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Abstract
The paper observes an almost Hermitian manifold as an example of a generalized Rie-
mannian manifold and examines the application of a quarter-symmetric connection on
the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric
connection preserving the generalized Riemannian metric is actually the Kähler manifold.
Observing the six linearly independent curvature tensors with respect to the quarter-
symmetric connection, we construct tensors that do not depend on the quarter-symmetric
connection generator. One of them coincides with the Weyl projective curvature tensor of
symmetric metric g. Also, we obtain the relations between the Weyl projective curvature
tensor and the holomorphically projective curvature tensor. Moreover, we examine the
properties of curvature tensors when some tensors are hybrid.
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1. Introduction
The paper deals with a non-symmetric linear connection, i.e. investigates the linear con-

nection with the torsion tensor. In [11], the authors discussed linear connections in a gener-
alized Riemannian manifold. Among other things, they studied connections with a totally
skew-symmetric torsion tensor and connections with the Einstein metricity condition (see
also [12]). Paper [17] studied the semi-symmetric metric connection and properties of the
curvature tensor and determined the relations between Weyl projective curvature tensor,
conformal curvature tensor, and concircular curvature tensor. S. Golab in [9] defined the
quarter-symmetric connection as a generalization of the semi-symmetric connection. After
the initial work, the theory of quarter-symmetric connection was expanded by many au-
thors in various manifolds (for instance see [2,3,5,6,10,13,21]). In paper [22], M. Tripathi
introduced a new linear connection with torsion tensor in a Riemannian manifold, which
generalizes several semi-symmetric and quarter-symmetric connections.
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In paper [28], the authors defined a quarter-symmetric generalized metric connection on
a generalized Riemannian manifold as a connection that preserves the generalized (non-
symmetric) Riemannian metric. The paper determined relations for curvature tensors and
studied their skew-symmetric and cyclic-symmetric properties. Now we will deal with the
application of the quarter-symmetric connection on the almost Hermitian manifold. We
will show that the almost Hermitian manifold with quarter-symmetric generalized metric
connection is actually a Kähler manifold. Accordingly, we will find some identities for
the holomorphically projective curvature tensor and the Weyl projective curvature tensor.
The holomorphically projective curvature tensor given by equation

g

P (X, Y )Z =
g

R(X, Y )Z + 1
n + 2

(
g

Ric(X, Z)Y −
g

Ric(Y, Z)X)

− 1
n + 2

(
g

Ric(X, AZ)AY −
g

Ric(Y, AZ)AX + 2
g

Ric(X, AY )AZ)
(1.1)

is invariant under holomorphically projective mapping between two Kähler manifolds
(see [19, 24]). Such mapping is a natural generalization of geodesic mapping. The Weyl
projective curvature tensor given by equation

g

W (X, Y )Z =
g

R(X, Y )Z + 1
n − 1

(
g

Ric(X, Z)Y −
g

Ric(Y, Z)X) (1.2)

is invariant under geodesic mapping between two Riemannian manifolds (for instance see
[14]).

2. Preliminaries
Let (M, G = g+F ) be a generalized Riemannian manifold, where M is an n-dimensional

differentiable manifold, G is a non-symmetric (0,2) tensor (the so-called generalized Rie-
mannian metric), g is the symmetric part of G and F is the skew-symmetric part of G.
Tensor A is defined as a tensor associated with tensor F , i.e.

F (X, Y ) = g(AX, Y ). (2.1)

The quarter-symmetric connection
1
∇ preserving generalized Riemannian metric G,

1
∇G =

0, is called quarter-symmetric generalized metric connection (i.e. quarter-symmetric G-
metric connection), and it is determined by equations (see [28])

1
∇XY =

g

∇XY − π(X)AY (2.2)

and

(
1
∇Xg)(Y, Z) = 0, (2.3)

(
1
∇XA)Y = (

g

∇XA)Y = 0, (2.4)

where π is a 1-form associated with vector field P , i.e. π(X) = g(X, P ), and
g

∇ is a Levi-
Civita connection. A 1-form π is called the generator of that connection. The covariant
derivative of generator π is given by equation

(
1
∇Xπ)(Y ) = (

g

∇Xπ)(Y ) + π(X)π(AY ).

The torsion tensor of connection
1
∇ is given by equation

1
T (X, Y ) = π(Y )AX − π(X)AY,

from which it follows
1
T (X, Y, Z) = g(

1
T (X, Y ), Z) = π(Y )F (X, Z) − π(X)F (Y, Z).
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The following statement gives known relations between curvature tensors
θ
R, θ = 0,

1, . . . , 5, and Riemannian curvature tensor
g

R.
Theorem 2.1 ([28]). Let (M, G = g + F ) be a generalized Riemannian manifold with the

quarter-symmetric G-metric connection (2.2). The curvature tensors
θ
R, θ = 0, 1, . . . , 5

and Riemannian curvature tensor
g

R satisfy the following relations
0
R(X, Y )Z =

g

R(X, Y )Z − 1
2

(
0
D(X, Y ) −

0
D(Y, X))AZ − 1

2
0
D(X, Z)AY + 1

2
0
D(Y, Z)AX

− 1
4

π(Z)(π(Y )A2X − π(X)A2Y ),
(2.5)

1
R(X, Y )Z =

g

R(X, Y )Z −
1
D(X, Y )AZ, (2.6)

2
R(X, Y )Z =

g

R(X, Y )Z −
2
D(X, Z)AY +

2
D(Y, Z)AX, (2.7)

3
R(X, Y )Z =

g

R(X, Y )Z −
2
D(X, Y )AZ +

3
D(Y, Z)AX, (2.8)

4
R(X, Y )Z =

g

R(X, Y )Z −
3
D(X, Y )AZ +

3
D(Y, Z)AX − π(Z)(π(Y )A2X − π(X)A2Y ), (2.9)

5
R(X, Y )Z =

g

R(X, Y )Z − 1
2

(
2
D(X, Y ) −

3
D(Y, X))AZ − 1

2
3
D(X, Z)AY + 1

2
2
D(Y, Z)AX

+ 1
2

π(Y )(π(X)A2Z − π(Z)A2X),
(2.10)

where
0
D(X, Y ) = (

g

∇Xπ)(Y ) + 1
2

π(X)π(AY ) + 1
2

π(Y )π(AX), (2.11)
1
D(X, Y ) = (

g

∇Xπ)(Y ) − (
g

∇Y π)(X), (2.12)
2
D(X, Y ) = (

g

∇Xπ)(Y ) + π(Y )π(AX), (2.13)
3
D(X, Y ) = (

g

∇Xπ)(Y ) + π(X)π(AY ) = (
1
∇Xπ)(Y ). (2.14)

The corresponding (0,4) curvature tensors are defined by relations
θ
R(X, Y, Z, W ) = g(

θ
R(X, Y )Z, W ), θ = 0, 1, . . . , 5 and

g

R(X, Y, Z, W ) = g(
g

R(X, Y )Z, W ).
The corresponding Ricci tensors are defined by relations

θ
Ric(Y, Z) = Trace{X →

θ
R(X, Y )Z}, θ = 0, 1, . . . , 5 and

g

Ric(Y, Z) = Trace{X →
g

R(X, Y )Z}.

3. Almost Hermitian manifolds
Depending on the properties of tensor A, we can observe various examples of the gen-

eralized Riemannian manifold (see [11]). An almost Hermitian manifold (M, g, A) is an
n-dimensional Riemannian manifold (M, g) (where n = 2k ≥ 4) equipped with almost
complex structure A which satisfies

A2 = −I, g(AX, AY ) = g(X, Y ). (3.1)
The fundamental 2-form F (the so-called the Kähler form) is defined by F (X, Y ) =
g(AX, Y ). The following equations also apply to the almost Hermitian manifold

F (AX, Y ) = −F (X, AY ) = −g(X, Y ) and F (AX, AY ) = F (X, Y ). (3.2)
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From equations (2.1), (3.1), (3.2), we conclude that

G(AX, Y ) = −G(X, AY ) = −G(Y, X) and G(AX, AY ) = G(X, Y ). (3.3)

An almost Hermitian manifold (M, g, A) can be considered as a generalized Riemannian
manifold (M, G = g + F ) that satisfies relations (3.1) (see [11, 18]), where the skew-
symmetric part F of basic tensor G is defined with F (X, Y ) = g(AX, Y ). We will observe
an almost Hermitian manifold (M, g, A) with a quarter-symmetric G-metric connection
(2.2). Actually, such a connection preserves the almost Hermitian structure (g, A), i.e.
1
∇g =

1
∇A = 0. A linear connection that preserves the almost Hermitian structure is called

the almost Hermitian connection (also known as a natural connection) (for instance, see
[8,27]), which means that quarter-symmetric G-metric connection is an almost Hermitian
connection.

Theorem 3.1. The torsion tensor
1
T of quarter-symmetric connection (2.2) on an almost

Hermitian manifold satisfies the following relations

A
1
T (AX, AY ) = A

1
T (X, Y ) −

1
T (AX, Y ) −

1
T (X, AY ),

1
T (X, Y, Z) =

1
T (AX, AY, Z) +

1
T (AX, Y, AZ) +

1
T (X, AY, AZ),

σ
XY Z

1
T (X, Y, Z) = σ

XY Z
(

1
T (AX, Y, AZ) +

1
T (X, AY, AZ)),

where σ
XY Z

denote the cyclic sum with respect to the vector fields X, Y, Z.

Proof. These relations can be proven by using the property of skew-symmetric 2-form F
in almost Herimitian manifolds, i.e. by using equations (3.1) and (3.2). □

An almost Hermitian manifold is a Kähler manifold if
g

∇A = 0. From equation (2.4),
we see that structure tensor A is parallel with respect to the Levi-Civita connection, and
it implies the following statement.

Theorem 3.2. The almost Hermitian manifold (M, g, A) with quarter-symmetric connec-
tion (2.2) preserving the generalized Riemannian metric G is the Kähler manifold.

Following the previous theorem, further consideration will be related with the Kähler
manifold. For this manifold, the term "generalized metric (i.e. G-metric) connection" is
equivalent to the term "metric A-connection" (note that many papers use the term "metric
F -connection", as F is used to denote (1,1) structure tensor).

The Riemannian curvature tensor
g

R on the Kähler manifold (M, g, A) satisfies the
following relations (for instance see [4, 14])

g

R(X, Y )AZ = A
g

R(X, Y )Z, (3.4)
g

R(X, Y, AZ, AW ) =
g

R(AX, AY, Z, W ), (3.5)
g

R(X, AY, AZ, W ) =
g

R(AX, Y, Z, AW ), (3.6)
g

R(AX, AY, AZ, AW ) =
g

R(X, Y, Z, W ), (3.7)
g

R(X, Y, Z, AW ) = −
g

R(X, Y, AZ, W ). (3.8)

Moreover, if the (0,2) type tensor B is hybrid, then it holds (for instance see [16], [23, pp.
31])

B(AX, Y ) = −B(X, AY ).
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On the Kähler manifold, we have

B(AX, AY ) = B(X, Y ).

For example, on the Kähler manifold, tensors g and F are hybrid (see [24, pp. 192]),
from which it follows that generalized Riemannian metric G is hybrid (this is shown by
equations (3.1), (3.2) and (3.3)). Also, on the Kähler manifold, the Ricci tensor

g

Ric is a
hybrid tensor (see [24, pp. 68]), i.e. satisfies relation

g

Ric(X, AY ) = −
g

Ric(AX, Y ). (3.9)

In the following theorem, we state the results we will use to study curvature tensor
properties.

Theorem 3.3. Let (M, g, A) be a Kähler manifold.

(1) If
g

∇π is hybrid tensor, then
1
D is also hybrid, i.e. it holds that

1
D(AX, Y ) = −

1
D(X, AY ),

1
D(AX, AY ) =

1
D(X, Y ), (3.10)

where
1
D is given by (2.12).

(2) If
g

∇π and π ⊗ π are hybrid tensors, then
θ
D are hybrid, θ = 0, 2, 3, i.e. it holds

that
θ
D(AX, Y ) = −

θ
D(X, AY ),

θ
D(AX, AY ) =

θ
D(X, Y ), θ = 0, 2, 3, (3.11)

where
θ
D are given by (2.11), (2.13), (2.14).

Proof. We will prove equations (3.11) for θ = 2. From equation (2.13), on the Kähler
manifold, we have

2
D(AX, Y )+

2
D(X, AY ) = (

g

∇AXπ)(Y )+(
g

∇Xπ)(AY )+π(AX)π(AY )−π(X)π(Y ). (3.12)

If
g

∇π and π ⊗ π are hybrid tensors, then it holds

(
g

∇AXπ)(Y ) = −(
g

∇Xπ)(AY ), π(AX)π(Y ) = −π(X)π(AY ) (3.13)

and

(
g

∇AXπ)(AY ) = (
g

∇Xπ)(Y ), π(AX)π(AY ) = π(X)π(Y ). (3.14)

Applying equations (3.13) and (3.14) to (3.12), we get

2
D(AX, Y ) +

2
D(X, AY ) = 0.

If we replace X with AX in the previous equation and using A2 = −I, we obtain the
second equation of (3.11). □

Remark 3.4. Theorem 3.2 is the equivalent form of Theorem 4.2 in [25]: In order that the
covariant derivative of the complex structure tensor of a Hermitian manifold with respect
to the quarter-symmetric metric connection vanish, it is necessary and sufficient that the
Hermitian manifold be a Kähler manifold.
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4. Curvature properties of quarter-symmetric connection on Kähler man-
ifold

In this section, we will consider the properties of the curvature tensor on the Kähler
manifold with a quarter-symmetric connection (2.2). The papers [1, 7, 15, 20, 26] studied
the quarter-symmetric connection on the Kähler manifold. For example, in paper [26],
K. Yano and T. Imai proved that the Kähler manifold with a quarter-symmetric metric

A-connection (2.2) is flat if curvature tensor
1
R vanishes.

Using the linearly independent curvature tensors with respect to quarter-symmetric
connection (2.2), below we will construct the tensors that are independent of the choice
of quarter-symmetric connection generator.

4.1. Curvature tensor of the first kind
The curvature tensor of the first kind on the Kähler manifold with a quarter-symmetric

metric A-connection (2.2) is given by equation
1
R(X, Y )Z =

g

R(X, Y )Z −
1
D(X, Y )AZ, (4.1)

where
1
D is tensor given by (2.12). By contracting with respect to vector field X in equation

(4.1), we obtain
1
Ric(Y, Z) =

g

Ric(Y, Z) −
1
D(AZ, Y ).

If we replace Z with AZ in the previous equation, we have
1
Ric(Y, AZ) =

g

Ric(Y, AZ) −
1
D(A2Z, Y ),

from which we obtain
1
D(Z, Y ) =

1
Ric(Y, AZ) −

g

Ric(Y, AZ). (4.2)

By substituting (4.2) into (4.1), we obtain
1
R(X, Y )Z =

g

R(X, Y )Z − (
1
Ric(Y, AX) −

g

Ric(Y, AX))AZ.

By separating the elements of connections
1
∇ and

g

∇, we get the relation
1
R(X, Y )Z +

1
Ric(Y, AX)AZ =

g

R(X, Y )Z +
g

Ric(Y, AX)AZ (4.3)

and based on that, we will formulate the following theorem.

Theorem 4.1. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

1
H(X, Y )Z =

1
R(X, Y )Z +

1
Ric(Y, AX)AZ (4.4)

is independent of generator π.

In this part, we will also deal with some other properties of the curvature tensors on the
Kähler manifold, depending on the quarter-symmetric connection generator properties.
We now state the properties of curvature tensors of the first kind.

Theorem 4.2. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:
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(1) If
g

∇π is hybrid tensor, then the curvature tensor of the first kind and structure
tensor A satisfies the following relations

1
R(X, Y, AZ, AW ) =

1
R(AX, AY, Z, W ),

1
R(X, AY, AZ, W ) =

1
R(AX, Y, Z, AW ),

1
R(AX, AY, AZ, AW ) =

1
R(X, Y, Z, W ).

(2) The curvature tensor of the first kind and structure tensor A satisfies the following
relations

1
R(X, Y )AZ = A

1
R(X, Y )Z,

1
R(X, Y, Z, AW ) = −

1
R(X, Y, AZ, W ).

Proof. From equation (2.6), we obtain the (0,4) type curvature tensor of the first kind
1
R(X, Y, Z, W ) =

g

R(X, Y, Z, W ) −
1
D(X, Y )F (Z, W ).

From here, we have
1
R(X, Y, AZ, AW ) =

g

R(X, Y, AZ, AW ) −
1
D(X, Y )F (AZ, AW )

=
g

R(X, Y, AZ, AW ) −
1
D(X, Y )F (Z, W ),

(4.5)

where we used equation (3.2). On the other hand, we have
1
R(AX, AY, Z, W ) =

g

R(AX, AY, Z, W ) −
1
D(AX, AY )F (Z, W ). (4.6)

After subtracting equation (4.6) from (4.5) and using (3.5), we get
1
R(X, Y, AZ, AW ) −

1
R(AX, AY, Z, W ) = (

1
D(AX, AY ) −

1
D(X, Y ))F (Z, W ).

From equation (3.10), we see that
1
R(X, Y, AZ, AW ) =

1
R(AX, AY, Z, W )

if
g

∇π is hybrid. Other relations are proved analogously. □

4.2. Curvature tensor of the second kind
Using the curvature tensor of the second kind, we can get a new tensor on the Kähler

manifold that is independent of quarter-symmetric connection generator π.

Theorem 4.3. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

2
H(X, Y )Z =

2
R(X, Y )Z +

2
Ric(AX, Z)AY −

2
Ric(AY, Z)AX (4.7)

is independent of generator π.

Proof. The curvature tensor of the second kind with respect to quarter-symmetric con-
nection (2.2) reads

2
R(X, Y )Z =

g

R(X, Y )Z −
2
D(X, Z)AY +

2
D(Y, Z)AX, (4.8)

where
2
D is (0, 2) type tensor given by (2.13). By contracting vector field X in equation

(4.8), we have
2
Ric(Y, Z) =

g

Ric(Y, Z) −
2
D(AY, Z), (4.9)
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where we used that the structure tensor A is trace-free, i.e. Trace{X → AX} = 0. From
equation (4.9), we have

2
D(A2Y, Z) =

g

Ric(AY, Z) −
2
Ric(AY, Z)

and further
2
D(Y, Z) =

2
Ric(AY, Z) −

g

Ric(AY, Z). (4.10)
By combining equations (4.8) and (4.10), we find
2
R(X, Y )Z =

g

R(X, Y )Z −(
2
Ric(AX, Z)−

g

Ric(AX, Z))AY +(
2
Ric(AY, Z)−

g

Ric(AY, Z))AX,

from which
2
R(X, Y )Z +

2
Ric(AX, Z)AY −

2
Ric(AY, Z)AX =

g

R(X, Y )Z +
g

Ric(AX, Z)AY

−
g

Ric(AY, Z)AX.

(4.11)

□

Depending on generator π property, the curvature tensor of the second kind and struc-
ture tensor A have the following properties.

Theorem 4.4. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:

(1) If
g

∇π and π ⊗ π are hybrid, then the curvature tensor of the second kind and
structure tensor A satisfies the following relations

2
R(X, Y, AZ, AW ) =

2
R(AX, AY, Z, W ),

2
R(X, AY, AZ, W ) =

2
R(AX, Y, Z, AW ),

2
R(AX, AY, AZ, AW ) =

2
R(X, Y, Z, W ).

(2) The curvature tensor of the second kind and the structure tensor A satisfies the
following relations

2
R(X, Y )AZ = A

2
R(X, Y )Z,

2
R(X, Y, Z, AW ) = −

2
R(X, Y, AZ, W ),

if and only if
2
D(X, Z)Y +

2
D(X, AZ)AY =

2
D(Y, Z)X +

2
D(Y, AZ)AX,

where
2
D given with (2.13).

Proof. The (0,4) type curvature tensor of the second kind is given by equation
2
R(X, Y, Z, W ) =

g

R(X, Y, Z, W ) −
2
D(X, Z)F (Y, W ) +

2
D(Y, Z)F (X, W ),

from which it follows
2
R(X, AY, AZ, W ) =

g

R(X, AY, AZ, W ) +
2
D(X, AZ)g(Y, W ) +

2
D(AY, AZ)F (X, W ),

2
R(AX, Y, Z, AW ) =

g

R(AX, Y, Z, AW ) −
2
D(AX, Z)g(Y, W ) +

2
D(Y, Z)F (X, W ),
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where we used relations (3.2). By subtracting the previous two equations and using (3.6),
we get

2
R(X, AY, AZ, W ) −

2
R(AX, Y, Z, AW ) =(

2
D(X, AZ) +

2
D(AX, Z))g(Y, W )

+ (
2
D(AY, AZ) −

2
D(Y, Z))F (X, W ).

If
g

∇π and π ⊗ π are hybrid, then the relation (3.11) holds, and we verified that
2
R(X, AY, AZ, W ) =

2
R(AX, Y, Z, AW ).

□

4.3. Curvature tensor of the third kind

The curvature tensor of the third kind
3
R with respect to quarter-symmetric connection

(2.2) is given by equation
3
R(X, Y )Z =

g

R(X, Y )Z −
2
D(X, Y )AZ +

3
D(Y, Z)AX, (4.12)

where
2
D and

3
D are (0, 2) type tensors given by (2.13) and (2.14), respectively. If we

contract equation (4.12) with respect to X, then we obtain the relation between Ricci

tensors
3
Ric and

g

Ric
3
Ric(Y, Z) =

g

Ric(Y, Z) −
2
D(AZ, Y ),

from which we get the following relation
2
D(Z, Y ) =

3
Ric(Y, AZ) −

g

Ric(Y, AZ). (4.13)

On the other hand, if we contract equation (4.12) with respect to vector field Z, then we
get

3
′R(X, Y ) =

3
D(Y, AX), (4.14)

where we used Trace{Z →
g

R(X, Y )Z} = 0 and denoted
3

′R(X, Y ) = Trace{Z →
3
R(X, Y )Z}. Further, it follows that

3
D(Y, X) = −

3
′R(AX, Y ), (4.15)

where we take into account that A2 = −I. By replacing equations (4.13) and (4.15) into
(4.12), we have

3
R(X, Y )Z =

g

R(X, Y )Z − (
3
Ric(Y, AX) −

g

Ric(Y, AX))AZ −
3

′R(AZ, Y )AX,

and further
3
R(X, Y )Z +

3
Ric(Y, AX)AZ +

3
′R(AZ, Y )AX =

g

R(X, Y )Z +
g

Ric(Y, AX)AZ. (4.16)

Finally, we have proved the following theorem.

Theorem 4.5. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

3
H(X, Y )Z =

3
R(X, Y )Z +

3
Ric(Y, AX)AZ +

3
′R(AZ, Y )AX

is independent of generator π.
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By comparing equations (4.3) and (4.16), we conclude that
1
H(X, Y )Z =

3
H(X, Y )Z.

Based on expressions for tensor
2
D, i.e. from equations (4.10) and (4.13), it follows that

2
Ric(X, Y ) =

3
Ric(Y, X).

In the following statement, we state the properties of the curvature tensor of the third
kind, which can be proved similarly to the properties of the previous tensors.

Theorem 4.6. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:

(1) If
g

∇π and π⊗π are hybrid, then the curvature tensor of the third kind and structure
tensor A satisfies the following relations

3
R(X, Y, AZ, AW ) =

3
R(AX, AY, Z, W ),

3
R(X, AY, AZ, W ) =

3
R(AX, Y, Z, AW ),

3
R(AX, AY, AZ, AW ) =

3
R(X, Y, Z, W ).

(2) The curvature tensor of the third kind and structure tensor A satisfies the following
relations

3
R(X, Y )AZ = A

3
R(X, Y )Z,

3
R(X, Y, Z, AW ) = −

3
R(X, Y, AZ, W ),

if and only if
3
D(Y, Z)X = −

3
D(Y, AZ)AX,

where
3
D given by (2.14).

4.4. Curvature tensor of the fourth kind

The equation of the curvature tensor of the fourth kind
4
R on the Kähler manifold with

a quarter-symmetric connection (2.2) take the form
4
R(X, Y )Z =

g

R(X, Y )Z −
3
D(X, Y )AZ +

3
D(Y, Z)AX + π(Z)(π(Y )X − π(X)Y ), (4.17)

where
3
D is given by equation (2.14). If we contract with respect to vector X in equation

(4.17), then we obtain the relation between the Ricci tensor of the fourth kind and the
Ricci tensor of metric g

4
Ric(Y, Z) =

g

Ric(Y, Z) −
3
D(AZ, Y ) + (n − 1)π(Y )π(Z). (4.18)

On the other hand, by contracting equation (4.17) with respect to Z, we have the following
equation

4
′R(X, Y ) =

3
D(Y, AX), (4.19)

from which we obtain
3
D(Y, X) = −

4
′R(AX, Y ), (4.20)
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where
4

′R(X, Y ) = Trace{Z →
4
R(X, Y )Z}. From (4.18) and (4.20), we have

π(Y )π(Z) = 1
n − 1

(
4
Ric(Y, Z) −

g

Ric(Y, Z) −
4

′R(AY, AZ)). (4.21)

By substituting equations (4.20) and (4.21) into (4.17), after simple rearranging, we obtain
4
R(X, Y )Z −

4
′R(AY, X)AZ +

4
′R(AZ, Y )AX

− 1
n − 1

(
4
Ric(Y, Z)X −

4
Ric(X, Z)Y −

4
′R(AY, AZ)X +

4
′R(AX, AZ)Y )

=
g

R(X, Y )Z + 1
n − 1

(
g

Ric(X, Z)Y −
g

Ric(Y, Z)X) =
g

W (X, Y )Z,

where
g

W is the Weyl projective curvature tensor (1.2). The tensor of the left-hand side of
the previous equation is independent of the choice of a 1-form π.
Theorem 4.7. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

4
H(X, Y )Z =

4
R(X, Y )Z −

4
′R(AY, X)AZ +

4
′R(AZ, Y )AX

− 1
n − 1

(
4
Ric(Y, Z)X −

4
Ric(X, Z)Y −

4
′R(AY, AZ)X +

4
′R(AX, AZ)Y )

is independent of generator π and it is equal to the Weyl projective curvature tensor
g

W .

Immediately, we have the following corollary.

Corollary 4.8. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-

connection (2.2). If Ricci tensor
4
Ric and tensor

4
′R vanish on this manifold, then the

curvature tensor of the fourth kind and the Weyl projective curvature tensor are equal, i.e.
4
R =

g

W .

From equations (4.14) and (4.19), we obtain the relation
3

′R =
4

′R.

Using relations (3.4)-(3.8), we can easily prove some relations for the curvature tensor
of the fourth kind.

Theorem 4.9. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:

(1) If
g

∇π and π ⊗ π are hybrid, then the curvature tensor of the fourth kind and
structure tensor A satisfies the following relations

4
R(X, Y, AZ, AW ) =

4
R(AX, AY, Z, W ),

4
R(X, AY, AZ, W ) =

4
R(AX, Y, Z, AW ),

4
R(AX, AY, AZ, AW ) =

4
R(X, Y, Z, W ).

(2) The curvature tensor of the fourth kind and structure tensor A satisfies the follow-
ing relations

4
R(X, Y )AZ = A

4
R(X, Y )Z,

4
R(X, Y, Z, AW ) = −

4
R(X, Y, AZ, W ),
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if and only if

4
D(Y, Z)AX + π(X)π(Z)AY = −

4
D(Y, AZ)X + π(X)π(AZ)Y,

where
4
D(Y, Z) = (

g

∇Y π)(AZ) − 2π(Y )π(Z).

4.5. Curvature tensor of the fifth kind
We will prove the following theorem using the curvature tensor of the fifth kind.

Theorem 4.10. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

5
H(X, Y )Z =

5
R(X, Y )Z + 1

n − 1
(

5
Ric(X, Y )Z −

5
Ric(Y, Z)X)

− 1
2(n − 1)

(
1
Ric(X, Y )Z −

1
Ric(Y, Z)X)

− 1
2(n − 1)

(
3

′R(AY, AX)Z −
3

′R(AZ, AY )X)

+ 1
2

(
1
Ric(Y, AX)AZ −

3
Ric(Z, AY )AX −

3
′R(AZ, X)AY )

(4.22)

is independent of generator π.

Proof. If we take into account that

1
D(X, Y ) =

2
D(X, Y ) −

3
D(Y, X),

where
1
D,

2
D,

3
D are given by (2.12), (2.13), (2.14), respectively, then the curvature tensor

of the fifth kind on the Kähler manifold with a quarter-symmetric metric A-connection
(2.2) takes the following form

5
R(X, Y )Z =

g

R(X, Y )Z − 1
2

1
D(X, Y )AZ − 1

2
3
D(X, Z)AY + 1

2
2
D(Y, Z)AX

− 1
2

π(Y )(π(X)Z − π(Z)X).
(4.23)

By contracting with respect to vector field X in the previous equation gives

5
Ric(Y, Z) =

g

Ric(Y, Z) − 1
2

1
D(AZ, Y ) − 1

2
3
D(AY, Z) + n − 1

2
π(Y )π(Z).

From here, by using equations (4.2) and (4.15), it follows that

π(Y )π(Z) = 1
n − 1

(2
5
Ric(Y, Z) −

1
Ric(Y, Z) −

3
′R(AZ, AY ) −

g

Ric(Y, Z)). (4.24)
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By substituting equations (4.2), (4.13), (4.15) and (4.24) into (4.23), after rearranging, we
obtain

5
R(X, Y )Z + 1

n − 1
(

5
Ric(X, Y )Z −

5
Ric(Y, Z)X)

− 1
2(n − 1)

(
1
Ric(X, Y )Z −

1
Ric(Y, Z)X)

− 1
2(n − 1)

(
3

′R(AY, AX)Z −
3

′R(AZ, AY )X)

+ 1
2

(
1
Ric(Y, AX)AZ −

3
Ric(Z, AY )AX −

3
′R(AZ, X)AY )

=
g

R(X, Y )Z + 1
2(n − 1)

(
g

Ric(X, Y )Z −
g

Ric(Y, Z)X)

+ 1
2

(
g

Ric(AX, Y )AZ −
g

Ric(AY, Z)AX)

(4.25)

and thereby, we proved the theorem. □

Analogously, we can prove the following theorem.

Theorem 4.11. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:

(1) If
g

∇π and π⊗π are hybrid, then the curvature tensor of the fifth kind and structure
tensor A satisfies the following relations

5
R(X, Y, AZ, AW ) =

5
R(AX, AY, Z, W ),

5
R(X, AY, AZ, W ) =

5
R(AX, Y, Z, AW ),

5
R(AX, AY, AZ, AW ) =

5
R(X, Y, Z, W ).

(2) The curvature tensor of the fifth kind and structure tensor A satisfies the following
relations

5
R(X, Y )AZ = A

5
R(X, Y )Z,

5
R(X, Y, Z, AW ) = −

5
R(X, Y, AZ, W ).

if and only if

3
D(X, Z)Y +

3
D(X, AZ)AY = (

2
D(Y, Z) + π(Y )π(AZ))X + (

2
D(Y, AZ) − π(Y )π(Z))AX,

where
2
D,

3
D given by (2.13), (2.14), respectively.

4.6. Curvature tensor of the zero kind
By the similar procedure as in the previous cases, using the curvature tensor of the zero

kind, we can prove the following theorem.
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Theorem 4.12. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Tensor

0
H(X, Y )Z =

0
R(X, Y )Z + 1

n − 1
(

0
Ric(X, Y )Z −

0
Ric(Y, Z)X)

− 1
2(n − 1)

(
1
Ric(X, Z)Y −

1
Ric(Y, Z)X)

− 1
4(n − 1)

(
3
Ric(Z, X)Y −

3
Ric(Z, Y )X)

− 1
4(n − 1)

(
3

′R(AZ, AX)Y −
3

′R(AZ, AY )X)

+ 1
4

(2
1
Ric(Y, AX)AZ +

3
Ric(Z, AX)AY −

3
Ric(Z, AY )AX)

− 1
4

(
3

′R(AZ, X)AY −
3

′R(AZ, Y )AX)

(4.26)

is independent of generator π.

Proof. Based on equations (2.11), (2.12), (2.13) and (2.14), we have
1
D(X, Y ) =

0
D(X, Y ) −

0
D(Y, X) and 2

0
D(X, Y ) =

2
D(X, Y ) +

3
D(X, Y ). (4.27)

In view of equations (2.5), (3.1) and (4.27), the curvature tensor of the zero kind on the
Kähler manifold with a quarter-symmetric metric A-connection (2.2) takes the form

0
R(X, Y )Z =

g

R(X, Y )Z − 1
2

1
D(X, Y )AZ − 1

4
(

2
D(X, Z) +

3
D(X, Z))AY

+ 1
4

(
2
D(Y, Z) +

3
D(Y, Z))AX + 1

4
π(Z)(π(Y )X − π(X)Y ),

(4.28)

where (0,2) type tensors
1
D,

2
D,

3
D are given by (2.12), (2.13), (2.14), respectively. By

contracting with respect to X in the previous equation, we obtain
0
Ric(Y, Z) =

g

Ric(Y, Z) − 1
2

D(AZ, Y ) − 1
4

(
2
D(AY, Z) +

3
D(AY, Z))

+ n − 1
4

π(Y )π(Z).
(4.29)

If we replace equations (4.2), (4.13), (4.15) into (4.29), then we get

π(Y )π(Z) = 1
n − 1

(4
0
Ric(Y, Z) − 2

1
Ric(Y, Z) −

3
Ric(Z, Y ) −

3
′R(AZ, AY ) −

g

Ric(Y, Z)). (4.30)

Finally, by substituting (4.2), (4.13), (4.15) and (4.30) into equation (4.28), we obtain
0
H(X, Y )Z =

g

R(X, Y )Z + 1
4(n − 1)

(
g

Ric(X, Z)Y −
g

Ric(Y, Z)X)

+ 1
4

(2
g

Ric(AX, Y )AZ +
g

Ric(AX, Z)AY −
g

Ric(AY, Z)AX)
(4.31)

where
0
H is given by (4.26). □

Now, we can give some other properties of the curvature tensor of the zero kind de-
pending on generator π.

Theorem 4.13. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). Then, we have:
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(1) If
g

∇π and π⊗π are hybrid, then the curvature tensor of the zero kind and structure
tensor A satisfies the following relations

0
R(X, Y, AZ, AW ) =

0
R(AX, AY, Z, W ),

0
R(X, AY, AZ, W ) =

0
R(AX, Y, Z, AW ),

0
R(AX, AY, AZ, AW ) =

0
R(X, Y, Z, W ).

(2) If

(
g

∇Xπ)(Y ) + π(X)π(AY ) + 1
2

π(AX)π(Y ) = 0,

then the curvature tensor of the zero kind and structure tensor A satisfies the
following relations

0
R(X, Y )AZ = A

0
R(X, Y )Z,

0
R(X, Y, Z, AW ) = −

0
R(X, Y, AZ, W ).

Proof. Equation (2.5) implies the following

0
R(X, Y, Z, AW ) =

g

R(X, Y, Z, AW ) − 1
2

(
0
D(X, Y ) −

0
D(Y, X))g(Z, W ) − 1

2
0
D(X, Z)g(Y, W )

+ 1
2

0
D(Y, Z)g(X, W ) − 1

4
π(Z)(π(Y )F (X, W ) − π(X)F (Y, W )),

0
R(X, Y, AZ, W ) =

g

R(X, Y, AZ, W ) + 1
2

(
0
D(X, Y ) −

0
D(Y, X))g(Z, W )

− 1
2

0
D(X, AZ)F (Y, W ) + 1

2
0
D(Y, AZ)F (X, W )

+ 1
4

π(AZ)(π(Y )g(X, W ) − π(X)g(Y, W )).

Adding the previous equations and using equations (2.11) and (3.8), we obtain

0
R(X, Y, Z, AW ) = −

0
R(X, Y, AZ, W )

− 1
2

((
g

∇Xπ)(Z) + π(X)π(AZ) + 1
2

π(AX)π(Z))g(Y, W )

+ 1
2

((
g

∇Y π)(Z) + π(Y )π(AZ) + 1
2

π(AY )π(Z))g(X, W )

− 1
2

((
g

∇Xπ)(AZ) − π(X)π(Z) + 1
2

π(AX)π(AZ))F (Y, W )

+ 1
2

((
g

∇Y π)(AZ) − π(Y )π(Z) + 1
2

π(AY )π(AZ))F (X, W ).

If we assume that

(
g

∇Xπ)(Y ) + π(X)π(AY ) + 1
2

π(AX)π(Y ) = 0

then it holds
0
R(X, Y, Z, AW ) = −

0
R(X, Y, AZ, W ).

□
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5. Some identities obtained from
θ

H tensors

Based on the results above, we can see that only tensor
4
H is equivalent to the well-

known Weyl projective curvature tensor. By combining the remaining tensors
θ
H, θ =

0, 1, 2, 3, 5, we will obtain some identities for the Weyl projective curvature tensor and
the holomorphically projective curvature tensor. First, we will present Weyl projective

curvature tensor as a linear combination of tensors
θ
H.

Theorem 5.1. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). The following relations hold

4
0
H(X, Y )Z − 2

1
H(X, Y )Z −

2
H(X, Y )Z =

g

W (X, Y )Z,

2
5
H(X, Y )Z −

1
H(X, Y )Z +

1
H(Y, Z)X =

g

W (X, Z)Y,

where
0
H,

1
H,

2
H,

5
H are given by (4.26), (4.4), (4.7), (4.22), respectively.

Proof. With help of equations (4.3) and (4.25), we have

2
5
H(X, Y )Z −

1
H(X, Y )Z +

1
H(Y, Z)X =

g

R(X, Y )Z +
g

R(Y, Z)X

+ 1
n − 1

(
g

Ric(X, Y )Z −
g

Ric(Y, Z)X).

By using the first Bianchi identity and skew-symmetric property of Riemannian curvature
tensor

g

R, we get

2
5
H(X, Y )Z −

1
H(X, Y )Z +

1
H(Y, Z)X =

g

R(X, Z)Y + 1
n − 1

(
g

Ric(X, Y )Z −
g

Ric(Z, Y )X)

=
g

W (X, Z)Y.

□
If we use equation (3.9), then from (4.31), we get

0
H(X, Y )Z = n + 2

4
g

P (X, Y )Z − n − 2
4

g

W (X, Y )Z, (5.1)

where
g

W is the Weyl projective curvature tensor (1.2) and
g

P is the holomorphically
projective curvature tensor given by equation (1.1). From the previous equation, we can
conclude the following.
Theorem 5.2. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-

connection (2.2). If tensor
0
H, given by (4.26), vanishes, then it holds that

g

P (X, Y )Z = n − 2
n + 2

g

W (X, Y )Z.

From equations (4.3) and (4.11), we obtain identity

2
1
H(X, Y )Z +

2
H(X, Y )Z = (n + 2)

g

P (X, Y )Z − (n − 1)
g

W (X, Y )Z
from which we conclude that the following statement holds.
Theorem 5.3. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-

connection (2.2). If tensors
1
H and

2
H, given by (4.4) and (4.7), respectively, vanish, then

it holds that
g

P (X, Y )Z = n − 1
n + 2

g

W (X, Y )Z.
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Using theorems 4.7 and 5.1, based on equation (5.1), we can represent the holomorphi-

cally projective curvature tensor as a linear combination of tensors
θ
H, θ = 0, 1, . . . , 5.

Corollary 5.4. Let (M, g, A) be a Kähler manifold with a quarter-symmetric metric A-
connection (2.2). The following relations hold

g

P (X, Y )Z = 4
n + 2

0
H(X, Y )Z + n − 2

n + 2
4
H(X, Y )Z,

g

P (X, Y )Z =4(n − 1)
n + 2

0
H(X, Y )Z − 2(n − 2)

n + 2
1
H(X, Y )Z − n − 2

n + 2
2
H(X, Y )Z,

g

P (X, Y )Z = 4
n + 2

0
H(X, Y )Z + n − 2

n + 2
(2

5
H(X, Z)Y −

1
H(X, Z)Y +

1
H(Z, Y )X).

6. Conclusion and further work
Observing a Kähler manifold with a quarter-symmetric metric A-connection, we deter-

mined a tensor that are independent of generator π. By using newly obtained tensors
θ
H,

θ = 0, 1, . . . , 5, we established some relationships between the Weyl projective curvature
tensor and the holomorphically projective curvature tensor. Also, we presented them as a

linear combination of tensors
θ
H. Analogously, the identities for the second holomorphically

projective curvature tensor obtained by M. Prvanović in [19] can be determined.
On the other hand, we observed the case when

g

∇π and π ⊗ π are hybrid tensor and we
determined which properties are satisfied by all linearly independent curvature tensors.

In future work, we will try to find some more properties of the tensors
θ
H, as well as

their application. This research on the quarter-symmetric connection will be continued on
an almost para-Hermitian and on a para-Kähler manifold.
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