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Abstract. The numerical solution of the neutron transport equation for one-speed neutrons in a finite homogeneous slab 

is investigated. The neutrons are assumed to be scattered isotropically through the medium involving constant isotropic 

source. The stationary transport equation is first written in the form of discrete ordinates and then it is solved for the 

eigenvalue spectrum of the neutrons using the Chebyshev polynomials of first kind. The eigenvalues are calculated for 

various values of the c0, the mean number of secondary neutrons per collision, using the Gauss-Chebyshev quadrature set 

and they are given in the tables. 

Keywords: Neutron transport equation, eigenvalues, SN method, Chebyshev polynomials. 

 

Birinci Tip Chebyshev Polinomlarıyla SN metodu kullanılarak Nötron Transport 

Denkleminin Nümerik Çözümü 

 

Özet. Nötron transport denkleminin, sonlu ve homojen bir dilimde tek-gruplu nötronlar için nümerik çözümü incelenmiştir. 

Nötronların sabit ve izotropik bir kaynak bulunan ortam boyunca izotropik olarak saçıldıkları varsayılmıştır. Kararlı durum 

transport denklemi, önce diskret ordinatlar formunda yazılmış ve daha sonra bu denklem birinci tip Chebyshev polinomları 

kullanılarak nötronların özdeğer spektrumu için çözülmüştür. c0’ın, çarpışma başına ortalama ikincil nötron sayısı, farklı 

değerleri için Gauss-Chebyshev kuadratür seti kullanılarak özdeğerler hesaplanmış ve bunlar tablolarda verilmiştir. 

 

Anahtar Kelimeler: Nötron Transport Denklemi, özdeğerler, SN metodu, Chebyshev polinomları 

 

1. INTRODUCTION 

As well known, in order to maintain the fission chain reaction and thus to produce continuous power 

generation in a reactor system, it is important to protect the number of neutrons travelling throughout 

the system. The conservation of the neutron population or the constant power production can be 

perceived as isotropic scattering. The neutron transport equation which explains the distribution and the 

conservation of the neutrons in the system can be solved for the isotropic scattering. 

The deterministic and stochastic methods are developed for the solution of the transport equation. 

Although a stochastic method of the Monte Carlo (MCNP) is one of the most effective and first methods 

used in the solution of the transport equation and the results obtained from it can be accepted as the 

benchmark for some cases, the deterministic methods such as spherical harmonics or discrete ordinates 

(SN) are commonly used for the solution of the transport equation because of their fast iterations and 

accurate results obtained from easily derivable equations with less computational efforts [1-3]. 
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In this study, the first step for numerically solving the SN transport equation is taken using the first kind 

of Chebyshev polynomials in the integral transform of the neutron angular flux. Therefore, the one-

dimensional transport equation is converted into a discrete ordinates form in order to specify the 

eigenvalue spectrum of the monoenergetic neutrons traveling in a finite homogeneous slab using the 

Gauss-Chebyshev quadrature set. 

2. THEORY AND EQUATIONS 

With conventional notation, the neutron transport equation for monoenergetic neutrons in finite 

homogeneous slab can be written [4], 
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where (x,) is the neutron angular flux at position x and in direction , cosine of the angle between the 

neutron velocity vector and the positive x-axis. While T is the total macroscopic cross-section, S0 is 

the differential scattering cross-section in the case of isotropic scattering and Q0 is the internal source. 

The integrand in Eq. (1) can be evaluated as the integral transform with Chebyshev quadrature; 
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Here n is the Gauss-Chebyshev quadrature weight or weighting factor for direction n, i.e. the roots of 

the Nth order Chebyshev polynomials of first kind. Then the roots and the weighting factors of the 

Chebyshev polynomials of first kind can be given as, respectively [5]; 
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When the evaluated integrand in Eq. (2) is replaced in Eq. (1), the discrete ordinates SN equations can 

be obtained for the numerical solution, 
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A general solution of Eq. (5) can be written as the sum of the particular ( ( )p

m x ) and the homogeneous 

( ( )h

m x ) solutions of Eq. (5), 

( ) ( ) ( )p h

m m mx x x    .         (6) 

A spatially constant particular solution of Eq. (5) can easily be given by 
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and 
0 0 /S Tc   . It is customary to use the method of separation of variables in order to obtain the 

homogeneous solution ( )h

m x  of Eq. (5). Therefore, the homogeneous solution can be written in the 

form of [6], 

( ) ( )exp( / ), 0 , 1h

m m Tx H x a x m N        .     (9) 

An expression for the angular part of the neutron angular flux can be obtained by substituting Eq. (9) 

into Eq. (5), 
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where the function ( )mH   is normalized by, 
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When Eq. (10) is multiplied by 
21 m m   from both sides and then summed over all m, an equation 

for the  eigenvalues can be obtained as, 
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Since the determination of the eigenvalues is accepted as the first step in most of the transport studies, 

in this study, the eigenvalue spectrum of the monoenergetic neutrons is investigated and an expression 

for this purpose is derived and given in Eq. (12). In other words, Eq. (12) is referred to as the dispersion 

relation and the roots ,1k k N   , of Eq. (12) are the eigenvalues of the SN equations. These 

eigenvalues are symmetric about the origin for any c0 satisfying 
00 1c   due to the symmetry of 

Gauss-Chebyshev quadrature set. 

3. NUMERICAL RESULTS AND DISCUSSION 

The eigenvalue spectrum as a first step for the solution of the neutron transport equation in one 

dimensional slab geometry is studied for monoenergetic neutrons. The transport equation is written in 

the form of discrete ordinates (SN) by applying integral transform and then it solved using Gauss-

Chebyshev quadrature set. Then, an analytic expression for the eigenvalues is obtained and given in Eq. 
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(12) by solving the homogeneous part of Eq. (5). Thus, the roots ,1k k N    of Eq. (12) are the 

eigenvalues of the SN equations, i.e. Eq. (5). 

The eigenvalues are calculated from Eq. (12) and given in Table 1 for various values of the c0 < 1 and 

c0 > 1. These can be used in the studies of transport theory. 

 

Table 1. Eigenvalue spectrum. 

N c0 = 0.40 c0 = 0.80 c0 = 0.98 c0 = 0.99 c0 = 1.20 c0 = 2.00 

2 0.9485500 2.1183454 2.3768285i* 2.2404014i 1.2256063i 0.6398065i 

4 
0.5485379 

1.5231626 

0.6293344i 

0.7012099 

0.4829046i 

0.7280382 

0.4773492i 

0.7291494 

0.3913600i 

0.7469371 

0.2591057i 

0.7744063 

8 

0.6089840i 

0.9508914 

0.7063372 

0.2766079 

0.2463427i 

0.9562871 

0.7338907 

0.3430797 

0.2036999i 

0.9570950 

0.7381875 

0.3578635 

0.2018929i 

0.9571302 

0.7383745 

0.3585199 

0.1720590i 

0.9577187 

0.7415029 

0.3695826 

0.1194641i 

0.9587589 

0.7470087 

0.3890247 

*i = 1  
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