̂2 + s2ϱ̂1 − rsϱ̂2 =

= D−1[(rw+sy)(rx+sz)π1−(rw+sy)2π2+(rx+sz)2ϱ1−(rw+sy)(rx+sz)ϱ2] = 0

Consequences are obvious:

π2 = π̂2 = ϱ1 = ϱ̂1 = ϱ2 − π1 = ϱ̂2 − π̂1 = 0,

and the result is the algebra A3 in the final Table 14.

Now suppose the opposite, namely that there exist y, z such that

D := yzπ1 − y2π2 + z2ϱ1 − yzϱ2 ̸= 0.

This expression is the main determinant of the linear system

wz − xy = D, wzπ1 − wyπ2 + xzϱ1 − xyϱ2 = 0

with unknowns w, x and solution

w = zϱ1 − yϱ2 , x = yπ2 − zπ1.

The transformation with the above parameters w, x, y, z,D gives us π̂1 = 0 and

ϱ̂1 = 1, which we take again as invariants. This creates two conditions in System

2:
wz − xy = z2 − yzϱ2 − y2π2

wyπ2 + x(yϱ2 − z) = 0

This is a linear system with unknowns w, x with solution
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w = z − yϱ2, x = yπ2.

Then π̂2 = π2 and ϱ̂2 = ϱ2. So, we have found the two-parametric family of alge-

bras A4 in the final Table 14.

Type (σ, τ) = (1 , 0)

System 1 is simplified into System 3. Suppose that π0 ̸= 0. Then the transforma-

tion

w = ϱ0 , x = −π0 , y = π−1
0 , z = 0

results in π̂0 = 0. Therefore, π0 = 0 may be taken as invariant. Then the

(non)nullity of ϱ0 is invariant.

â = a , b̂ = wb+ xc , ĉ = yb+ zc ; wz − xy = 1

π̂0 = wπ0 + xϱ0

π̂1 = wzπ1 − wyπ2 + xzϱ1 − xyϱ2

π̂2 = −wxπ1 + w2π2 − x2ϱ1 + wxϱ2

ϱ̂0 = yπ0 + zϱ0

ϱ̂1 = yzπ1 − y2π2 + z2ϱ1 − yzϱ2

ϱ̂2 = −xyπ1 + wyπ2 − xzϱ1 + wzϱ2

System 3 .

If ϱ0 ̸= 0 , there must be x = 0 , and we achieve ϱ̂0 = 1 with the choice

z = ϱ−1
0 . Then y remains the only variable parameter of the transformations. The

discussion ends here in three ways:

• π2 ̸= 0 ⇒ with the choice y = π1π
−1
2 we get π̂1 = 0 (algebras A5 in

Table 14).

• π2 = 0 ∧ π1 ̸= ϱ2 ⇒ by selecting y = ϱ1(ϱ2 − π1)
−1 we get ϱ̂1 = 0

(algebras A6 in Table 14).

• π2 = 0 ∧ π1 = ϱ2 (algebras A7 in Table 14).

The case ϱ0 = 0 remains.

First, we´ll assume that the remaining four structural constants are such that

∀(r, s) ∈ F2 : rsπ1 − r2π2 + s2ϱ1 − rsϱ2 = 0.

We claim that this is an invariant property:

rsπ̂1 − r2π̂2 + s2ϱ̂1 − rsϱ̂2
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= (rw + sy)(rx+ sz)π1 − (rw + sy)2π2 + (rx+ sz)2ϱ1

−(rw + sy)(rx+ sz)ϱ2 = 0

The consequences of this property are obvious.

π2 = π̂2 = ϱ1 = ϱ̂1 = ϱ2 − π1 = ϱ̂2 − π̂1 = 0 .

The result is a new family of non-isomorphic algebras (algebras A8 in Table 14).

Now, suppose that there exist such y, z that

yzπ1 − y2π2 + z2ϱ1 − yzϱ2 ̸= 0 .

This expression is the main determinant of the following linear system:

wz − xy = 1 , wzπ1 − wyπ2 + xzϱ1 − xyϱ2 = 0

with unknowns w, x. It means that there exists a transformation with the result

π̂1 = 0 ̸= ϱ̂1. If we take these two relations for invariants then System 3 is signifi-

cantly reduced. It includes equations:

wz − xy = 1 , −wyπ2 + xzϱ1 − xyϱ2 = 0

with the solution

w = (zϱ1 − yϱ2)(−y2π2 + z2ϱ1 − yzϱ2)
−1 ,

x = yπ2(−y2π2 + z2ϱ1 − yzϱ2)
−1 ,

where y, z are such that −y2π2 + z2ϱ1 − yzϱ2 ̸= 0 . Then

π̂2 = π2ϱ1(−y2π2 + z2ϱ1 − yzϱ2)
−1 ,

ϱ̂1 = −y2π2 + z2ϱ1 − yzϱ2 , ϱ̂2 = ϱ2 .

This is the family of algebras A9 in Table 14.

Type (σ, τ) = (0 , 1)

System 1 simplifies into System 4.

â = a+ ub+ vc, b̂ = wb, ĉ = yb+ c, w ̸= 0

π̂0 = wπ0

π̂1 = (vy − u)π0 + π1 − yπ2 − v

π̂2 = w(−vπ0 + π2)

ϱ̂0 = yπ0 + ϱ0

ϱ̂1 = w−1[(vy − u)yπ0 + yπ1 − y2π2 + (vy − u)ϱ0 + ϱ1 − yϱ2 + u− vy]

ϱ̂2 = −vyπ0 + yπ2 − vϱ0 + ϱ2

System 4 .
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With the selection u = y = 0, v = π1, w = 1 we reach π̂1 = 0, which will be

invariant.

We notice that (non)nullity of π0 is an invariant. If π0 ̸= 0 , we choose u =

−π−2
0 π2 , v = π−1

0 π2 , w = π−1
0 , y = −π−1

0 ϱ0 in order to get π̂0 = 1 and π̂2 =

ϱ̂0 = 0. The result is the family of algebras A10 in Table 14.

Finally, let π0 = 0 . There are several possibilities, which we routinely consider

one after the other.

• If π2 = 0 and we can reach ϱ̂1 = 0 with some suitable transformation,

we get the family of algebras A11 in Table 14.

• If π2 = 0 and it is impossible to reachϱ̂1 = 0, we get the algebra A12 in

Table 14.

• If π2 ̸= 0 and ϱ0 ̸= ±1 then the transformation

w = π−1
2 , y = −π−1

2 ϱ2(ϱ0 + 1)−1,

u = [ϱ1 + π−1
2 ϱ22(ϱ0 + 1)−2](ϱ0 − 1)−1

provides the family of algebras A13 in Table 14.

• We use a similar procedure for the case π2 ̸= 0, ϱ0 = 1, chr F ̸= 2 (algebras

A14),

• for the case π2 ̸= 0 , ϱ0 = −1, chr F ̸= 2 (algebras A15),

• and for the case π2 ̸= 0 , ϱ0 = 1, chr F = 2 (algebras A16).

Theorem 4.1. All 3-dimensional proper isopotent algebras have a multiplication

table in the form of Table 13. The classification provides the following values of

structural constants as described in Table 14.

The classification is not complete for families A9 and A16 because in these two

cases the structure depends on individual properties of the ground field. Let us

consider these two families in the case of a finite field and the fields of complex and

real numbers.

The (non)nullities of κ and µ in A9(κ, λ, µ) are invariants, therefore we discuss

separately these possibilities: κ = 0 = µ, κ = 0 ̸= µ , and κ ̸= 0. For a finite

field with characteristic 2 and for the field of complex numbers the results in Table

15 are rather obvious. For the field of real numbers it is easy to show that

λ > 0 ∧ 4κλ ≤ −µ2 ⇒ A9(κ, λ, µ) ∼= A9

(
−1, 1 + 1

4µ
2, µ

)
,

and every other A9(κ, λ, µ) is isomorphic to A9(1, κλ, µ) .

The case A9(κ, λ, µ) , even for a finite ground field of characteristic ̸= 2, is still

not transparent and depends on field properties.
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π0 π1 π2 ϱ0 ϱ1 ϱ2 σ τ

A1 0 0 1 1 0 0 0 0

A2(λ) 0 λ 0 1 0 0 0 0

A3(λ) 0 λ 0 0 0 λ 0 0

A4(λ, µ) 0 0 λ 0 1 µ 0 0

A5(κ, λ, µ) 0 0 κ 1 λ µ 1 0 κ ̸= 0

A6(λ, µ) 0 λ 0 1 0 µ 1 0 λ ̸= µ

A7(λ, µ) 0 λ 0 1 µ λ 1 0

A8(λ) 0 λ 0 0 0 λ 1 0

A9(κ, λ, µ) 0 0 κ 0 λ µ 1 0 λ ̸= 0

A10(λ, µ) 1 0 0 0 λ µ 0 1

A11(λ, µ) 0 0 0 λ 0 µ 0 1

A12 0 0 0 1 1 0 0 1

A13(λ) 0 0 1 λ 0 0 0 1 λ ̸= ±1

A14(λ) 0 0 1 1 λ 0 0 1 chr F ̸= 2

A15(λ) 0 0 1 -1 0 λ 0 1 chr F ̸= 2

A16(λ, µ) 0 0 1 1 λ µ 0 1 chr F = 2

Table 14. Classification of 3-dimensional proper isopotent

algebras.

➢ Two algebras A9(κ1, λ1, µ) and A9(κ2, λ2, µ) are isomor-

phic iff κ1λ1 = κ2λ2 and there exists such (x, y) ∈ F2

that λ2 = x2λ1 − xyµ− y2κ1.

➢ Two algebras A16(λ1, µ) and A16(λ2, µ) are isomorphic iff

there exists such x ∈ F that λ2 = x2 + xµ+ λ1.

The number of algebras A16(λ, µ) can be determined in the following way. If

µ = 0 then x =
√
λ1 + λ2 , which always exists; hence we can fix λ1 = 0 and this

is one algebra. If µ ̸= 0 then x = yµ and the equation y2+y+(λ1+λ2)µ
−2 = 0

is solvable if the trace Tr((λ1 + λ2)µ
−2) = 0 , which is true in n/2, cases ; we can

select µ in n−1 ways and λ in two ways. The family A16 therefore consists of three

parts:

• A16(0, 0);

• A16(α, µ), µ ̸= 0, α is a selected scalar with the property Tr(αµ−2) = 0;

• A16(β, µ), µ ̸= 0, β is a selected scalar with the property, Tr(βµ−2) = 1.
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GF (n ̸= 2m) GF (n = 2m) C R

A1 1 1

A1 . . . A8 A1 . . . A8

A2(λ) n n

A3(λ) n n

A4(λ, µ) n2 n2

A5(κ, λ, µ) n3 − n2 n3 − n2

A6(λ, µ) n2 − n n2 − n

A7(λ, µ) n2 n2

A8(λ) n n

A9(κ, λ, µ)

A9(0, 1, µ)

A9(0, β, 0)
(#1)

A9(κ, λ, µ)
(#2)

n+ 1 +K

A9(0, 1, µ)

A9(1, λ, µ)
(#3)

n+ (n2 − n)

A9(0, 1, µ)

A9(1, λ, µ)
(#3)

A9(0, 1, µ)

A9(0,−1, 0)

A9(1, λ, µ)
(#3)

A9(−1, 1 + µ2, 2µ)

A10(λ, µ) n2 n2

A10 . . . A15 A10 . . . A15

A11(λ, µ) n2 n2

A12 1 1

A13(λ) n− 2 n− 1

A14(λ) n 0

A15(λ) n 0

A16(λ, µ) 0

A16(0, µ)

A16(β, µ)
(#4)

n+ (n− 1)

∄ ∄

Table 15. Classifications over special fields.

(#1) β is a selected non-square.

(#2) κ ̸= 0; some of these algebras may still be isomorphic;

the number of non-isomorphic types is here denoted by

K : n ≤ K ≤ n(n− 1)2.

(#3) λ ̸= 0 .

(#4) µ ̸= 0, β is a selected scalar with the property Tr(βµ−2) =

1.

If we choose α = 0, then the first two classes merge in one: A16(0, µ), with optional

µ.

From Table 15, we find the number of non-isomorphic types of algebras:

chrGF (n) ̸= 2 ⇒ n3 + 4n2 + 6n+ 1 +K,
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chrGF (n) = 2 ⇒ n3 + 5n2 + 5n.

5. Isoproduct algebras

Lemma 5.1. Let (A, ) be an F-algebra. Consider the following three statements:

(1) ∀(a, b) ∈ A2 : ab ∈ lin{a, b}.
(2) ∀(a, b) ∈ A2 : alg{a, b} = lin{a, b}.
(3) ∀(a, b) ∈ A2 : dim alg {a, b} ≤ 2.

Then, (1) ⇔ (2) ⇒ (3) . If dimA ≠ 2 then all three statements are equivalent.

Proof. Non-trivial is only the proof of (2) ⇐ (3) in the case of dimA > 2. If

a, b are linearly independent, then dim lin {a, b} = 2 , hence alg{a, b}= lin{a, b} .
Now let us take some a ̸= 0 and prove that alg{a} = F{a}. Also let b, c be

such that the triple (a, b, c) is linearly independent.

ab = αa+ βb , ac = γa+ δc,

a2 + αa+ βb = a(a+ b) = εa+ ζ(a+ b) ⇒ a2 = (. . . )a+ (ζ − β)b,

a2 + γa+ δc = a(a+ c) = ηa+ ϑ(a+ c) ⇒ a2 = (. . . )a+ (. . . )c,

0 = a2 − a2 = (. . . )a+ (ζ − β)b+ (. . . )c.

Hence ζ − β = 0 and a2 = (. . . )a. □

Definition 5.2. An algebra (A, ) over a field F is isoproduct algebra if

∀(a, b) ∈ A2, ab ∈ lin{a, b}.

If there exist such linear functionals, U, V that

∀(a, b) ∈ A2, ab = U(b)a+ V (a)b,

we will say that, (A, ) is proper isoproduct algebra. Otherwise, it is improper.

According to Lemma 5.1, in case of dim A ≠ 2, this statement

∀(a, b) ∈ A2 : dim alg{a, b} ≤ 2

may be an equivalent definition of isoproduct algebra.

Every isoproduct algebra is obviously also an isopotent algebra. Every proper

isoproduct algebra is either proper isopotent algebra or zeropotent algebra.

Every isopotent algebra of dimA ≤ 2 is isoproduct algebra.

In every proper isoproduct algebra the functionals U, V are uniquely determined,

except of course in case of dimA = 1.

In any isoproduct algebra the following holds:

∀M ⊂ A : algM = linM .
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The proof is trivial.

Suppose that (D, ) is an isopotent algebra. Then its plus-algebra (D, ◦) with
the multiplication (p, q) 7→ p ◦ q := p q+ q p is isoproduct algebra (Proposition

1.5, (2)).

Lemma 5.3. ([1, Lemma 7]) Let L be a linear space over a field F and dimL ≥ 2

(with the exception of dimL > 2 if F = Z2). If M : L2 → L is a bilinear map with

the property:

∀(p, q) ∈ L2 ∃(α, β) ∈ F2 : M(p, q) = αp+ βq,

then there exist uniquely determined linear functionals U, V : L → F that:

∀(p, q) ∈ L2 : M(p, q) = U(q)p+ V (p)q.

Using this lemma, we immediately find the following theorem. Nothing more

needs to be said about improper isoproduct algebras.

Theorem 5.4. Suppose that (A, ) is an improper isoproduct algebra over a field

F . Then F = Z2 and (A, ) is one of five two-dimensional algebras from Table

1. For these algebras, the functionals U and V do not exist even as non-linear

functionals.

In what follows, we will show some properties of the proper isoproduct alge-

bras. Suppose that (A, ) (dimA ≥ 2 ) is a proper isoproduct F-algebra with

multiplication

pq = U(q)p+ V (p)q

and additional bilinear functional

W (p, q) := U(q)V (p).

The proofs of the next propositions A – G are straightforward.

A. The functional W is associative in the following sense:

∀(p, q, r) ∈ A3 :W (pq, r) =W (p, qr) .

B. For the associator [p, q, r] = (pq)r − p(qr) we have

∀(p, q, r) ∈ A3 : [p, q, r] =W (p, q)r −W (q, r)p .

C. The following eight statements are equivalent:

➢ (A, ) is flexible.
➢ (A, ) is non-commutative Jordan.

➢ (A, ) is alternative.
➢ (A, ) is associative.
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➢ V = λU or U = µV for some constant λ or µ.

➢ U = 0 or V = 0.

➢ ∀(p, q) ∈ A2 : W (p, q) =W (q, p).

➢ W = 0.

D. The following three statements are equivalent:

➢ (A, ) is commutative.

➢ (A, ) is Jordan.
➢ V = U.

E. Jacobian:

J(p, q, r) = K(q, r)p+K(r, p)q +K(p, q)r,

where K(p, q) = K(q, p) := [U(p) + V (p)][U(q) + V (q)].

F. The following three statements are equivalent:

➢ (A, ) is zeropotent.

➢ (A, ) is Lie.
➢ V = −U.

ω φ ψ

0 0 0

0 0 1

1 0 1

1 φ ∈ F 0

Table 16. Theorem 5.5.

The following theorem describes the complete classification of the isoproduct

algebras. The proof is simple.

Theorem 5.5. Any proper isoproduct algebra (A, ) with functionals U, V and of

dimA ≥ 2 has the following structure:

A = F{u} ⊕ F{v} ⊕ B,

where B is a subalgebra with zero multiplication, (u, v) linearly independent and

U(F{v} ⊕ B) = V (B) = {0}, ω := U(u), φ := V (u), ψ := V (v).

The explicit formula for multiplication (according to the direct sum above):

(αu+ βv + a)(γu+ δv + b) =

γ(αω + αφ+ βψ)u+ (βγω + αδφ+ βδψ)v + [γωa+ (αφ+ βψ)b].
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The parameters φ,ψ, ω have values as described in Table 16 and these values form

pairwise non-isomorphic algebras.
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