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Abstract

In this paper, we initiate the study of �xed points for interpolative mappings in m-metric spaces. We discuss
three di�erent cases: the sum of �interpolative exponents" is less than, equal to or greater than 1. We support
each of our result by examples in m-metric spaces. In the last section, we obtain our results in p-metric
spaces. Finally we note that our results generalize results of [3], [4] and [5] from ordinary metric to m- and
p-metrics.
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1. Introduction

After the famous �xed point theorem of Banach [2], the �xed point theory has �ourished in many dimen-
sions and has played an important role in many �elds of mathematics. Following the technique of Banach,
many researchers have proved �xed point results for di�erent type of contractions as well as for di�erent types
of metric structures. Recently, a number of researchers have been working on the technique of establishing
�xed point results for interpolative Kannan type contractions. In this direction, for example, Karapinar [5]
proved a �xed point result for interpolative Kannan type contractions, Gabba et al. [4] proved the result for
the case when the sum of �interpolative exponents" is less than 1 in the interpolative Kannan type contrac-
tions, whereas Errai et al. [3] proved such a result for the case when the sum of �interpolative exponents" is
greater than or equal to 1. All these results have been proved in ordinary metric spaces. In this paper, we
initiate the study of existence of �xed points for interpolative Kannan type contractions over the structure
of m-metric spaces and we proved the �xed points results for di�erent cases of �interpolative exponents".
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The idea of m-metric �rstly given by Asadi et al. in [1], which constitutes a generalization of p-metric as
given in the lemma below. For more results in this direction see the [7, 8, 9, 10, 11, 12, 13, 14] and references
mentioned therein.
The �rst section contains some required de�nitions and basic results related to m-metric spaces and inter-
polative Kannan type contractions. In second section, three di�erent �xed point results for m-metric spaces
under di�erent conditions on �interpolative exponents" are proved. We also support each of our result by
examples in m-metric spaces. In the last section, we obtain our results in p-metric spaces. Although we
get them as corresponding special cases of our results for m-metric spaces yet they are new in themselves.
Finally we note that our results generalize results of [5], [4] and [3] respectively.

Lemma 1.1. [1] Every p-metric is an m-metric but not conversely.

2. Preliminaries

De�nition 2.1. [6] A partial metric on a non empty set Υ is a function p : Υ×Υ → R+ such that for all
x1, x2, x3 ∈ Υ

(p1) p(h1, h2) = p(h1, h1) = p(h2, h2) ⇔ h1 = h2

(p2) p(h1, h1) ≤ p(h1, h2)

(p3) p(h1, h2) = p(h2, h1)

(p4) p(h1, h2) ≤ p(h1, h3) + p(h3, h2)− p(h3, h3).

A partial metric space is a pair (Υ, p) such that Υ is non empty set and p is a partial metric on Υ.

De�nition 2.2. [1] Let Υ be a nonempty set. Then m-metric is a function m : Υ×Υ → R+ satisfying the
following conditions;

(m1) m(h1, h2) = m(h1, h1) = m(h2, h2) ⇔ h1 = h2

(m2) mh1h2 ≤ m(h1, h2) where mh1h2 := min{m(h1, h1),m(h2, h2)}

(m3) m(h1, h2) = m(h2, h1)

(m4) (m(h1, h2)−mh1h2) ≤ (m(h1, h3)−mh1h3) + (m(h3, h2)−mh3h2)

for all h1, h2, h3 ∈ Υ. The pair (Υ,m) is called m-metric space.

De�nition 2.3. [1] Let (Υ,m) be a m-metric space. Then
1. a sequence (hn) in an m-metric space converges to a point h ∈ Υ i�

lim
n→∞

(m(hn, h)−mhn,h) = 0

2. a sequence (hn) in an m-metric space (Υ,m) is called m-Cauchy sequence if

lim
n,j→∞

(m(hn, hj)−mhn,hj
),

and
lim

n,j→∞
(Mhn,hj

−mhn,hj
),

exists (and are �nite), where Mhn,hj
= max(m(hn, hn),m(hj , hj)).

3. an m-metric space (Υ,m) is said to be complete if every m-Cauchy sequence (hn) in Υ converges to a
point in Υ.
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Lemma 2.4. [1] Assume that hn → h and gn → g as n → ∞ in an m-metric space (Υ,m). Then

lim
n→∞

(m(hn, gn)−mhn,gn) = m(h, g)−mh,g

Lemma 2.5. [1] Let (hn) be a sequence in an m-metric space (Υ,m). If there exists r ∈ [0, 1) such that

m(hn+1, hn) ≤ rm(hn, hn−1), ∀n ∈ N, (1)

then
(A) limn→∞m(hn, hn+1) = 0
(B) limn→∞m(hn, hn) = 0
(C) limj,n→∞mhj ,hn = 0
(D) (hn) is an m-Cauchy sequence.

Proof. Since from Equation (1) we have

m(hn+1, hn) ≤ rm(hn, hn−1),

for all n ∈ N. Thus for any �xed n we have

m(hn+1, hn) ≤ rm(hn, hn−1) ≤ r2m(hn−1, hn−2) ≤, · · · ,≤ rn+1m(h1, h0),

thus
m(hn+1, hn) ≤ rnm(h1, h0)

by taking limit n → ∞, we get
lim
n→∞

m(hn+1, hn) = 0.

Which completes (A).
By second condition of m-metric, we have

mhn+1,hn ≤ m(hn+1, hn),

we have
lim
n→∞

mhn+1,hn = 0,

or
lim
n→∞

min(m(hn, hn),m(hn+1, hn+1)) = 0,

hence
lim
n→∞

m(hn, hn) = 0.

It implies that (B) holds. Also, limj→∞m(hj , hj) = 0, thus

lim
n,j→∞

mhn,hj
= lim

n,j→∞
min(m(hn, hn),m(hj , hj)) = 0,

It implies that (C) holds.
Similarly for any n, j ∈ N, with n ≥ j we have

lim
n,j→∞

(Mhn,hj
−mhn,hj

) = 0.

Also by triangular inequality of m-metric

lim
n,j→∞

(m(hn, hj)−mhn,hj
) = 0.

Hence (hn) is a Cauchy sequence.
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De�nition 2.6. [5] Let (Υ, d) be a metric space. A self mapping Γ : Υ → Υ is said to be an interpolative
Kannan type contraction, if there exist λ ∈ [0, 1) and α ∈ (0, 1) such that

d(Γh,Γg) ≤ λ[d(h,Γh)]α.[d(g,Γg)]1−α

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg.

We term α as an interpolative exponent.
The following result by Karap�nar is proved in [5].

Theorem 2.7. [5] Let (Υ, d) be a complete metric space and Γ be an interpolative Kannan type contraction.
Then Γ has a unique �xed point .

In [4], Gabba et al. de�ned the following interpolative Kannan type contraction.

De�nition 2.8. Let (Υ, d) be a metric space, a self mapping Γ : Υ → Υ is called (λ, α, β)-interpolative
Kannan type contraction if there exist λ ∈ [0, 1) and α, β ∈ (0, 1) with α+ β < 1, such that

d(Γh,Γg) ≤ λ[d(h,Γh)]α[d(g,Γg)]β

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg.

Moreover, they proved the following �xed point theorem.

Theorem 2.9. [4] Let (Υ, d) be a complete metric space such that d(h, g) ≥ 1 for all h, g ∈ Υ with h ̸= g.
Let Γ : Υ → Υ be a (λ, α, β)-interpolative Kannan type contraction. Then Γ has a �xed point.

Errai et al. [3] proved the following �xed point result for interpolative Kannan type contraction for the
case α+ β > 1 with α, β ∈ (0, 1).

Theorem 2.10. [3] Let (Υ, d) be a complete metric space and Γ a self mapping on Υ such that

d(Γh,Γg) ≤ λ(d(h,Γh))α(d(g,Γg))β,

for all h, g ∈ Υ with h ̸= Γh and g ̸= Γg, and where λ ∈ (0, 1) and α, β ∈ (0, 1) such that α+ β ≥ 1. If there
exists h ∈ Υ such that d(h,Γh) ≤ 1, then Γ has a �xed point in Υ.

Note that all above results have been proved in ordinary metric space (Υ, d). No results on interpolative
Kannan type contraction has been proved in m-metric spaces yet. Let us initiate this study in our next
section.

3. Main results

In this section, we prove some �xed point results for interpolative Kannan type contractions for the �rst
time. We present three results where sum of interpolative exponents is less than 1, equal to 1 and greater
than 1. We also support our results by suitable examples to validate them. Let us start this section by
de�ning m-interpolative Kannan type contraction where the sum of interpolative constants is 1 as follows.

De�nition 3.1. Let (Υ,m) be an m-metric space. We say that the self mapping Γ : Υ → Υ is an m-
interpolative Kannan type contraction, if there exist constants λ ∈ [0, 1) and α ∈ (0, 1) such that

m(Γh,Γg) ≤ λ[m(h,Γh)]α.[m(g,Γg)]1−α

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg and m(h,Γh) ̸= 0,m(g,Γg) ̸= 0.

Theorem 3.2. Let (Υ,m) be a complete m-metric space and Γ : Υ → Υ be an m-interpolative Kannan type
contraction. Then Γ has a �xed point.
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Proof. Let h0 ∈ Υ, we set a constructive sequence (hn) by hn+1 = Γ(hn) = Γn(h0) for all positive integers n.
Without loss of generality, we assume that hn ̸= hn+1 for each nonnegative integer n. Indeed, if there exists
a nonnegative integer n0 such that hn0 = hn0+1 = Γhn0 , then hn0 forms a �xed point.

Now for n = 1, we have

m(h2, h1) = m(Γh1,Γh0) ≤ λ[m(h1,Γh1)]
α.[m(h0,Γh0)]

1−α.

This yields
[m(h2, h1)]

1−α ≤ λ[m(h0,Γh0)]
1−α

and hence
m(h2, h1) ≤ λ1/1−αm(h0, h1) ≤ λm(h0, h1).

In a similar fashion, we can write

m(hn+1, hn) = m(Γhn,Γhn−1) ≤ λ[m(hn,Γhn)]
α.[m(hn−1,Γhn−1)]

1−α

for any natural number n, and so

m(hn+1, hn) ≤ λ1/1−αm(hn−1, hn) ≤ λm(hn−1, hn).

By Lemma 2.5, we get
lim
n→∞

m(hn, hn+1) = 0 (2)

and so (hn) is an m-Cauchy sequence. Since (Υ,m) is complete so (hn) converges to, say, h ∈ Υ with respect
to convergence in m-metric. Also we have

m(Γhn,Γh) ≤ λ[m(hn,Γhn)]
α.[m(h,Γh)]1−α = λ[m(hn, hn+1)]

α.[m(h,Γh)]1−α.

Letting n tend to in�nity and using the facts that limn→∞m(hn, hn+1) = 0 and m(h,Γh) < ∞, we have

lim
n→∞

m(Γhn,Γh) = 0.

Then by using the condition (m2) of m-metric, we get

lim
n→∞

mΓhn,Γh = 0.

Thus we obtain
lim
n→∞

(m(Γhn,Γh)−mΓhn,Γh) = 0.

This by de�nition of convergence in m-metric implies that Γhn converges to Γh w.r.t the m-metric. Again
by (2) ,

m(hn,Γhn) = m(hn, hn+1)

yields
lim
n→∞

m(hn,Γhn) = 0.

An application of condition (m2) of m-metric gives

lim
n→∞

(m(Γhn, hn)−mΓhn,hn) = 0.

Since hn and Γhn converge to h and Γh respectively, a use of Lemma 2.4 provides us with

lim
n→∞

(m(Γhn, hn)−mΓhn,hn) = m(Γh, h)−mΓh,h = 0,
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or
m(Γh, h) = mΓh,h.

Again Γhn = hn+1 converges to h w.r.t m-metric gives by Lemma 2.4 that

0 = lim
n→∞

(m(hn,Γhn)−mhn,Γhn) = m(h, h)−mh,Γh.

That is to say
m(h, h) = mh,Γh.

Similarly, from

0 = lim
n→∞

(m(hn,Γhn)−mhn,Γhn) = lim
n→∞

(m(Γhn−1,Γhn)−mhn,Γhn) = m(Γh,Γh)−mh,Γh,

we get
m(Γh,Γh) = mh,Γh.

Consequently,
m(Γh,Γh) = m(h,Γh) = m(h, h) = mh,Γh.

thus by condition (m1) of m-metric, we have h = Γh, that is h is the �xed point of Γ.

In order to validate our above result, we now present the following example.

Example 3.3. Let Υ = [1/4,∞) and the mapping m : Υ×Υ → R+ be de�ned as follows.

m(h, g) =

{
h ; h = g
h+ g ; h ̸= g.

Also de�ne a self mapping Γ : Υ → Υ as follows.

Γh =

{
2 ; h ∈ [1/4, 4),
1/4 ; h ∈ [4,∞).

Note that 2 is the �xed point of Γ.
We �rst prove that (Υ,m) is an m-metric space.

Since the conditions (m1), (m2) and (m3) of m-metric follow trivially from de�nition of m-metric, it su�ces
to establish (m4). For this, we have to consider the following possibilities. Let h, g, z ∈ Υ.
If h < g < z, then

z = m(h, z)−mh,z ≤ (m(h, g)−mh,g) + (m(g, z)−mg,z) = g + z.

If h < g, z < g and h < z, then

z = m(h, z)−mh,z < (m(h, g)−mh,g) + (m(g, z)−mg,z) = 2g.

If h < g, z < g and h > z, then

h = m(h, z)−mh,z < (m(h, g)−mh,g) + (m(g, z)−mg,z) = 2g.

Similarly, we can explore all other possibilities for h, g, z ∈ Υ and establish (m4) thereby proving (Υ,m)
an m-metric space.

Now we discuss following three cases to prove that Γ is m-interpolative Kannan type contraction of
Theorem (3.2) for α = 1/2 and λ = 8/9.
Case 1. If h, g ∈ [1/4, 4), then we have m(Γh,Γg) = m(2, 2) = 2 and for h ̸= 2 and g ̸= 2, we have

λm(h,Γh)1/2m(g,Γg)1/2 = λ(h+ 2)1/2(g + 2)1/2 ≥ (9/4)λ = 2
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Case 2. If h ∈ [1/4, 4) and g ∈ [4,∞), then m(Γh,Γg) = m(2, 1/4) = 9/4 = 2.25, and for h ̸= 2, we have

λm(h,Γh)1/2m(g,Γg)1/2 = λ(h+ 2)1/2(g + 1/4)1/2 ≥ (8/9)(9/4)1/2(17/4)1/2 = 2.7

Case 3. If h, g ∈ [4,∞), then
m(Γh,Γg) = m(1/4, 1/4) = 1/4

Thus
λm(h,Γh)1/2m(g,Γg)1/2 = λ(h+ 1/4)1/2(g + 1/4)1/2 ≥ (8/9)(17/4) = 3.7

Hence in all the cases, Γ is an m-interpolative Kannan type contraction, so by Theorem 3.2, Γ has a �xed
point and it actually is 2.

The above example shows that Γ has one �xed point, whereas the next example will show that Γ may
have more than one(actually in�nite many) �xed points.

Example 3.4. Let Υ = [0,∞) and the mapping m : Υ×Υ → R+ be de�ned as follows

m(h, g) = |h− g|+ a

where “a” is any non-negative real number. Also de�ne a self mapping Γ : Υ → Υ as follows.

Γh =


1 ;h ∈ [0, 1/2),
h ;h ∈ [1/2, 200),
1/h ;h ∈ [200,∞).

Note that Γ has in�nite �xed points when h ∈ [1/2, 200). We �rst prove that (Υ,m) is an m-metric space.
Since the conditions (m1), (m2) and (m3) of m-metric follow trivially from de�nition of m-metric, it su�ces
to establish (m4). For any h, g, z ∈ Υ we have

m(h, z)−mh,z = |h− z|+ a−min(a, a)

m(h, z)−mh,z = |h− z| ≤ [|h− g|+ a]− a+ [|g − z|+ a]− a.

Hence
m(h, z)−mh,z ≤ (m(h, g)−mh,g) + (m(g, z)−mg,z)

thereby proving (Υ,m) an m-metric space.
Now we discuss following three cases to prove that Γ is m-interpolative Kannan type contraction of

Theorem (3.2) for α = 1/2 and λ = 3/4.
Case 1. If h, g ∈ [0, 1/2), then we have m(Γh,Γg) = m(1, 1) = a and

λm(h,Γh)1/2m(g,Γg)1/2 = λ(|h− 1|+ a)1/2(|g − 1|+ a)1/2 ≥ (3/4)(a+ 1/2)

Also 3/4(a+ 1/2) ≥ a, for all a ∈ [0, 3/2], thus the required interpolative condition holds for all a ∈ [0, 3/2].
Case 2. If h ∈ [0, 1/2) and g ∈ [200,∞), then m(Γh,Γg) = m(1, 1/g) = |1− 1/g|+ a ≤ 1 + a, and

λm(h,Γh)1/2m(g,Γg)1/2 = λ(|h− 1|+ a)1/2(|g − 1/g|+ a)1/2

≥ (3/4)(1/2 + a)1/2(200− 1/200 + a)1/2.

Also the relation holds when

(3/4)(1/2 + a)1/2(200− 1/200 + a)1/2 ≥ 1 + a



S.H. Khan, A.Raza, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 336�347. 343

it gives 0 ≤ a ≤ 253.706, hence the required interpolative condition holds for all a ∈ [0, 253.706].
Case 3. If h, g ∈ [200,∞), then

m(Γh,Γg) = m(1/h, 1/g) = |1/h− 1/g|+ a ≤ 1/200 + a.

Thus

λm(h,Γh)1/2m(g,Γg)1/2 = 3/4(|h− 1/h|+ a)1/2(|g − 1/g|+ a)1/2 ≥ (3/4)(200− 1/200 + a).

Thus (3/4)(200−1/200+a) ≥ 1/200+a when 0 ≤ a ≤ 599.965. So the required interpolative condition holds
for all a ∈ [0, 599.965].
Hence from all the above three cases we conclude that the interpolative condition of De�nition (3.5) hold when
a ∈ [0, 3/2]. Thus for such values of a in all the cases, Γ is an m-interpolative Kannan type contraction, so
by Theorem 3.2, Γ have �xed points and its actually are all the points in interval [1/2, 200).

For our second theorem, we need to de�ne the following m-interpolative Kannan type contraction where
the sum of interpolative constants is assumed to be less than 1.

De�nition 3.5. Let (Υ,m) be an m-metric space. A self mapping Γ : Υ → Υ is called (λ, α, β)-m-
interpolative Kannan type contraction if there exist λ ∈ [0, 1) and α, β ∈ (0, 1) with α+ β < 1 such that

m(Γh,Γg) ≤ λ[m(h,Γh)]α[m(g,Γg)]β

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg and m(h,Γh) ≥ 1,m(g,Γg) ̸= 0.

Theorem 3.6. Let (Υ,m) be a complete m-metric space and Γ : Υ → Υ be a (λ, α, β)-m-interpolative
Kannan type contraction. Then Γ has a �xed point.

Proof. Starting from h0 ∈ Υ, construct a sequence (hn) for all n ∈ N by hn+1 = Γhn. As in the previous
theorem, without any loss of generality, we assume hn ̸= hn+1 for each non negative integer n.

Next,

m(hn, hn+1) = m(Γhn−1,Γhn)

≤ λ[m(hn−1,Γhn−1)]
α[m(hn,Γhn)]

β.

Hence
m(hn, hn+1) ≤ λ[m(hn−1, hn)]

α[m(hn, hn+1)]
β

[m(hn, hn+1)]
1−β ≤ λ[m(hn−1, hn)]

α ≤ λ[m(hn−1, hn)]
1−β

because α < 1− β and m(hn−1, hn) ≥ 1. Thus

m(hn, hn+1) ≤ λ1/(1−β)m(hn−1, hn) ≤ λm(hn−1, hn).

The rest of the proof follows the similar procedure as in Theorem 3.2. To avoid the repetition, we leave it
for the interested reader to dig out the details.

In order to validate our above result, we give the following example.

Example 3.7. Let Υ = [2.7,∞) and m-metric on Υ be de�ned as follows (as in the previous Example)

m(h, g) =

{
h ; h = g,
h+ g ; h ̸= g.

De�ne a self mapping Γ : Υ → Υ as follows

Γh =

{
3 ; h ∈ [2.7, 27]
h ; h ∈ (27,∞).
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We discuss the following four case to con�rm that Γ is (7/8, 1/2, 1/4)-m-interpolative contraction used in
Theorem 3.6. If h, g ∈ [2.7, 27], then m(Γh,Γg) = 3 and for h ̸= 3, g ̸= 3, we have

λm(h,Γh)1/2m(g,Γg)1/4 = λ(h+ 3)1/2(g + 3)1/4 ≥ 3.688λ = 3.227

Consequently, Γ satis�es all the required interpolative conditions of Theorem 3.6, so h = 3 and h ∈ (27,∞)
are the �xed points of Γ.

Finally, we deal with the condition when the sum of interpolative exponents exceeds unity.

Theorem 3.8. Let (Υ,m) be a m-complete metric space and Γ : Υ → Υ be a self mapping such that

m(Γh,Γg) ≤ λ[m(h,Γh)]α.[m(g,Γg)]β

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg,m(h,Γh) ̸= 0,m(g,Γg) ̸= 0, λ ∈ (0, 1) and α, β ∈ (0, 1) such that
α+ β > 1. If there exist h0 ∈ Υ such that m(h0,Γh0) ≤ 1. Then Γ has a �xed point.

Proof. As usual, set hn+1 = Γhn for all non negative integers n with hn ̸= Γhn for all n ∈ N. Then

m(h1, h2) = m(Γh0,Γh1)

≤ λ[m(h0,Γh0)]
α.[m(h1,Γh1)]

β

implies
[m(h1, h2)]

1−β ≤ λ[m(h0, h1)]
α.

Thus
m(h1, h2) ≤ λ1/(1−β)[m(h0, h1)]

α/(1−β) ≤ λ,

because α/(1− β) > 1 and m(h0, h1) ≤ 1.
Next,

m(h2, h3) ≤ λ(m(h1, h2))
α(m(h2, h3))

β

gives
m(h2, h3)

1−β ≤ λ(m(h1, h2))
α

and so
m(h2, h3) ≤ λ1/(1−β)(m(h1, h2))

α/(1−β) ≤ λ.λα/(1−β).

In e�ect,
m(h2, h3) ≤ λ2.

By using mathematical induction and interpolative condition, the following relation holds for all natural
numbers n.

m(hn, hn+1) ≤ λn.

This means
lim
n→∞

m(hn, hn+1) = 0.

Also by the condition (m2) of m-metric, we have

mhn,hn+1 ≤ m(hn, hn+1)

giving
lim
n→∞

mhn,hn+1 = 0.

Since

m(Γhn−1,Γhn−1) = m(hn, hn)

≤ λ[m(hn−1,Γhn−1)]
α.[m(hn−1,Γhh−1)]

β
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therefore
m(Γhn−1,Γhn−1) ≤ [m(hn−1, hn)]

α.[m(hn−1, hn)]
β

m(Γhn−1,Γhn−1) ≤ λ[m(hn−1, hn)]
α+β.

Since α+ β > 1 and α, β ∈ (0, 1), the sum of α and β is not greater than two. So we have

lim
n→∞

m(hn, hn) ≤ λ lim
n→∞

λ(n−1)(α+β) = 0.

That is,
lim
n→∞

m(hn, hn) = 0. (3)

Equivalently,
lim
n→∞

m(hn+1, hn+1) = 0.

Hence, we have
lim
n→∞

min(m(hn, hn),m(hn+1, hn+1)) = lim
n→∞

mhn,hn+1 = 0.

And
lim

n,m→∞
(m(hn, hn),m(hm, hm)) = lim

n,m→∞
mhn,hm = 0. (4)

Thus by using the property (m4) of m-metric together with the expressions (3) and (4), we get

lim
n,j→∞

(m(hn, hj)−mhn,hj
) = 0.

Likewise,
lim

n,j→∞
Mhn,hj

= lim
n,j→∞

max(m(hn, hn),m(hj , hj)) = 0

allows
lim

n,j→∞
(Mhn,hj

−m(hn, hj)) = 0.

Hence (hn) is an m-Cauchy sequence in Υ. Since (Υ,m) is complete, so (hn) converges to a point, say h, in
Υ with respect to the convergence in m-metric.

Also we have
m(Γhn,Γh) ≤ λ[m(hn, hn+1)]

α.[m(h,Γh)]β

Since m(hn, hn+1) ≤ λn and m(h,Γh) ∈ [0,∞) and β ∈ (0, 1) so m(h,Γh) is �nite, thus we have

lim
n→∞

m(Γhn,Γh) ≤ lim
n→∞

λ1+αn[m(h,Γh)]β = 0.

This also shows limn→∞mΓhn,Γh = 0 and, in turn, we can write

lim
n→∞

(m(Γhn,Γh)−mΓhn,Γh) = 0.

Thus by de�nition of convergence in m-metric Γhn converges to Γh w.r.t m-metric.
Moreover,

lim
n→∞

(m(hn,Γhn)−mhn,Γhn) = 0.

Since hn and Γhn converges to h and Γh, so by using Lemma 2.4, we get

0 = lim
n→∞

(m(hn,Γhn)−mhn,Γhn) = m(h,Γh)−mh,Γh

or
m(h,Γh) = mh,Γh.
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Similarly, we have m(h, h) = mh,Γh and m(Γh,Γh) = mh,Γh. Thus

m(Γh,Γh) = m(h,Γh) = m(h, h) = mh,Γh.

Finally, by the condition (m1) of m-metric, we have

m(h,Γh) = m(h, h) = m(Γh,Γh) ⇐⇒ h = Γh.

Hence h is the �xed point of Γ.

In order to validate our above result, we give the following example.

Example 3.9. Let Υ = [1/2, 2] and m-metric on Υ is de�ned as follows

m(h, g) =

{
h ;h = g,
h+ g ;h ̸= g.

Also a self mapping Γ : Υ → Υ on Υ is de�ned as follows

Γh =

{
h ;h ∈ [1/2, 1)
1/h ;h ∈ [1, 2],

Now we prove that Γ satis�es the interpolative condition used in Theorem 3.8, for α = 1/2, β = 3/4 and
λ = 98/101.
If h, g ∈ [1, 2] then we have m(Γh,Γg) = 1/h+ 1/g ≤ 2 and for h ̸= 1, g ̸= 1 we have

λm(h,Γh)1/2m(g,Γg)3/4 = λ(h+ 1/h)1/2(g + 1/g)3/4 ≥ λ(2)1/2(2)3/4 > 2.

Hence Γ satis�es the required interpolative condition, so by Theorem 3.8, Γ have in�nite �xed points for all
h ∈ [1/2, 1].

3.1. Interpolative results for p-metric spaces

In this section, we discuss interpolative results in the setting of p-metric spaces. By Lemma 1.1, every
p-metric is m-metric so our results for p-metric will be the special cases of our corresponding m-metric. Here
also, we discusses all the three cases: the sum of the interpolative exponents equal to 1, less than 1 and
greater than 1.

Corollary 3.10. Let (Υ, p) be a p-metric space and Γ : Υ → Υ be a self mapping. If there exist constants
λ ∈ [0, 1) and α ∈ (0, 1) such that

p(Γh,Γg) ≤ λ[p(h,Γh)]α.[p(g,Γg)]1−α

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg and p(h,Γh) ̸= 0, p(g,Γg) ̸= 0, then Γ has a �xed point.

Proof. Since by Lemma 1.1, every p-metric is an m-metric, the result follows from Theorem 3.2.

Using the similar argument as in the proof of the above Theorem, we can prove the following results by
Theorem 3.6 and Theorem 3.8 respectively.

Corollary 3.11. Let (Υ, p) be a complete p-metric space and Γ : Υ → Υ be a a self mapping. If there exist
λ ∈ [0, 1) and α, β ∈ (0, 1) with α+ β < 1 such that

p(Γh,Γg) ≤ λ[p(h,Γh)]α[p(g,Γg)]β

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg and p(h,Γh) ≥ 1, p(g,Γg) ̸= 0, then Γ has a �xed point.

Corollary 3.12. Let (Υ, p) be a complete p-metric space and Γ : Υ → Υ be a self mapping such that

p(Γh,Γg) ≤ λ[p(h,Γh)]α.[p(g,Γg)]β

for all h, g ∈ Υ with h ̸= Γh, g ̸= Γg, p(h,Γh) ̸= 0, p(g,Γg) ̸= 0, λ ∈ (0, 1) and α, β ∈ (0, 1) such that
α+ β > 1. If there exist h0 ∈ Υ such that p(h0,Γh0) ≤ 1, then Γ has a �xed point.

Remark 3.13. Since every ordinary metric d is a p-metric, our Theorems 3.10,3.11 and 3.12 generalize the
corresponding results of [5], [4] and [3] respectively.
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