
33

AN EXACT SOLUTION FOR REAL-LIFE TRANSSHIPMENT PATH PROBLEM

GERÇEK ,AYAT AKTARMA WROBLEMİNE TAM ÇÖZÜM

https://doi.org/10.20854/bujse.1218139 Zehra ,afızoğlu Gökdağ1,*, Salih Cebeci2

Abstract Özet
In industrial engineering, transportation planning, vehicle
routing problem, warehousing, inventory management,
and customer service are logistics problems. Graph theory
algorithms provide solutions to logistics problems such as
the shortest path, minimum spanning tree, and vehicle
routing problems. In a logistics company system with
branches and transfer centers to which the branches are
affiliated, if the sorting process is carried out in the transfer
centers, the deliveries collected from the branches must be
transported to a transfer center. Thus, there are situations
where delivery is transferred in the sending branch, the
sending transfer center, the receiving transfer center, and
the receiving branch, respectively. In this flow, transferring
with a single transfer center without visiting two transfer
centers reduces the total cost. While moving from the
sender transfer center to the receiver transfer center,
stopping by some branches on the way allows us to
complete the transfer process with a single transfer center
and eliminates the necessity of leaving the vehicle from the
receiver transfer center to these branches again. Thus, the
number of vehicles that need to go from the receiver
transfer center to the branches is reduced. The mentioned
logistics structure is defined as a graph that is considered a
network design problem. Given the sender transfer center
ܵ, the receiver transfer center ܶ, the set of branches ܣ
connected to ܵ, and the set of branches ܥ that are not
connected to ܵ or ܶǡ a counting algorithm that gives the
minimum value route among all combinations are designed
in order to find the optimal route from the source node 𝑠𝑠 א
ܣ ׫ ሼܵሽ, to the target node ݐ = ܶ. The algorithm has been
implemented in Python and Gams and tested by the
different number of elements of the set ܣ and the set ܥ.

Şubelerin ve şubelerin bağlı olduğu aktarma merkezlerinin
bulunduğu bir lojistik firma sisteminde, eğer ayrıştırma
işlemi aktarma merkezlerinde yapılıyorsa, şubelerden
toplanan gönderilerinbir aktarma merkezine taşınması
gerekir. Böylece gönderiler sırasıyla gönderen şubede,
gönderen transfer merkezinde, alıcı transfer merkezinde ve
alıcı şubede transfer edildiği durumlar ortaya çıkmaktadır.
Bu akışta iki aktarma merkezine uğramadan tek bir aktarma
merkezi ile aktarma yapılması toplam maliyeti
düşürmektedir. Gönderici aktarma merkezinden alıcı
aktarma merkezine hareket ederken yol üzerindeki bazı
şubelere uğramak aktarma işlemini tek bir aktarma merkezi
ile tamamlamamızı sağlar ve alıcı aktarma merkezinden bu
şubelere tekrar araç yönlendirme zorunluluğunu ortadan
kaldırır. Böylece alıcı aktarma merkezinden şubelere
gitmesi gereken araç sayısı azaltılmış oluyor. Söz konusu
lojistik yapı, bir ağ tasarım problemi olarak ele alınan bir
çizge olarak tanımlanmaktadır. Gönderici transfer merkezi
ܵ, alıcı transfer merkezi ܶ, ܵ Ԣye bağlı ܣ şubeleri kümesi ve ܵ
veya ܶΖye bağlı olmayan ܥ şubeleri kümesi verildiğinde, 𝑠𝑠 א
ܣ ׫ ሼܵሽ kaynak düğümünden ݐ = ܶ hedef düğümüne
giden en uygun rotayı bulmak için tüm kombinasyonlar
arasından minimum değerli rotayı veren bir sayma
algoritması tasarlanmıştır. Algoritma Python ve Gams'da
uygulanmış ve A ve � kümelerinin farklı eleman sayıları ile
test edilmiştir.

Keywords: Combinatory Problem, Graph Theory, Logistics,
Network Design Problem

Anahtar Kelimeler: Kombinasyon Problemi, Grafik Teorisi,
Lojistik, Ağ Tasarımı Wroblemi

1,* Corresponding Author: Hepsijet & Kadir Has University, Faculty of Engineering and Natural Sciences, Department of
Industrial Engineering, zehra.gokdag@hepsijet.com, orcid.org/0000-0002-5804-3105
2 Hepsijet & Kadir Has University, Faculty of Engineering and Natural Sciences, Department of Industrial Engineering,
salih.cebeci@hepsijet.com, orcid.org/0000-0003-2200-6318

İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2023, 16(1), 33-42
Istanbul Beykent University Journal of Science and Engineering 2023, 16(1), 33-42

Makale Türü: Konferans Bildirisi
Paper Type: Conference Paper

Geliş tarihi/Received: 12/12/2022
Kabul tarihi/Accepted:12/01/2023

34

An Exact Solution for Real-Life Transshipment Path Problem

34

1. INTRODUCTION

Logistics network topology analysis studies have been carried out in the literature with the
definitions of graph theory. A method to analyze the attributes of nodes and edges in the
graph structure of the Urban Logistics system, with some graph theory and complex network
definitions, was proposed (Li & Zhang, 2009). In transportation planning, factors such as
reducing transportation cost, route length, and the number of machines (or drivers) are of
great importance in order to maximize profit (Malandraki et al., 2001).

In the logistics system, some problems such as Shortest Path Problem, Vehicle Routing
Problem, Traveling Salesman Problem, and Minimum Spanning Tree are well-known Network
Design Problems (Feremans et al., 2003). The Network Design problem is the problem of
finding the 𝑆𝑆𝐺𝐺 subgraph of a 𝐺𝐺 graph that satisfies the balance of the flow and side constraints.

Exact algorithms such as Set Partitioning Algorithm (Balinski & Quandt, 1964), Branch-and-
Bound Algorithm (Christofides & Eilon, 1969), Dynamic Programming (Eilon et al., 1971), and
heuristics such as Clarke and Wright Algorithm (Clarke & Wright, 1964), Nearest Neighbor
Algorithm (Bellmore & Nemhauser, 1968), A* Search Algorithm (Hart et al., 1968), Set
Partitioning Heuristics (Gillett & Miller, 1974), 2-Opt & 3- Opt (Croes, 1958), Lin Kernighan
Heuristic (Lin & Kernighan, 1973), Tabu Search (Glover, 1986), Simulated Annealing
(Kirkpatrick et al., 1983), Genetic Algorithm (Holland, 1962) have been developed since the
early 20th century for the solution of VRP and TSP.

Kruskal’s Algorithm (Kruskal, 1956), Prim’s Algorithm (Prim, 1957), Boruvka’s Algorithm
(Boruvka, 1926) are known as solution algorithms for the minimum spanning tree problem.

The Shortest Path Algorithm is a simple network design algorithm. Various methods such as
Dijkstra’s Shortest Path algorithm (Dijkstra, 1959), Bellman-Ford Algorithm (Bellman, 1958;
Ford, 1956), Floyd- Warshall’s Algorithm (Floyd, 1962), and Path Labeling Algorithm (Pandian
& Rajendran, 2010) have been developed since the past to solve this problem.

2. NETWORK DESIGN PROBLEM

The Network Design Problem's (NDP) goal is to identify the optimal subgraph 𝑆𝑆𝐺𝐺 = (𝑉𝑉 ′, 𝐸𝐸′)
in a graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) under the constraints of forcing, flow balance, and side constraints
(Magnanti, 1984). In order to explain NDP, sets, parameters, and decision variables notations
are defined as

Sets:

 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑛𝑛} is the set of nodes and 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 is the node in the set of nodes

 𝐸𝐸 contains each edge 𝑒𝑒𝑖𝑖𝑖𝑖 from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑖𝑖

 𝑘𝑘 is the commodity in the commodities set 𝐾𝐾

 𝑀𝑀 is the constraints set

1. INTRODUCTION

Logistics network topology analysis studies have been carried out in the literature with the
definitions of graph theory. A method to analyze the attributes of nodes and edges in the
graph structure of the Urban Logistics system, with some graph theory and complex network
definitions, was proposed (Li & Zhang, 2009). In transportation planning, factors such as
reducing transportation cost, route length, and the number of machines (or drivers) are of
great importance in order to maximize profit (Malandraki et al., 2001).

In the logistics system, some problems such as Shortest Path Problem, Vehicle Routing
Problem, Traveling Salesman Problem, and Minimum Spanning Tree are well-known Network
Design Problems (Feremans et al., 2003). The Network Design problem is the problem of
finding the ܵீ subgraph of a ܩ graph that satisfies the balance of the flow and side constraints.

Exact algorithms such as Set Partitioning Algorithm (Balinski & Quandt, 1964), Branch-and-
Bound Algorithm (Christofides & Eilon, 1969), Dynamic Programming (Eilon et al., 1971), and
heuristics such as Clarke and Wright Algorithm (Clarke & Wright, 1964), Nearest Neighbor
Algorithm (Bellmore & Nemhauser, 1968), A* Search Algorithm (Hart et al., 1968), Set
Partitioning Heuristics (Gillett & Miller, 1974), 2-Opt & 3- Opt (Croes, 1958), Lin Kernighan
Heuristic (Lin & Kernighan, 1973), Tabu Search (Glover, 1986), Simulated Annealing
(Kirkpatrick et al., 1983), Genetic Algorithm (Holland, 1962) have been developed since the
early 20th century for the solution of VRP and TSP.

Kruskal’s Algorithm (Kruskal, 1956), Prim’s Algorithm (Prim, 1957), Boruvka’s Algorithm
(Boruvka, 1926) are known as solution algorithms for the minimum spanning tree problem.

The Shortest Path Algorithm is a simple network design algorithm. Various methods such as
Dijkstra’s Shortest Path algorithm (Dijkstra, 1959), Bellman-Ford Algorithm (Bellman, 1958;
Ford, 1956), Floyd- Warshall’s Algorithm (Floyd, 1962), and Path Labeling Algorithm (Pandian
& Rajendran, 2010) have been developed since the past to solve this problem.

2. NETWORK DESIGN PROBLEM

The Network Design Problem's (NDP) goal is to identify the optimal subgraph ܵீ = ሺܸ Ԣǡ Ԣ ሻܧ
in a graph ܩ = ሺܸǡ ሻ under the constraints of forcing, flow balance, and side constraintsܧ
(Magnanti, 1984). In order to explain NDP, sets, parameters, and decision variables notations
are defined as

Sets:

• ܸ = ሼݒଵǡ ଶǡݒ Ǥ Ǥ Ǥ ǡ ௜ݒ ௡ሽ is the set of nodes andݒ א ܸ is the node in the set of nodes

 𝑗𝑗ݒ ௜ toݒ contains each edge ݁௜𝑗𝑗 from ܧ •

• ݇ is the commodity in the commodities set ܭ

 is the constraints set ܯ •

35

İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 16(1), 33-42

Parameters:

• 𝑐𝑐௜𝑗𝑗
𝑘𝑘 is the cost of one unit ݇ א along ݁௜𝑗𝑗 ܭ א ܧ

• ௜݂𝑗𝑗 is the fixed cost of containing ݁௜𝑗𝑗 א ܧ

݇ 𝑘𝑘 is the total quantity of commodityݍ • א ܭ

• ݈௜𝑗𝑗 is the capacity of ݁௜𝑗𝑗 א ܧ

Decision Variables:

௜𝑗𝑗ݔ • = ൜
1ǡ ݂݅ ݁௜𝑗𝑗 א ீܵ ݄݁ݐ ݊݅ ݃݊݅݊݅ܽݐ݊݋𝑠𝑠 𝑐𝑐݅ ܧ
Ͳǡ ݎ݄݁ݐ݋𝑤𝑤݅𝑠𝑠݁

௜𝑗𝑗ݕ •
𝑘𝑘 is the fraction of commodity ݇ א on ݁௜𝑗𝑗 ܭ א ܸ

Mathematical Formulation:

 ��� ෍ ෍ 𝑐𝑐௜𝑗𝑗
𝑘𝑘 ௜𝑗𝑗ݕ𝑘𝑘ݍ

𝑘𝑘

௘೔𝑗𝑗 אா𝑘𝑘א௄

+ ෍ ௜݂𝑗𝑗ݔ௜𝑗𝑗
௘೔𝑗𝑗 אா

 ሺ1ሻ

 ෍ ௜𝑗𝑗ݕ𝑘𝑘ݍ
𝑘𝑘

௄א

൑ ݈௜𝑗𝑗ݔ௜𝑗𝑗 ݁׊௜𝑗𝑗 א ሺʹሻ ܧ

෍ ௜𝑗𝑗ݕ
𝑘𝑘

𝑗𝑗ǣ௘೔𝑗𝑗 אா

െ ෍ 𝑗𝑗௜ݕ
𝑘𝑘

𝑗𝑗ǣ௘𝑗𝑗೔ אா

= ቐ
1ǡ ݂݅ ݅ = ܱሺ݇ሻ

െ1ǡ ݂݅ ݅ = ሺ݇ሻǡܦ ௜ݒ׊ א ܸ ǡ ݇ א ሺ͵ሻ ܭ
Ͳǡ ݎ݄݁ݐ݋𝑤𝑤݅𝑠𝑠݁Ǥ

 ൫ݕ𝑗𝑗௜
𝑘𝑘 ǡ ௜𝑗𝑗൯ݔ א ሺͶሻ ܯ

௜𝑗𝑗ݔ א ሼͲǡ1ሽ ሺͷሻ

 Ͳ ൑ 𝑗𝑗௜ݕ
𝑘𝑘 ൑ ௜ݒ׊ 1 א ܸǡ ݇ א ሺ͸ሻ ܭ

The aim of Equation (1) is to minimize the network's total cost, which is made up of the cost
of each commodity and the fixed cost of each included arc. The "forcing" limits shown in
Equation (2) ensure that the flow on any arc does not go over the capacity designated for that

36

An Exact Solution for Real-Life Transshipment Path Problem

36

arc. The flow balancing constraint, also known as the flow conservation constraint, is found in
Equation (3) and assures that commodities only enter or exit the network at their respective
origin ܱ(𝑘𝑘) or destination ܦ(𝑘𝑘) nodes. To add additional restrictions to the NDP to adapt it
to particular applications, see the side constraints, Equation (4). The range restrictions for the
flow and decision variables are Equation (5) and Equation (6). The problem examined in this
study is a simple network design problem.

3. PROBLEM DEFINITION

The logistics company has branches and transfer centers to which these branches are
affiliated. Packages are collected from branches in the region of Transfer Center 1 (𝑆𝑆) and
brought to 𝑆𝑆. The vehicle is taken out from 𝑆𝑆 and transferred to Transfer Center 2 (ܶ), then
the vehicles are directed to the branches in the region of ܶ.

In this study, in the scenario given in Figure 1, the optimal route solution that goes to the node
ܶ is obtained by visiting all the points in ܣ = ,1ܣ} ,2ܣ ǥ , ܥ ,{𝑛𝑛ܣ = ,1ܥ} ,2ܥ ǥ , is ܣ .௠}, and 𝑆𝑆ܥ
the set of branches that are connected to the transfer center 𝑆𝑆, while ܥ is the set of branches
that are connected to different transfer centers that are not connected to the transfer center
𝑆𝑆 or ܶ. This combinatory problem is solved by considering all possibilities with some external
factors (weather conditions, traffic, road works, closed roads, etc.).

Figure 1: Problem scenario.

Let 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) be a graph, the node set be 𝑉𝑉 = {𝑆𝑆, ܶ} ׫ ܣ ׫ where the source (Figure 2) ܥ
node ߠ ∈ ܣ ׫ {𝑆𝑆}, a target node ݐ = ܶ. The set of edges E is a distance associated with each
edge (݅, ݆) ∈ 𝐸𝐸, in this study, distances between nodes are taken from the open routing
service. At the same time, a random value is added to this value.

In the problem examined in this study, the starting point must be 𝑆𝑆 or a point from the set ܣ.
There is no priority between point 𝑆𝑆 and a point of set ܣ, so the arc between ܣ and 𝑆𝑆 is
bidirectional in Figure 2. It is not possible to go to any point in set ܥ without visiting point 𝑆𝑆.
After the point 𝑆𝑆 is visited, there is no priority between the elements of set ܥ and set ܣ, and
the route ends at the point ܶ.

arc. The flow balancing constraint, also known as the flow conservation constraint, is found in
Equation (3) and assures that commodities only enter or exit the network at their respective
origin ܱሺ݇ሻ or destination ܦሺ݇ሻ nodes. To add additional restrictions to the NDP to adapt it
to particular applications, see the side constraints, Equation (4). The range restrictions for the
flow and decision variables are Equation (5) and Equation (6). The problem examined in this
study is a simple network design problem.

3. PROBLEM DEFINITION

The logistics company has branches and transfer centers to which these branches are
affiliated. Packages are collected from branches in the region of Transfer Center 1 (ܵ) and
brought to ܵ. The vehicle is taken out from ܵ and transferred to Transfer Center 2 (ܶ), then
the vehicles are directed to the branches in the region of ܶǤ

In this study, in the scenario given in Figure 1, the optimal route solution that goes to the node
ܶ is obtained by visiting all the points in ܣ = ሼܣଵǡ ଶǡܣ ǥ ǡ ܥ ,௡ሽܣ = ሼܥଵǡ ଶǡܥ ǥ ǡ is ܣ .ܵ ௠ሽǡ andܥ
the set of branches that are connected to the transfer center ܵ, while ܥ is the set of branches
that are connected to different transfer centers that are not connected to the transfer center
ܵ or ܶ. This combinatory problem is solved by considering all possibilities with some external
factors (weather conditions, traffic, road works, closed roads, etc.).

Figure 1: Problem scenario.

Let ܩ = ሺܸǡ = ܸ ሻ be a graph, the node set beܧ ሼܵǡ ܶሽ ׫ ܣ ׫ where the source (Figure 2) ܥ
node א ߠ ܣ ׫ ሼܵሽ, a target node ݐ = ܶ. The set of edges E is a distance associated with each
edge ሺ݅ǡ ݆ሻ א in this study, distances between nodes are taken from the open routing ,ܧ
service. At the same time, a random value is added to this value.

In the problem examined in this study, the starting point must be ܵ or a point from the set ܣ.
There is no priority between point ܵ and a point of set ܣ, so the arc between ܣ and ܵ is
bidirectional in Figure 2. It is not possible to go to any point in set ܥ without visiting point ܵ.
After the point ܵ is visited, there is no priority between the elements of set ܥ and set ܣ, and
the route ends at the point ܶ.

37

İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 16(1), 33-42

Figure 2: The graph structure of the problem.

Each node in ܸ ̳ሼܶሽ must be visited once by a vehicle and all vehicle routes will start at the
point in ሼܵሽ ׫ and end at point ܶ. The integer programming formulation to determine the ܣ
route with minimum cost vehicle routes according to the constraints is as follows:

Sets:

ܣ ǣ the set of branches that are connected to the point ܵǡ andܣ • = ሼܣଵǡ ଶǡܣ ǥ ǡ ௡ሽܣ

ܥ ǣ the set of branches that are not connected to the point ܵ or the point ܶǡ andܥ • =
ሼܥଵǡ ଶǡܥ ǥ ǡ ௠ሽǤܥ

• ܸ: the set of all nodes, ܸ = ሼܵǡ ܶሽ ׫ ܣ ׫ Ǥܥ

Parameters:

• ݀௜𝑗𝑗ǣ the edge cost, ݀௜𝑗𝑗 א ܴ

 .a big number :ܯ •

Decision variables:

௜𝑗𝑗: the binary variable that take value 1 if the arc of ሺ݅ǡݔ • ݆ሻ belongs to the path.

௜ߜ ,௜: the order at which location ݅ is visitedߜ • ൐ Ͳ.

 .the starting point :ߠ •

Objective Function:

 ݉݅݊ ෍ ෍ ݀௜𝑗𝑗Ǥ ௜𝑗𝑗ݔ
𝑗𝑗א௏௜א௏

 ሺ͹ሻ

38

An Exact Solution for Real-Life Transshipment Path Problem

38

Constraints:

 ෍ 𝑖𝑖𝑖𝑖ݔ
𝑖𝑖∈௏

 = ͳ, ݆׊ ∈ 𝑉𝑉 ̳{ߠ} (ͺ)

 ෍ 𝑖𝑖𝑖𝑖ݔ
 𝑖𝑖∈௏

 = ͳ, ݅׊ ∈ 𝑉𝑉 ̳{ݐ} (ͻ)

 ෍ 𝑖𝑖ఏݔ
𝑖𝑖∈௏

= Ͳ (ͳͲ)

 ෍ ௧𝑖𝑖ݔ
𝑖𝑖∈௏

= Ͳ (ͳͳ)

𝑖𝑖𝑖𝑖ݔ = Ͳ, ݅׊ ∈ 𝑉𝑉 (ͳʹ)

𝑖𝑖ߜ ൐ 𝑖𝑖ߜ െ 𝑀𝑀൫ͳ െ ,݅ ׊ ,𝑖𝑖𝑖𝑖൯ݔ ݆ ∈ 𝑉𝑉, ݅ ് ݆ (ͳ͵)

௖ߜ ൐ ܿ׊ ,ௌߜ ∈ (ͳͶ) ܥ

Constraints (8) and (9) specify that only one arc enters each vertex, and only one arc leaves
from each vertex, respectively. Constraints (10) and (11) specify that there is no arc entering
 respectively. Constraint (12) means that no node comes ,ݐ and there is no arc leaving from ,ߠ
back to itself; there is no loop. Constraint (13) is for subtour elimination. (If ݔ𝑖𝑖𝑖𝑖 = ͳ, ߜ𝑖𝑖 ൐ (.𝑖𝑖ߜ
Constraint (14) means that any point of the set C cannot be visited without visiting point S.

4. METHODOLOGY AND NUMERICAL EXPERIMENTS

The formula ݂(݊, ݉) for the number of all feasible solutions where ݊ = ȁܣȁ and ݉ = ȁܥȁ is as
follows:

݂(݊, ݉) = ෍ ቀ
݊
݅

ቁ . ݅Ǩ (݉ ൅ ݊ െ ݅)Ǩ
𝑛𝑛

𝑖𝑖ୀ଴

The algorithm is implemented in Python 3.9. All experiments are implemented on a Laptop
with a Core 5 CPU, 64-bit operating system, and 16 GB ram. The algorithm generates all
feasible solutions and calculates the total path distance for every solution. Then we choose
the solution with the minimum total path distance. The number of all feasible solutions for
different m and n values, and algorithm run-time are given in Table 1 and Table 2, respectively.

Constraints:

 ෍ ௜𝑗𝑗ݔ
௜א௏

 = 1ǡ א ݆׊ ܸ ̳ሼߠሽ ሺͺሻ

 ෍ ௜𝑗𝑗ݔ
 𝑗𝑗א௏

 = 1ǡ א ݅׊ ܸ ̳ሼݐሽ ሺͻሻ

 ෍ ௜ఏݔ
௜א௏

= Ͳ ሺ1Ͳሻ

 ෍ ௧𝑗𝑗ݔ
𝑗𝑗א௏

= Ͳ ሺ11ሻ

௜௜ݔ = Ͳǡ א ݅׊ ܸ ሺ1ʹሻ

𝑗𝑗ߜ ൐ ௜ߜ െ ൫1ܯ െ ǡ݅ ׊ ௜𝑗𝑗൯ǡݔ א ݆ ܸǡ ݅ ് ݆ ሺ1͵ሻ

𝑐𝑐ߜ ൐ 𝑐𝑐׊ ௌǡߜ א ሺ1Ͷሻ ܥ

Constraints (8) and (9) specify that only one arc enters each vertex, and only one arc leaves
from each vertex, respectively. Constraints (10) and (11) specify that there is no arc entering
 ǡ respectively. Constraint (12) means that no node comesݐ and there is no arc leaving from ,ߠ
back to itself; there is no loop. Constraint (13) is for subtour elimination. (If ݔ௜𝑗𝑗 = 𝑗𝑗ߜ ,1 ൐ (.௜ߜ
Constraint (14) means that any point of the set C cannot be visited without visiting point S.

4. METHODOLOGY AND NUMERICAL EXPERIMENTS

The formula ݂ሺ݊ǡ ݉ሻ for the number of all feasible solutions where ݊ = ȁܣȁ and ݉ = ȁܥȁ is as
follows:

݂ሺ݊ǡ ݉ሻ = ෍ ቀ
݊
݅ ቁ Ǥ ݅Ǩ ሺ݉ + ݊ െ ݅ሻǨ

௡

௜ୀ଴

The algorithm is implemented in Python 3.9. All experiments are implemented on a Laptop
with a Core 5 CPU, 64-bit operating system, and 16 GB ram. The algorithm generates all
feasible solutions and calculates the total path distance for every solution. Then we choose
the solution with the minimum total path distance. The number of all feasible solutions for
different m and n values, and algorithm run-time are given in Table 1 and Table 2, respectively.

39

İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 16(1), 33-42

Table 1: The number of feasible solutions.

f(x) m=0 m=1 m=2 m=3 m=4 m=5 m=6
n=0 1 1 2 6 24 120 720
n=1 2 3 8 30 144 840 5760
n=2 6 12 40 180 1008 6720 51840
n=3 24 60 260 1260 8064 60480 518400
n=4 120 360 1680 10080 72576 604800 5702400
n=5 720 2520 13440 90720 725760 6652800 68428800
n=6 5040 20160 120960 907200 7983360 79833600 889574400

Table 2: Algorithm run-time (miliseconds).

t m=0 m=1 m=2 m=3 m=4 m=5
n=0 0 0 0 0 0 0
n=1 0 0 0 0 0 0
n=2 0 0 0 0 0 15
n=3 0 0 0 0 16 113
n=4 0 0 0 17 188 1443
n=5 0 0 16 171 1585 14794

The mathematical model is also modeled by Gams 36. The real-life problem given above is
also solved by this Gams model, and it was seen that the same optimal solution was obtained.

A real-life problem instance where ܵ = ሼGܯܶ ݎ݅݉ݖሽ, ܶ = ሼܯܶ ܽݕ݈ܽݐ݊ܣሽ, 6 branches
connected to S (n=6) and 3 branches not connected to S and T (m=3) is examined. For these
specific m and n values, the number of feasible solutions is 907200, and the run-time of the
algorithms is measured as 1569 milliseconds. The optimal solution is shown in Figure 3.

Figure 3: The optimal solution of the real-life example with n=6 branches (red), m=3 branches (blue),

and transfer centers (black).

40

An Exact Solution for Real-Life Transshipment Path Problem

40

5. CONCLUSION

In this study, the problem of transshipment between transfer centers in logistics structure is
discussed. While transferring between two transfer centers, the brute force optimal result
was determined by adding the branches to the route and examining all combinations with the
counting algorithm for the optimal route result. It is concluded that it is a suitable algorithm
for real-life small-sized problems. However, the heuristic algorithm can be proposed to solve
large-sized problems in the future.

ACKNOWLEDGMENT

I would like to thank TUBITAK for providing opportunities through the 2244 Program and the
logistics company that supported me with data.

REFERENCES

Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem.
Operations Research, 12(2), 300–304. https://doi.org/10.1287/opre.12.2.300

Bellmore, M., & Nemhauser, G. L. (1968). The traveling salesman problem: A survey.
Operations Research, 16(3), 538–558. https://doi.org/10.4018/978-1-7998-3970-
5.ch006

Boruvka, O. ;ϭϵϮϲͿ. Borƽvka, Otakar: Scholarly works. The Czech Digital Matematics Library.
37-58.

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal
of the Operational Research Society, 20(3), 309–318.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4), 568–581.
https://doi.org/10.1287/opre.12.4.568

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
Research, 6(6), 791-812.

Eilon, S., Watson-Gandy, C. D. T., & Heilbron, A. (1971). A vehicle fleet costs more.
International Journal of Physical Distribution, 1(3), 126–132.
https://doi.org/10.1108/eb038836

Feremans, C., Labbé, M., & Laporte, G. (2003). Generalized network design problems.
European Journal of Operational Research, 148(1), 1–13.
https://doi.org/10.1016/S0377-2217(02)00404-6

Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch problem.
Operations Research, 22(2), 340–349.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-
0548(86)90048-1

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). Formal basis for the heuristic determination
Eijj. Systems Science and Cybernetics, 4(2), 100–107.

5. CONCLUSION

In this study, the problem of transshipment between transfer centers in logistics structure is
discussed. While transferring between two transfer centers, the brute force optimal result
was determined by adding the branches to the route and examining all combinations with the
counting algorithm for the optimal route result. It is concluded that it is a suitable algorithm
for real-life small-sized problems. However, the heuristic algorithm can be proposed to solve
large-sized problems in the future.

ACKNOWLEDGMENT

This publication has been created by utilizing TUBITAK-2244 Industrial Doctorate Program
(Project No: 119C147). However, all responsibility for the publication belongs to the owners of
the publication. Financial support from TUBITAK does not constitute an endorsement by TUBI-
TAK of the scientific content of the publication.
I would also like to thank the logistics company that provided data support for this study.

REFERENCES

Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem.
Operations Research, 12(2), 300–304. https://doi.org/10.1287/opre.12.2.300

Bellmore, M., & Nemhauser, G. L. (1968). The traveling salesman problem: A survey.
Operations Research, 16(3), 538–558. https://doi.org/10.4018/978-1-7998-3970-
5.ch006

Boruvka, O. (1926). Borůvka, Otakar: Scholarly works. The Czech Digital Matematics Library.
37-58.

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal
of the Operational Research Society, 20(3), 309–318.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4), 568–581.
https://doi.org/10.1287/opre.12.4.568

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
Research, 6(6), 791-812.

Eilon, S., Watson-Gandy, C. D. T., & Heilbron, A. (1971). A vehicle fleet costs more.
International Journal of Physical Distribution, 1(3), 126–132.
https://doi.org/10.1108/eb038836

Feremans, C., Labbé, M., & Laporte, G. (2003). Generalized network design problems.
European Journal of Operational Research, 148(1), 1–13.
https://doi.org/10.1016/S0377-2217(02)00404-6

Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch problem.
Operations Research, 22(2), 340–349.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-
0548(86)90048-1

41

İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 16(1), 33-42

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the ACM
(JACM), 9(3), 297–314. https://doi.org/10.1145/321127.321128

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671–680. https://doi.org/10.1007/978-3-642-24974-7_7

Kruskal, J. B., Jr. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. American Mathematical Society, 7(1), 48–50.

Lin, S., & Kernighan, B. W. (1973). An eīective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2), 498–516. https://doi.org/10.1007/s10489-006-
8514-7

Open Routing Service. (n.d.). https://openrouteservice.org/

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System
Technical Journal, 36(6), 1389–1401. https://doi.org/10.1002/j.1538-
7305.1957.tb01515.x

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). Formal basis for the heuristic determination
Eijj. Systems Science and CybernĞticƐ, 4(2), 100–107.

42

