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Abstract
In this paper we report on a two parameter four-dimensional dynamical system with cyclic symmetry, namely
a circulant dynamical system. This system is a twelve-term polynomial system with four cubic nonlinearities.
Reported are some parameter-space diagrams for this system, all of them considering the same range of
parameters, but generated from different initial conditions. We show that such diagrams display the occurrence
of multistability in this system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction
of coexisting attractors in the related phase-space are presented, as well as an example showing phase portraits
for periodic and chaotic coexisting attractors.
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1. Introduction
In this paper we report numerical results referring to a four-dimensional dynamical system with cyclic symmetry, the so-called
circulant dynamical system [1], which is modeled by an autonomous nonlinear set of four first-order ordinary differential
equations. Such a system was recently proposed by Rajagopal and co-workers [2], being given by

ẋ = ax+by− y3,

ẏ = ay+bz− z3,

ż = az+bw−w3,

ẇ = aw+bx− x3, (1.1)

where x, y, z, w are the dynamical variables, and a, b are the parameters responsible for the type of behavior presented by the
system. We draw attention to the fact that the only nonlinearity present in system (1.1) is of the cubic type, and that reports on
nonlinear models dominated by such terms are not abundant in the literature. Also, it is important to note that the parameter a
must always be negative to guarantee the existence of attractors in the respective phase-space. It is easy to see that negative
values of parameter a make system (1.1) dissipative, since is straightforward to show that the flow divergence is equal to 4a.

System (1.1) was investigated numerically in Ref. [2], both the integer and the fractional order versions. Also, system (1.1)
was investigated in Ref. [2] through a circuit design. Bifurcation diagrams with parameter a kept fixed, and parameter b being
considered as the bifurcation parameter, were used to detect the presence of the multistability phenomenon. Our contribution
to advancing knowledge of this system considers the simultaneous variation of both parameters a and b in the investigation
of multistability. In Sect. 2 we report (a,b) parameter-space diagrams which consider the same ranges for the parameters,
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but generated from different initial conditions. Such procedure will allow, as we will see in detail in the next section, the
detection of multistability areas, instead of the multistability lines obtained in the procedure that uses bifurcation diagrams for
this purpose. Finally, concluding remarks are given in Sect. 3.

2. The Dynamics in Parameter-Space
Here we report on a numerical experiment related to the investigation of the long-term dynamical behavior of system (1.1).
More specifically, five (a,b) parameter-space diagrams are presented, for −3.5 ≤ a ≤−3.0 and 8.0 ≤ b ≤ 10.0. Each of these
diagrams was generated in a different way which we will detail in the following, but they all use the largest Lyapunov exponent
(LLE), computed by using the algorithm in Wolf and collaborators [3], to characterize the dynamical behavior for each choice
of a and b in the respective parameter-space diagram. For each of them the parameter interval was discretized in a grid of
800×800 points, being system (1.1) numerically integrated by using the fourth-order Runge-Kutta algorithm with a time step
equal to 10−3. The average that must be considered in the computation of each of the 6.4×105 LLEs takes into account 4×106

integration steps, after discarding an appropriate transient. As is well known, system (1.1) has four Lyapunov exponents for
each choice of parameters a and b, and its dynamical behavior is characterized by the LLE: (i) equilibrium point if LLE< 0,
(ii) periodic or quasi-periodic motion if LLE= 0, and (iii) chaotic or hyperchaotic motion if LLE> 0. The main purpose of
presenting these five diagrams is to detect differences between the parameter-spaces which, if any, will be a numerical proof of
the occurrence of multistability in system (1.1).

Figure 2.1 shows five versions of a same global view of the (a,b) parameter-space of system (1.1), for −3.5 ≤ a ≤−3.0
and 8.0 ≤ b ≤ 10.0. Color in each diagram is related to the magnitude of the LLE. Parameter regions with a positive LLE,
painted in a color that ranges from yellow to red, relate to chaotic behavior, while parameter regions in black color stand for
periodic solutions and have LLE= 0. The small gray region at the bottom left in each diagram, for which the LLE< 0, concerns
to parameters that lead the system to equilibrium points.

The diagram in Fig. 2.1(a) was generated always from a same arbitrary initial condition, regardless of the values of the
parameters a and b. Once the set of parameters is defined, system (1.1) is numerically integrated, the respective time series
obtained, and the related Lyapunov exponents spectrum is computed. In order to generate the diagram in Fig. 2.1(b) we fix
(a,b) = (−3.5,8.0), and initialize system (1.1) with an arbitrary initial condition. Then system (1.1) is numerically integrated,
the respective time series obtained, and the related Lyapunov exponents spectrum is computed. Parameter a is increased, and
system (1.1) is initialized with the variables related to the final point obtained for the prior value of a. The numerical integration
is performed, and a new Lyapunov exponents spectrum is computed from the new time series obtained. Such procedure is
repeated until the highest value of a, namely a =−3.0, is reached. Then parameter b is increased, and the entire procedure is
repeated until the parameter set (a,b) = (−3.0,10.0) is considered in computing. The diagram in Fig. 2.1(c) is constructed in a
manner analogous to that in Fig. 2.1(b), but starting from (a,b) = (−3.0,8.0). Parameter a is decreased until a =−3.5. For
each increased b until (a,b) = (−3.5,10.0), this last procedure is repeated. In short, the diagram in Fig. 2.1(b) [Fig. 2.1(c)] was
generated by using the method following the attractor along lines of constant b, increasing (decreasing) a from −3.5 (−3.0).

Diagrams in Figs. 2.1(d) and 2.1(e) also were generated by using the method following the attractor, but in a different way
from the one used in the generation of Figs. 2.1(b) and 2.1(c), where each time parameter b is changed the system (1.1) is
initialized from a same arbitrary initial condition. This time, however, this initialization happens only once for each of the
diagrams. In the case of Fig. 2.1(d), the parameters are fixed at the lowest values (a,b) = (−3.5,8.0), system (1.1) is initialized
from an arbitrary initial condition, and the attractor is followed until the highest values (a,b) = (−3.0,10.0) are reached. A
similar procedure allows generating Fig. 2.1(e), only now going from the highest values (a,b) = (−3.0,10.0) to the lowest
values (a,b) = (−3.5,8.0).

A cursory glance at the diagrams in Fig. 2.1 misleadingly concludes that they are all identical. However, a closer look
reveals that significant differences exist between them. One of these differences appears, for example, in the chaotic stripe
in yellow crossed by the small line segment in magenta, which is in the same geographical position in each of the diagrams.
In two of them, namely in Figs. 2.1(c) and 2.1(e), there is only one periodic stripe in black embedded in this chaotic stripe,
while in the other three diagrams there are two periodic stripes in black embedded. Thus, we have just identified a region in
the parameter-space of system (1.1), near the magenta line, whose long-term dynamical behavior can be different depending
on the initial condition adopted for the numerical integration of system (1.1). In other words, we can say that system (1.1)
presents at least more than one coexisting attractors in the phase-space, for a kept fixed set of parameters (a,b) in this region,
and this is a signature of the multistability phenomenon [4]. What makes multistable systems worth studying is the fact that this
phenomenon has been observed, for a long time, in mathematical models of nonlinear dynamical systems, in the most varied
fields of knowledge [5–9].
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Figure 2.1. Regions of different dynamical behaviors in the (a,b) parameter-space of system (1.1). Color in each diagram is
related to the magnitude of the largest Lyapunov exponent. (a) Same initial condition, regardless of the values of a and b. (b)
Following the attractor along lines of constant parameter b, from (a,b) = (−3.5,8.0) to (a,b) = (−3.0,10.0). (c) Following
the attractor along lines of constant parameter b, from (a,b) = (−3.0,8.0) to (a,b) = (−3.5,10.0). (d) Following the attractor
from (a,b) = (−3.5,8.0) to (a,b) = (−3.0,10.0). (e) Following the attractor from (a,b) = (−3.0,10.0) to
(a,b) = (−3.5,8.0).

Figure 2.2 shows two bifurcation diagrams for system (1.1), both generated by following the attractor, for points along
the line segment b = 4a+22 in magenta connecting the points (a,b) = (−3.34,8.64) and (a,b) = (−3.31,8.76) in any of the
diagrams in Fig. 2.1. In each of them are shown the local maxima (the peaks) of the variable x, commonly called period and
denoted by xm, for one thousand values of the parameter a. The diagram in blue was generated considering the increase of
the parameter a from −3.34 to −3.31, while that in red considers the decrease of a from −3.31 to −3.34. There are clear
differences between the two bifurcation diagrams in Fig. 2.2 and, as a consequence, a clear evidence of the occurrence of
multistability. For example, in the right region, inside the green box for −3.318 < a <−3.316, we can observe the coexistence
of a chaotic attractor, in red, and a period-5 attractor, in blue.
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Figure 2.2. Two bifurcation diagrams for points along the line segment b = 4a+22 in any of the diagrams in Fig. 2.1.
Diagram in blue (red) considers the increase (decrease) of the parameter a.

The basins of attraction related to the chaotic and the period-5 attractors, in their respective colors, are shown in Fig. 2.3.
In fact, Fig. 2.3 shows a (x0,y0) initial condition cross-section of a four-dimensional (x0,y0,z0,w0) basin of attraction for
system (1.1), namely the one for which z0 = w0 = 3.0, and (a,b) = (−3.317,8.732), a point belonging to the line segment
b = 4a+22 drawn in diagrams of Fig. 2.1. We can see that the basins of the chaotic (in red) and the period-5 (in blue) attractors
are not intermingled, that is, the points belonging to one basin are perfectly distinguishable from the points belonging to the
other basin. Therefore, the basins of attraction in Fig. 2.3 clearly indicate initial conditions leading to either of the two attractors.
Accordingly, since the parameters are kept fixed at (a,b) = (−3.317,8.732), and for z0 = w0 = 3.0, any initial condition point
(x0,y0) chosen in the red region takes the system to a chaotic attractor in the phase-space, whereas any initial condition point
(x0,y0) chosen in the blue region takes the system to a period-5 attractor.

Figure 2.3. Projection of basins of attraction for system (1.1) on the (x0,y0) initial condition plane, for z0 = w0 = 3.0. Blue
(Red) is related to the period-5 (chaotic) attractor basin.

Figure 2.4 shows two-dimensional projections of the two coexisting attractors, a period-5 and a chaotic, all of them
considering the variable x in the horizontal axis, and generated for (a,b) = (−3.317,8.732). For the period-5 attractor shown
in Figs. 2.4(a), 2.4(b), and 2.4(c), the initial condition is (x0,y0,z0,w0) = (1.5,1.0,3.0,3.0), corresponding to the point marked
with a plus sign in the blue region of Fig. 2.3, while for the chaotic attractor shown in Figs. 2.4(e), 2.4(f), and 2.4(g), the initial
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condition is (x0,y0,z0,w0) = (1.0,−1.0,3.0,3.0), corresponding to the point also marked with a plus sign, but this time in the
red region of the same Fig. 2.3. Figures 2.4(d) and 2.4(h) show the evolution over time of the variable x, respectively for the
periodic and the chaotic attractors.

Figure 2.4. Two coexisting attractors for system (1.1). In (a) and (b) and (c) are shown projections of the period-5 attractor. In
(e) (f) and (g) are shown projections of a chaotic attractor. Diagrams in (d) and (h) show the time series for the variable x,
respectively for the period-5 and the chaotic attractors.

3. Summary and Outlook
We have investigated a two parameter four-dimensional dynamical system, namely a circulant dynamical system modeled
by an autonomous set of four first-order ordinary differential equations which presents cubic nonlinearities in all variables,
but no crossed nonlinearities. We have reported some versions of a same parameter-space plot of this system, obtained from
different initial conditions. Such diagrams present sensitive differences that allow us concluding that multistability is a possible
phenomenon in this system for some parameter values. Bifurcation diagrams confirm this finding. As a consequence of the
multistability phenomenon, we also have reported on basins of attraction for coexisting periodic and chaotic attractors.

Therefore, we locate and investigate a region in the parameter-space of the circulant dynamical system, in which the
model displays coexisting periodic and chaotic attractors, for a same set of parameters. It means the presence of an area in
the parameter-space where at least two attractors coexist, depending on the choice of the initial conditions in the numerical
integration of the system. As far as I know, such a result has never been reported in the literature of this field of study, for this
system. Therefore, this work represents an interesting contribution to advancing knowledge of the system under study, deserving
to be read. A possible future work consists of continuing to explore the parameter-space of the circulant dynamical system, in
search of other regions that present multistability, including other sets of coexisting attractors, namely periodic-periodic and
chaotic-chaotic. We understand, therefore, that the circulant dynamical system deserves further investigation.

With regard to the relevance of the occurrence of multistability in nonlinear dynamical systems, it is important to mention
that the phenomenon has been recently reported in several other systems, among them neuron models [10, 11], electronic
circuits [12,13], memristor oscillators [14,15], biological systems [16,17], couplings of Duffing and van der Pol Oscillators [18],
and snap and jerk systems [19, 20], just to name a few among many examples.
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