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Abstract. In this paper, we have studied the energy spectra and quadrupole transition probabilities of 192Pt nucleus with 

emphasis on shape coexistence. A transitional Interacting Boson Model Hamiltonian which are based on affine SU(1,1) lie 

algebra is used to consider the coexistence of spherical and axial symmetry shapes in this nuclei. Parameter free (up to 

overall scale factors) predictions for theoretical predictions are found to be in good agreement with experimental 

counterparts. Our results offer a combination of spherical and deformed shapes for this nucleus which is expected to be an 

excellent example for SO(6)dynamical limit. 
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1. INTRODUCTION  

The interacting boson model (IBM) which describes the nuclear structure of even–even nuclei the IBM 

Hamiltonian was written from the beginning in second quantization form in terms of the generators of 

the unitary Lei algebra U(6) The model assumes that low-lying collective excitations of the nucleus can 

be described in terms of the number N of s and d bosons. The bosons correspond to pairs of nucleons in 

valance shell, coupled to angular momentum (j=0) s boson (j=2) d boson; N is constant for a given nucleus 

and equal to half its number of valance nucleons. Lei algebra U(6) subtended by s and d bosons . The 

model present three special limits that can be solved easily these three limits are U(5), SU(3) and O(6) 

dynamical symmetry appropriate for an harmonic vibrator , axial deformed rotor and γ- unstable 

deformed rotor .When the numbers of protons (or neutrons) are modified, the energy levels and 

electromagnetic transition rates of atomic nuclei change too and suggest a transition from one kind of 

the collective behavior to another [1-3]. The quantum shape phase transitions have been studied 25 years 

ago with using the classical limits of the Interacting Boson Model (IBM) [4-10] These descriptions point 

out that there is a first order shape phase transition between U(5) and SU(3)limits and a second order 

shape phase transition between U(5) and O(6) limits. The analytic description of nuclear structure at the 

critical point of phase transitions has attracted extensive interest in the recent decades.  One has to employ 

some complicated numerical methods to diagonalize the transitional Hamiltonian in these situations but 

Pan et al in Refs.[11-12] have been proposed a new solution which was based on affine  1,1SU algebraic 

technique and explores the properties of nuclei have classified in the U(5)↔SO(6) transitional region of 

IBM. 192 Pt isotope are expected to lie in this transitional region.  the 192 Pt isotope  were good examples 

of the U(6) nuclei [13-36]. However, during the last few years, new experimental data and calculations 

have led to a modified picture on these nuclei.  By using the collective models in describing the structure 

of192 Pt isotope [13]. These mean 192Pt isotope appear to evolve from the O(6) to U(5)-like structure in 

IBM classification. On the other hand, this isotope can be described via O(6) limit where one has to use 
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the U(5) limit predictions for the intruder states. These levels [15]. All these new experiments and 

theoretical calculations have provided new insights for these nuclei which is helpful to understand their 

structures [17-25].  

In this study, we have focused on the 192Pt isotope with emphasis on the energy levels and quadrupole 

transition probabilities. We have used the transitional Hamiltonian [35] to consider the evolution of 

these isotope between spherical and gamma unstable shapes. Different energy levels and quadrupole 

transition probabilities are determined in the IBM-1 frameworks and compared with experimental 

counterparts [15-35]. Recently great analyses has been performed to describe them. Iachello in Refs.[1-2] 

have established a new set of dynamical symmetries, i.e. E(5) and X(5), for nuclei which are located at the 

critical point of transitional regions. The E(5) symmetry describes a second order phase transition which 

corresponds to the transitional states in the region from U(5) to O(6) symmetries in the IBM. Different 

analyses which have carried in the investigation of this transitional region [13-35]. An algebraic solution 

has been proposed by Pan et al [11-12] which was based on the affine  1,1SU Lie algebra to exhibits 

the properties of nuclei which are located in the U(5)↔SO(6) transitional region.  

2. THEORETICAL FRAMEWORK 

2.1. Transitional Hamiltonian based on affine  1,1SU algebra  

The (1,1)SU Algebra has been described in detail in Refs.[11-12]. Here, we briefly outline the basic 

ansatz and summarize the results. The Lie algebra corresponds to the (1,1)SU group is generated by S ,

0  and  , which satisfies the following commutation relations 

0 0[ , ]                                 ,                                        [ , ] 2                                          (1)S S S S S S        

The Casimir operator of (1,1)SU group can be written as 

 

0 0

2
ˆ ( 1)                                                    ,                                                                          (2)C S S S S     

Representations of (1,1)SU are determined by a single number , thus the representation of Hilbert 

space is spanned by orthonormal basis   where can be any positive number and , 1,...    . 

Therefore,  

 

0

2
ˆ ( (1,1)) ( 1)                             ,                                                        (3)C SU S          

In IBM, the generators of d  boson pairing algebra is created by 

 

† † 0 † †1 1 1
( ) ( . )       ,     ( ) ( . )         ,           ( ) ( )                            (4)

2 2 4
S d d d S d d d S d d d d d   



      

Similarly, s  boson pairing algebra forms another (1,1)sSU algebra which is generated by 

†2 2 0 † †1 1 1
( )               ,             ( )          ,           ( ) ( )                                       (5)

2 2 4
S s s S s s S s s s ss
 

     

On the other hand, the infinite dimensional  1,1SU algebra is generated by using of [11-12] 
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2 1 2 1 0 2 0 2 0( ) ( )                     ,            ( ) ( )                                          (6)n n n n

n s d n s dS c S s c S d S c S s c S d         

Where
sc and

dc are real parameters and n can be 0, 1, 2,...  . These generators satisfy the commutation 

relations, 

0 0

1[ , ]                                          ,                      [ , ] 2                                        (7)m n m n m n m nS S S S S S   

     

Then,{ , 0, , ; 1, 2,...}mS        generates an affine Lie algebra  1,1SU without central extension. By 

employing the generators of  1,1SU Algebra, the following Hamiltonian is constructed for the 

transitional region between (5) (6)U SO limits [11-12] 

0

0 0 1 2 2
ˆ ˆˆ    ( (5))  ( (3))                                                                                   (8)H g S S S C SO C SO      

 

, ,g   and are real parameters where 2
ˆ ( (3))C SO and 2

ˆ ( (5))C SO denote the Casimir operators of these 

groups. It can be seen that Hamiltonian (8) would be equivalent with (6)SO Hamiltonian if
s dc c and 

with (5)U Hamiltonian when 0 &  0s dc c  . Therefore, the 0s dc c   requirement just corresponds 

to the (5) (6)U SO transitional region. In our calculation we take 
dc (=1) constant value and 

sc vary 

between 0 and .dc
 

Eigenstates of Hamiltonian (8) can obtain with using the Fourier-Laurent expansion of eigenstates and 

 1,1SU generators in terms of unknown c  number parameters
ix with 1,2,...,i k . It means, one can 

consider the eigenstates as [11-12] 

1 2

1 2 1 21 2; ... ... ...                  ,                                                       (9)k

k k

i

nn n

s n n n k n n n

n Z

k n LM a a a x x x S S S lw    







Due to the analytical behavior of wave functions, it suffices to consider
ix near zero. With using the 

commutation relations between the generators of  1,1SU Algebra, i.e. Eq.(7), wave functions can be 

considered as: 

1 2
; ...            ,                                                                                                 (10)

ks x x xk n LM NS S S lw    

 
 

where N is the normalization factor and 

2 2
( ) ( )        ,                                                                                                (11)

1 1i

s d
x

s i d i

c c
S S s S d

c x c x

  
 

 

The c-numbers 𝑥i are determined through the following set of equations 

2 2

2 2

1 5
( ) ( )

22 2  -                                  for i=1,2,...,k                                      (12)   
1 1

s s d

i ji s i d i i j

gc gc

x c x c x x x

 



 

 
  


ò

Eigenvalues of Hamiltonian (8), i.e. 
( )kE , can be expressed as [11-12] 
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( ) ( ) 0 0 2 2

1 1

1 1 5
( 3) ( 1)              ,           [ ( ) ( )]                            (13)

2 2 2

k k

s s dE h L L c c                

Which 

( )

 1

  ,                                                                                                                                            (14)
k

k

i i

h
x







The quantum number k, is related to total boson number N, by 

2 sN k      

To obtain the numerical results for
( )kE , we have followed the prescriptions have introduced in Refs.[7-

8], namely a set of non-linear Bethe-Ansatz equations (BAE) with k  unknowns for k  pair 

excitations must be solved. To this aim we have changed the variables as  

2
( 1   [11-12])                       c = 1                       ys

i d i

d

c
g kev c x

g c


   ò  

so, the new form of Eq.(12) would be  

2

2

1 5
( ) ( )

22 2  -                                  for i=1,2,...,k                                                (15)   
1 1

s

i ji i i i j

c

y c y y y y

 



 

 
  


ò

We have solved Eq. (15) with definite values ofc and for 1i  to determine the roots of Beth-Ansatz 

equations (BAE) with specified values of
s and , similar to procedure which have done in Refs.[7-

8]. Then, we have used “Find root” in the Maple13 to get all
'

jy s. We carry out this procedure with 

different values of c and  to provide energy spectra (after inserting and ) with minimum 

variation as compared to the experimental counterparts; 

2 1/2
exp

, 

1
(  ( ) ( )  )cal

tot i tot

E i E i
N

    

 Which 
totN is the number of energy levels where are included in extraction processes. We have 

extracted the best set of Hamiltonian’s parameters, i.e.  and , via the available experimental data 

[27-29] for excitation energies of selected states, 
1 1 1 2 2 20 ,2 ,4 ,0 ,2 ,4      and etc, e.g. 12 levels up to 42

, or 

two neutron separation energies for nuclei which are considered in this study. In summary, we have 

extracted and externally from empirical evidences and other quantities of Hamiltonian, e.g. c and

 would determine through the minimization of s .  

2.2. ( 2)B E Transition 

The reduced electric quadrupole transition probabilities, ( 2)B E , are considered as the observables 

which as well as quadrupole moment ratios within the low-lying state bands prepare more information 

about the nuclear structure. The E2 transition operator must be a Hermitian tensor of rank two and 

consequently, number of bosons must be conserved. With these constraints, there are two operators 

possible in the lowest order, therefore the electric quadrupole transition operator employed in this study 

is defined as [7], 
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( 2) † † (2) ' † (2)
2 2

ˆ ˆˆ ˆ     [   ]  +  [ ]                  ,                                                            (16)ET q d s s d q d d  
     
 

Where
2q is the effective quadrupole charge,

'
2q is a dimensionless coefficient and † †( )s d represent the 

creation operator of ( )s d boson. Reduced electric quadrupole transition rate between 
i fI I states is 

given by [3] 
 

2

( 2)
( 2; )         ,                                                                                               (17)

2 1

f i

i f

i

I T E I
B E I I

I
 


  

 

3. NUMERICAL RESULT 

3.1. Energy levels 

Investigations of experimental energy spectra which have been done in Refs.[13-34], suggest 192Pt   

isotopes as the empirical evidences for U(5)↔SO(6) transitional region. Consequently, the transitional 

Hamiltonians, Eq.(8) in IBM-1 framework, can be considered in the determination of energy spectra. 

There are 12 levels up to the 42
level for cs=0.8 displayed in Figures 1 for IBM-1. The best fits for IBM-

1 Hamiltonian’s parameters, namely ,  and    which are extracted from experimental data, by similar 

method has been explained in Refs.[15-18], we have determined the cs values which all of them are 

presented in Table 1. These quantities described the best agreement between the calculated energy levels 

in this study and their experimental counterparts taken from Refs.[35], i.e. minimum values for . 

Our results which suggest a combination of the vibrational and gamma unstable limits in 192Pt isotope, 

our result which suggests a shape coexistence in the 192Pt.  

 
Figure 1. Energy spectra of 192Pt nucleus which are determined by transitional Hamiltonian and the experimental values are 

taken from Refs.[8]for cs=0.8 

 

Table 1. Parameters of IBM-1 Hamiltonian are showed for 192 Pt. 

Ϭ α γ δ sC 

326 800 44.12- 4.12- 0.4 

328 800 45.50- 4.19- 0.5 

322 800 49.19 - 4.37- 0.7 

276 800 51.50- 4.49- 0.8 
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3.2.B(E2) Transition probabilities 

Computation of electromagnetic transition is a sign of good test for nuclear model wave functions. To 

determine boson effective charges We have extracted these quantities from the empirical B(E2) values 

via Least square technique  The parameters of Eqs. 16, B(E2) values have been presented in Tables 2 

and Figure 2  for IBM-1  

 

Table 2. Transition probability 

 
 

 

 
 

Figure 2. B(E2) transition probabilities (in w.u.) 

 

 

4. CONCLUSIONS 

A su(1,1) based transitional Hamiltonian is used to determine energy spectra and transitional rates of 

192 Pt results suggest a combination of spherical shape together deformed one in the structure of nucleus 

. The control parameter of Hamiltonian has a mixing role which show the coexistence of these shapes  
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