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Abstract. The numerical solution of the neutron transport equation for one-speed neutrons in a finite homogeneous slab
is investigated. The neutrons are assumed to be scattered isotropically through the medium involving constant isotropic
source. The stationary transport equation is first written in the form of discrete ordinates and then it is solved for the
eigenvalue spectrum of the neutrons using the Chebyshev polynomials of first kind. The eigenvalues are calculated for
various values of the co, the mean number of secondary neutrons per collision, using the Gauss-Chebyshev quadrature set
and they are given in the tables.
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Birinci Tip Chebyshev Polinomlariyla Sx metodu kullamilarak Notron Transport

Denkleminin Niimerik Coziimii

Ozet. Notron transport denkleminin, sonlu ve homojen bir dilimde tek-gruplu nétronlar igin niimerik ¢oziimii incelenmistir.
Notronlarin sabit ve izotropik bir kaynak bulunan ortam boyunca izotropik olarak sagildiklar1 varsayillmistir. Kararli durum
transport denklemi, dnce diskret ordinatlar formunda yazilmig ve daha sonra bu denklem birinci tip Chebyshev polinomlari
kullanilarak nétronlarin 6zdeger spektrumu i¢in ¢oziilmiistiir. co’1n, ¢arpisma basina ortalama ikincil ndtron sayisi, farkli
degerleri i¢in Gauss-Chebyshev kuadratiir seti kullanilarak 6zdegerler hesaplanmis ve bunlar tablolarda verilmistir.

Anahtar Kelimeler: Notron Transport Denklemi, 6zdegerler, Sx metodu, Chebyshev polinomlari

1. INTRODUCTION

As well known, in order to maintain the fission chain reaction and thus to produce continuous power
generation in a reactor system, it is important to protect the number of neutrons travelling throughout
the system. The conservation of the neutron population or the constant power production can be
perceived as isotropic scattering. The neutron transport equation which explains the distribution and the
conservation of the neutrons in the system can be solved for the isotropic scattering.

The deterministic and stochastic methods are developed for the solution of the transport equation.
Although a stochastic method of the Monte Carlo (MCNP) is one of the most effective and first methods
used in the solution of the transport equation and the results obtained from it can be accepted as the
benchmark for some cases, the deterministic methods such as spherical harmonics or discrete ordinates
(Sn) are commonly used for the solution of the transport equation because of their fast iterations and
accurate results obtained from easily derivable equations with less computational efforts [1-3].
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Numerical Solution of the Neutron Transport Equation

In this study, the first step for numerically solving the Sy transport equation is taken using the first kind
of Chebyshev polynomials in the integral transform of the neutron angular flux. Therefore, the one-
dimensional transport equation is converted into a discrete ordinates form in order to specify the
eigenvalue spectrum of the monoenergetic neutrons traveling in a finite homogeneous slab using the
Gauss-Chebyshev quadrature set.

2. THEORY AND EQUATIONS

With conventional notation, the neutron transport equation for monoenergetic neutrons in finite
homogeneous slab can be written [4],
Iua‘//(xuu) Qo

o 1)

+ory (X, ) = S°jw(xu)du+

where y(x, 1) is the neutron angular flux at position x and in direction g, cosine of the angle between the
neutron velocity vector and the positive x-axis. While or is the total macroscopic cross-section, oy is
the differential scattering cross-section in the case of isotropic scattering and Qo is the internal source.
The integrand in Eq. (1) can be evaluated as the integral transform with Chebyshev quadrature;

jw(xu)du Nl ” W(Xu)\/—~z 1- 12 v, (Ve . )

Here an is the Gauss-Chebyshev quadrature weight or weighting factor for direction s, i.e. the roots of
the Nth order Chebyshev polynomials of first kind. Then the roots and the weighting factors of the
Chebyshev polynomials of first kind can be given as, respectively [5];

4 =cos(%j, @)
o, :%, m=12,...N. (4)

When the evaluated integrand in Eq. (2) is replaced in Eq. (1), the discrete ordinates Sy equations can
be obtained for the numerical solution,

i sy 00 = 503 i v (e + 2.

™ ()

A general solution of Eq. (5) can be written as the sum of the particular (y} (x) ) and the homogeneous

(v (x)) solutions of Eg. (5),

W () =y () +ym(X). (6)

A spatially constant particular solution of Eq. (5) can easily be given by
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Q,

. | 0<x<a,  1<m<N, (7)
o7 (2—Coay)

Wi (X) =
where
N 2
=Y \1-4 o, (8)
n=1

and ¢, =05,/ o7 . It is customary to use the method of separation of variables in order to obtain the

homogeneous solution " (x) of Eq. (5). Therefore, the homogeneous solution can be written in the
form of [6],

w!(x)=H_(v)exp(c,x/v), 0<a<x, 1<m<N. (9)

An expression for the angular part of the neutron angular flux can be obtained by substituting Eq. (9)
into Eq. (5),

H, ()= 2(V+ Z\/l pH, Mo, , (10)

where the function H_(v) is normalized by,

Zlell—,uf H,(Wo, =1. (11)

When Eq. (10) is multiplied by 1—;1; @,, from both sides and then summed over all m, an equation

for the veigenvalues can be obtained as,

N VG, /1 14
Zo—ﬂma)m =1, VE—L (12)
m=1 2(V+lum)

Since the determination of the eigenvalues is accepted as the first step in most of the transport studies,
in this study, the eigenvalue spectrum of the monoenergetic neutrons is investigated and an expression
for this purpose is derived and given in Eq. (12). In other words, Eq. (12) is referred to as the dispersion

relation and the roots v,,1<k <N, of Eq. (12) are the eigenvalues of the Sy equations. These

eigenvalues are symmetric about the origin for any co satisfying 0<c, <1 due to the symmetry of
Gauss-Chebyshev quadrature set.

3. NUMERICAL RESULTS AND DISCUSSION

The eigenvalue spectrum as a first step for the solution of the neutron transport equation in one
dimensional slab geometry is studied for monoenergetic neutrons. The transport equation is written in
the form of discrete ordinates (Sn) by applying integral transform and then it solved using Gauss-
Chebyshev quadrature set. Then, an analytic expression for the eigenvalues is obtained and given in Eq.
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(12) by solving the homogeneous part of Eq. (5). Thus, the roots v,,1<k <N of Eq. (12) are the

Numerical Solution of the Neutron Transport Equation

eigenvalues of the Sy equations, i.e. Eq. (5).

The eigenvalues are calculated from Eqg. (12) and given in Table 1 for various values of the ¢ < 1 and

Co > 1. These can be used in the studies of transport theory.

Table 1. Eigenvalue spectrum.

N

Co=0.40

Co=0.80

Co=0.98

Co=0.99

Co=1.20

Co = 2.00

2

+0.9485500

+2.1183454

+2.3768285i"

1£2.2404014i

+1.2256063i

1+0.6398065i

+0.5485379

1+1.5231626

10.6293344i

+0.7012099

+0.4829046i

+0.7280382

+0.4773492i

+0.7291494

£0.3913600i

+0.7469371

+0.2591057i

+0.7744063

+0.6089840i

+0.9508914

+0.7063372

+0.2766079

1+0.2463427i

+0.9562871

+0.7338907

+0.3430797

+0.2036999i

+0.9570950

+0.7381875

+0.3578635

+0.2018929i

+0.9571302

+0.7383745

+0.3585199

1+0.1720590i

+0.9577187

+0.7415029

1+0.3695826

+0.1194641i

+0.9587589

+0.7470087

+0.3890247

=1
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