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Abstract  Özet 
In industrial engineering, transportation planning, vehicle 
routing problem, warehousing, inventory management, 
and customer service are logistics problems. Graph theory 
algorithms provide solutions to logistics problems such as 
the shortest path, minimum spanning tree, and vehicle 
routing problems. In a logistics company system with 
branches and transfer centers to which the branches are 
affiliated, if the sorting process is carried out in the transfer 
centers, the deliveries collected from the branches must be 
transported to a transfer center. Thus, there are situations 
where delivery is transferred in the sending branch, the 
sending transfer center, the receiving transfer center, and 
the receiving branch, respectively. In this flow, transferring 
with a single transfer center without visiting two transfer 
centers reduces the total cost. While moving from the 
sender transfer center to the receiver transfer center, 
stopping by some branches on the way allows us to 
complete the transfer process with a single transfer center 
and eliminates the necessity of leaving the vehicle from the 
receiver transfer center to these branches again. Thus, the 
number of vehicles that need to go from the receiver 
transfer center to the branches is reduced. The mentioned 
logistics structure is defined as a graph that is considered a 
network design problem. Given the sender transfer center 
ܵ, the receiver transfer center ܶ, the set of branches ܣ 
connected to ܵ, and the set of branches ܥ that are not 
connected to ܵ or ܶǡ a counting algorithm that gives the 
minimum value route among all combinations are designed 
in order to find the optimal route from the source node 𝑠𝑠 א
ܣ  ׫ ሼܵሽ,  to the target node ݐ = ܶ. The algorithm has been 
implemented in Python and Gams and tested by the 
different number of elements of the set  ܣ and the set ܥ. 

Şubelerin ve şubelerin bağlı olduğu aktarma merkezlerinin 
bulunduğu bir lojistik firma sisteminde, eğer ayrıştırma 
işlemi aktarma merkezlerinde yapılıyorsa, şubelerden 
toplanan gönderilerinbir aktarma merkezine taşınması 
gerekir. Böylece gönderiler sırasıyla gönderen şubede, 
gönderen transfer merkezinde, alıcı transfer merkezinde ve 
alıcı şubede transfer edildiği durumlar ortaya çıkmaktadır. 
Bu akışta iki aktarma merkezine uğramadan tek bir aktarma 
merkezi ile aktarma yapılması toplam maliyeti 
düşürmektedir. Gönderici aktarma merkezinden alıcı 
aktarma merkezine hareket ederken yol üzerindeki bazı 
şubelere uğramak aktarma işlemini tek bir aktarma merkezi 
ile tamamlamamızı sağlar ve alıcı aktarma merkezinden bu 
şubelere tekrar araç yönlendirme zorunluluğunu ortadan 
kaldırır. Böylece alıcı aktarma merkezinden şubelere 
gitmesi gereken araç sayısı azaltılmış oluyor. Söz konusu 
lojistik yapı, bir ağ tasarım problemi olarak ele alınan bir 
çizge olarak tanımlanmaktadır. Gönderici transfer merkezi 
ܵ, alıcı transfer merkezi  ܶ, ܵ Ԣye bağlı ܣ şubeleri kümesi ve ܵ 
veya ܶΖye bağlı olmayan ܥ şubeleri kümesi verildiğinde, 𝑠𝑠 א
ܣ  ׫ ሼܵሽ kaynak düğümünden ݐ = ܶ hedef düğümüne 
giden en uygun rotayı bulmak için tüm kombinasyonlar 
arasından minimum değerli rotayı veren bir sayma 
algoritması tasarlanmıştır. Algoritma Python ve Gams'da 
uygulanmış ve A ve � kümelerinin farklı eleman sayıları ile 
test edilmiştir. 
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1. INTRODUCTION 

Logistics network topology analysis studies have been carried out in the literature with the 
definitions of graph theory. A method to analyze the attributes of nodes and edges in the 
graph structure of the Urban Logistics system, with some graph theory and complex network 
definitions, was proposed (Li & Zhang, 2009). In transportation planning, factors such as 
reducing transportation cost, route length, and the number of machines (or drivers) are of 
great importance in order to maximize profit (Malandraki et al., 2001). 

In the logistics system, some problems such as Shortest Path Problem, Vehicle Routing 
Problem, Traveling Salesman Problem, and Minimum Spanning Tree are well-known Network 
Design Problems (Feremans et al., 2003). The Network Design problem is the problem of 
finding the 𝑆𝑆𝐺𝐺  subgraph of a 𝐺𝐺 graph that satisfies the balance of the flow and side constraints. 

Exact algorithms such as Set Partitioning Algorithm (Balinski & Quandt, 1964), Branch-and-
Bound Algorithm (Christofides & Eilon, 1969), Dynamic Programming (Eilon et al., 1971), and 
heuristics such as Clarke and Wright Algorithm (Clarke & Wright, 1964), Nearest Neighbor 
Algorithm (Bellmore & Nemhauser, 1968), A* Search Algorithm (Hart et al., 1968),  Set 
Partitioning Heuristics (Gillett & Miller, 1974), 2-Opt & 3- Opt (Croes, 1958), Lin Kernighan 
Heuristic (Lin & Kernighan, 1973), Tabu Search (Glover, 1986), Simulated Annealing 
(Kirkpatrick et al., 1983), Genetic Algorithm  (Holland, 1962) have been developed since the 
early 20th century for the solution of VRP and TSP. 

Kruskal’s Algorithm (Kruskal, 1956), Prim’s Algorithm (Prim, 1957), Boruvka’s Algorithm 
(Boruvka, 1926) are known as solution algorithms for the minimum spanning tree problem. 

The Shortest Path Algorithm is a simple network design algorithm. Various methods such as 
Dijkstra’s Shortest Path algorithm (Dijkstra, 1959), Bellman-Ford Algorithm (Bellman, 1958; 
Ford, 1956), Floyd- Warshall’s Algorithm (Floyd, 1962), and Path Labeling Algorithm (Pandian 
& Rajendran, 2010) have been developed since the past to solve this problem. 

2. NETWORK DESIGN PROBLEM 

The Network Design Problem's  (NDP) goal is to identify the optimal subgraph 𝑆𝑆𝐺𝐺   =  (𝑉𝑉 ′, 𝐸𝐸′ )   
in a graph 𝐺𝐺 =  (𝑉𝑉, 𝐸𝐸)  under the constraints of forcing, flow balance, and side constraints 
(Magnanti, 1984). In order to explain NDP, sets, parameters, and decision variables notations 
are defined as 

Sets: 

 𝑉𝑉 =  {𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑛𝑛} is the set of nodes and 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 is the node in the set of nodes 

 𝐸𝐸 contains each edge 𝑒𝑒𝑖𝑖𝑖𝑖 from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑖𝑖  

 𝑘𝑘  is the commodity in the commodities set 𝐾𝐾 

 𝑀𝑀 is the constraints set 
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Parameters: 

• 𝑐𝑐௜𝑗𝑗
𝑘𝑘  is the cost of one unit ݇ א along ݁௜𝑗𝑗 ܭ א   ܧ

• ௜݂𝑗𝑗 is the fixed cost of containing  ݁௜𝑗𝑗 א   ܧ

݇ 𝑘𝑘 is the total quantity of commodityݍ • א  ܭ

• ݈௜𝑗𝑗 is the capacity of  ݁௜𝑗𝑗 א   ܧ

Decision Variables: 

௜𝑗𝑗ݔ • =  ൜
1ǡ        ݂݅ ݁௜𝑗𝑗 א   ீܵ ݄݁ݐ ݊݅ ݃݊݅݊݅ܽݐ݊݋𝑠𝑠 𝑐𝑐݅ ܧ
Ͳǡ                                                     ݎ݄݁ݐ݋𝑤𝑤݅𝑠𝑠݁

 

௜𝑗𝑗ݕ •
𝑘𝑘  is the fraction of commodity ݇ א on ݁௜𝑗𝑗 ܭ א  ܸ 

Mathematical Formulation: 

                    ��� ෍ ෍ 𝑐𝑐௜𝑗𝑗
𝑘𝑘 ௜𝑗𝑗ݕ𝑘𝑘ݍ 

𝑘𝑘

௘೔𝑗𝑗 אா𝑘𝑘א௄

+ ෍ ௜݂𝑗𝑗ݔ௜𝑗𝑗 
௘೔𝑗𝑗 אா

                                              ሺ1ሻ 

                       ෍ ௜𝑗𝑗ݕ𝑘𝑘ݍ
𝑘𝑘

௄א

൑ ݈௜𝑗𝑗ݔ௜𝑗𝑗               ݁׊௜𝑗𝑗 א   ሺʹሻ                                                 ܧ

෍ ௜𝑗𝑗ݕ
𝑘𝑘

𝑗𝑗ǣ௘೔𝑗𝑗 אா  

െ ෍ 𝑗𝑗௜ݕ
𝑘𝑘

𝑗𝑗ǣ௘𝑗𝑗೔ אா  

= ቐ
1ǡ   ݂݅ ݅ = ܱሺ݇ሻ                                                               

െ1ǡ    ݂݅ ݅ = ሺ݇ሻǡܦ ௜ݒ׊ א ܸ ǡ ݇ א ሺ͵ሻ       ܭ
Ͳǡ     ݎ݄݁ݐ݋𝑤𝑤݅𝑠𝑠݁Ǥ                                                            

   

 

                          ൫ݕ𝑗𝑗௜
𝑘𝑘 ǡ ௜𝑗𝑗൯ݔ א  ሺͶሻ                                                                                       ܯ

௜𝑗𝑗ݔ                            א ሼͲǡ1ሽ                                                                                            ሺͷሻ 

                          Ͳ ൑ 𝑗𝑗௜ݕ
𝑘𝑘 ൑ ௜ݒ׊               1 א ܸǡ ݇ א  ሺ͸ሻ                                       ܭ

 

The aim of Equation (1) is to minimize the network's total cost, which is made up of the cost 
of each commodity and the fixed cost of each included arc. The "forcing" limits shown in 
Equation (2) ensure that the flow on any arc does not go over the capacity designated for that 
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arc. The flow balancing constraint, also known as the flow conservation constraint, is found in 
Equation (3) and assures that commodities only enter or exit the network at their respective 
origin ܱ(𝑘𝑘)  or destination ܦ(𝑘𝑘) nodes. To add additional restrictions to the NDP to adapt it 
to particular applications, see the side constraints, Equation (4). The range restrictions for the 
flow and decision variables are Equation (5) and Equation (6). The problem examined in this 
study is a simple network design problem. 

3. PROBLEM DEFINITION 

The logistics company has branches and transfer centers to which these branches are 
affiliated. Packages are collected from branches in the region of Transfer Center 1 (𝑆𝑆) and 
brought to 𝑆𝑆. The vehicle is taken out from 𝑆𝑆 and transferred to Transfer Center 2 (ܶ), then 
the vehicles are directed to the branches in the region of ܶ. 

In this study, in the scenario given in Figure 1, the optimal route solution that goes to the node 
ܶ is obtained by visiting all the points in ܣ = ,1ܣ}  ,2ܣ ǥ , ܥ  ,{𝑛𝑛ܣ = ,1ܥ} ,2ܥ ǥ ,  is ܣ .௠}, and 𝑆𝑆ܥ
the set of branches that are connected to the transfer center 𝑆𝑆, while  ܥ is the set of branches 
that are connected to different transfer centers that are not connected to the transfer center 
𝑆𝑆 or ܶ. This combinatory problem is solved by considering all possibilities with some external 
factors (weather conditions, traffic, road works, closed roads, etc.). 

 
Figure 1: Problem scenario. 

Let 𝐺𝐺 =  (𝑉𝑉, 𝐸𝐸) be a graph, the node set be 𝑉𝑉 = {𝑆𝑆, ܶ} ׫ ܣ ׫  where the source (Figure 2) ܥ
node ߠ ∈ ܣ  ׫ {𝑆𝑆}, a target node ݐ = ܶ. The set of edges E is a distance associated with each 
edge  (݅, ݆) ∈  𝐸𝐸, in this study, distances between nodes are taken from the open routing 
service. At the same time, a random value is added to this value. 

In the problem examined in this study, the starting point must be 𝑆𝑆 or a point from the set ܣ. 
There is no priority between point 𝑆𝑆 and a point of set ܣ, so the arc between ܣ and 𝑆𝑆 is 
bidirectional in Figure 2. It is not possible to go to any point in set ܥ without visiting point 𝑆𝑆. 
After the point 𝑆𝑆 is visited, there is no priority between the elements of set ܥ and set ܣ, and 
the route ends at the point ܶ. 
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Figure 2: The graph structure of the problem. 

Each node in ܸ ̳ሼܶሽ must be visited once by a vehicle and all vehicle routes will start at the 
point in ሼܵሽ ׫  and end at point ܶ.  The integer programming formulation to determine the ܣ
route with minimum cost vehicle routes according to the constraints is as follows: 

Sets: 

ܣ ǣ the set of branches that are connected to the point ܵǡ andܣ • =  ሼܣଵǡ ଶǡܣ ǥ ǡ  ௡ሽܣ

ܥ ǣ the set of branches that are not connected to the point ܵ or the point ܶǡ andܥ • =
ሼܥଵǡ ଶǡܥ ǥ ǡ  ௠ሽǤܥ

• ܸ: the set of all nodes, ܸ = ሼܵǡ ܶሽ ׫ ܣ ׫  Ǥܥ

Parameters:  

• ݀௜𝑗𝑗ǣ the edge cost, ݀௜𝑗𝑗 א   ܴ 

 .a big number :ܯ •

Decision variables:  

௜𝑗𝑗: the binary variable that take value 1 if the arc of ሺ݅ǡݔ • ݆ሻ belongs to the path.          

௜ߜ ,௜: the order at which location ݅ is visitedߜ • ൐ Ͳ. 

 .the starting point :ߠ •

Objective Function: 

                       ݉݅݊ ෍ ෍ ݀௜𝑗𝑗Ǥ ௜𝑗𝑗ݔ
𝑗𝑗א௏௜א௏

                                                 ሺ͹ሻ 
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Constraints: 

                           ෍ 𝑖𝑖𝑖𝑖ݔ
𝑖𝑖∈௏

 =  ͳ,       ݆׊ ∈  𝑉𝑉 ̳{ߠ}                                     (ͺ)      

                       ෍ 𝑖𝑖𝑖𝑖ݔ
 𝑖𝑖∈௏

 =  ͳ,       ݅׊ ∈  𝑉𝑉 ̳{ݐ}                                     (ͻ)   

                                 ෍ 𝑖𝑖ఏݔ
𝑖𝑖∈௏

= Ͳ                                                          (ͳͲ) 

                                 ෍ ௧𝑖𝑖ݔ
𝑖𝑖∈௏

= Ͳ                                                          (ͳͳ) 

𝑖𝑖𝑖𝑖ݔ                    = Ͳ,                 ݅׊ ∈  𝑉𝑉                                               (ͳʹ) 

𝑖𝑖ߜ     ൐ 𝑖𝑖ߜ െ 𝑀𝑀൫ͳ െ ,݅ ׊            ,𝑖𝑖𝑖𝑖൯ݔ ݆ ∈  𝑉𝑉,   ݅ ് ݆                       (ͳ͵) 

௖ߜ                         ൐ ܿ׊            ,ௌߜ ∈  (ͳͶ)                                                ܥ

Constraints (8) and (9) specify that only one arc enters each vertex, and only one arc leaves 
from each vertex, respectively. Constraints (10) and (11) specify that there is no arc entering 
 respectively. Constraint (12) means that no node comes ,ݐ and there is no arc leaving from ,ߠ
back to itself; there is no loop. Constraint (13) is for subtour elimination. (If ݔ𝑖𝑖𝑖𝑖 = ͳ, ߜ𝑖𝑖 ൐  (.𝑖𝑖ߜ
Constraint (14) means that any point of the set C cannot be visited without visiting point S. 

4. METHODOLOGY AND NUMERICAL EXPERIMENTS 

The formula ݂(݊, ݉) for the number of all feasible solutions where ݊ = ȁܣȁ and ݉ = ȁܥȁ is as 
follows: 

݂(݊, ݉) = ෍ ቀ
݊
݅

ቁ . ݅Ǩ (݉ ൅ ݊ െ ݅)Ǩ
𝑛𝑛

𝑖𝑖ୀ଴

 

The algorithm is implemented in Python 3.9. All experiments are implemented on a Laptop 
with a Core 5 CPU, 64-bit operating system, and 16 GB ram. The algorithm generates all 
feasible solutions and calculates the total path distance for every solution. Then we choose 
the solution with the minimum total path distance. The number of all feasible solutions for 
different m and n values, and algorithm run-time are given in Table 1 and Table 2, respectively. 

 

 

 
 

Constraints: 

                           ෍ ௜𝑗𝑗ݔ
௜א௏

 =  1ǡ       א ݆׊  ܸ ̳ሼߠሽ                                     ሺͺሻ      

                       ෍ ௜𝑗𝑗ݔ
 𝑗𝑗א௏

 =  1ǡ       א ݅׊  ܸ ̳ሼݐሽ                                     ሺͻሻ   

                                 ෍ ௜ఏݔ
௜א௏

= Ͳ                                                          ሺ1Ͳሻ 

                                 ෍ ௧𝑗𝑗ݔ
𝑗𝑗א௏

= Ͳ                                                          ሺ11ሻ 

௜௜ݔ                    = Ͳǡ                 א ݅׊  ܸ                                               ሺ1ʹሻ 

𝑗𝑗ߜ     ൐ ௜ߜ െ ൫1ܯ െ ǡ݅ ׊            ௜𝑗𝑗൯ǡݔ א ݆  ܸǡ   ݅ ് ݆                       ሺ1͵ሻ 

𝑐𝑐ߜ                         ൐ 𝑐𝑐׊            ௌǡߜ א  ሺ1Ͷሻ                                                ܥ

Constraints (8) and (9) specify that only one arc enters each vertex, and only one arc leaves 
from each vertex, respectively. Constraints (10) and (11) specify that there is no arc entering 
 ǡ respectively. Constraint (12) means that no node comesݐ and there is no arc leaving from ,ߠ
back to itself; there is no loop. Constraint (13) is for subtour elimination. (If ݔ௜𝑗𝑗 = 𝑗𝑗ߜ ,1 ൐  (.௜ߜ
Constraint (14) means that any point of the set C cannot be visited without visiting point S. 

4. METHODOLOGY AND NUMERICAL EXPERIMENTS 

The formula ݂ሺ݊ǡ ݉ሻ for the number of all feasible solutions where ݊ = ȁܣȁ and ݉ = ȁܥȁ is as 
follows: 

݂ሺ݊ǡ ݉ሻ = ෍ ቀ
݊
݅ ቁ Ǥ ݅Ǩ ሺ݉ + ݊ െ ݅ሻǨ

௡

௜ୀ଴

 

The algorithm is implemented in Python 3.9. All experiments are implemented on a Laptop 
with a Core 5 CPU, 64-bit operating system, and 16 GB ram. The algorithm generates all 
feasible solutions and calculates the total path distance for every solution. Then we choose 
the solution with the minimum total path distance. The number of all feasible solutions for 
different m and n values, and algorithm run-time are given in Table 1 and Table 2, respectively. 
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Table 1: The number of feasible solutions. 

f(x) m=0 m=1 m=2 m=3 m=4 m=5 m=6 
n=0 1 1 2 6 24 120 720 
n=1 2 3 8 30 144 840 5760 
n=2 6 12 40 180 1008 6720 51840 
n=3 24 60 260 1260 8064 60480 518400 
n=4 120 360 1680 10080 72576 604800 5702400 
n=5 720 2520 13440 90720 725760 6652800 68428800 
n=6 5040 20160 120960 907200 7983360 79833600 889574400 

Table 2: Algorithm run-time (miliseconds). 

t m=0 m=1 m=2 m=3 m=4 m=5 
n=0 0 0 0 0 0 0 
n=1 0 0 0 0 0 0 
n=2 0 0 0 0 0 15 
n=3 0 0 0 0 16 113 
n=4 0 0 0 17 188 1443 
n=5 0 0 16 171 1585 14794 

The mathematical model is also modeled by Gams 36. The real-life problem given above is 
also solved by this Gams model, and it was seen that the same optimal solution was obtained. 

A real-life problem instance where ܵ =  ሼGܯܶ ݎ݅݉ݖሽ, ܶ =  ሼܯܶ ܽݕ݈ܽݐ݊ܣሽ, 6 branches 
connected to S (n=6) and 3 branches not connected to S and T (m=3) is examined. For these 
specific m and n values, the number of feasible solutions is 907200, and the run-time of the 
algorithms is measured as 1569 milliseconds. The optimal solution is shown in Figure 3. 

 
Figure 3: The optimal solution of the real-life example with n=6 branches (red), m=3 branches (blue), 

and transfer centers (black). 
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5. CONCLUSION 

In this study, the problem of transshipment between transfer centers in logistics structure is 
discussed. While transferring between two transfer centers, the brute force optimal result 
was determined by adding the branches to the route and examining all combinations with the 
counting algorithm for the optimal route result. It is concluded that it is a suitable algorithm 
for real-life small-sized problems. However, the heuristic algorithm can be proposed to solve 
large-sized problems in the future. 
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