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ABSTRACT 
 

   The flow characteristics around a symmetrical airfoil NACA 0012 at incidence and a circular cylinder placed 

in tandem have been studied experimentally at a Reynolds number of 1.510
5
 based on the chord length of the 

airfoil C. The downstream circular cylinder of diameter D = 25 mm used as a bluff body was placed in the same 

axis in the flow direction in the wake of the airfoil. The dimensionless gap S/D, where S is the longitudinal 

spacing between the airfoil and the cylinder, and the attack angle of the airfoil, , were varied from 0 to 4.3 and 

from 0° to 15°, respectively. The effects of the attack angle of the airfoil and the longitudinal spacing between 

the airfoil and the cylinder on the pressure distributions and vortex shedding were examined. Characteristics of 

the vortex formation region and locations of flow attachments, reattachments, and separations were observed by 

means of the flow visualizations. It has been seen that the airfoil and the cylinder have considerably affected by 

each other. The variation in the flow structures according to the attack angle of the airfoil and the longitudinal 

spacing between the airfoil and the cylinder are revealed utilizing the flow visualization photographs. 

 

   Keywords: Airfoil, circular cylinder, aerodynamic characteristic, pressure distribution, Strouhal number 

 

 

BİR KANAT PROFİLİ VE BİR DAİRESEL SİLİNDİR ETRAFINDAKİ 

AKIŞIN AERODİNAMİK KARAKTERİSKTİKLERİ 
 

 

ÖZ 
 

   Ardışık olarak yerleştirilmiş simetrik bir NACA 0012 kanat profili ve bir dairesel silindir etrafındaki akış 

karakteristikleri kiriş uzunluğuna göre tanımlanmış Reynolds sayısının 1,510
5
 değerinde deneysel olarak 

incelenmiştir. Bir küt cisim olarak kullanılan 25 mm çapındaki dairesel silindir, kanat profilinin iz bölgesinde 

akış yönünde aynı eksende yerleştirilmiştir. Boyutsuz boşluk S/D (burada S, kanat profili ile silindir arasındaki 

uzunlamasına boşluktur) ve kanat profili hücum açısı, , sırasıyla 0’dan 4,3’e ve 0°’den 15°’ye kadar 

değiştirilmiştir. Kanat profili hücum açısının ve kanat profili ile silindir arasındaki uzunlamasına boşluğun 

basınç dağılımı ve girdap kopması üzerine etkileri incelenmiştir. Girdap oluşum bölgesi ve akış tutunması, tekrar 

tutunması ve ayrılma konumları, akış görüntüleme yardımıyla gözlenmiştir. Kanat profili ve dairesel silindirin 

önemli derecede birbirlerini etkiledikleri görülmüştür. Kanat profili hücum açısı ve uzunlamasına boşluk 

mesafesine göre akış yapılarındaki değişim, akış gözlem fotoğrafları kullanılarak açıklanmıştır. 

 

   Anahtar Kelimeler: Kanat profili, dairesel silindir, aerodinamik karakteristik, basınç dağılımı, Strouhal sayısı 
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1. INTRODUCTION 
 

   Circular and square cylinders are basic geometrical shape of bluff bodies and there are many studies and 

application areas. Flow control around the cylinder with the help of control rod [1-4], splitter plate [5-7] can be 

given as literature examples. Especially, flow around a circular cylinder has encountered in many engineering 

applications, for example, in the cooling tower, chimney and so forth. Sarioglu et al. [3] and Igarashi [8] 

investigated experimentally the effects of a thin rod having circular cross section, placed before a square cylinder 

in different distances, on the flow. They showed that there are two different flow structures depending upon the 

gap ratio between the two objects. Airfoil, as a streamlined or aerodynamic body, has also been used as a basic 

geometry in aerodynamics and hydrodynamics. Flow control around streamlined body by using a flap [9], 

dielectric barrier discharge (DBD) actuator [10] synthetic jet actuator [11] and so forth can be given as literature 

examples.  

   In the literature, there are many studies investigating flow structure of an airfoil. The wake of an airfoil usually 

includes instability waves and consistent structures with periodic indecisive motions, depending upon the 

Reynolds number and the angle of incidence. The NACA 0012 airfoil researched in this investigation is 

extensively used in aerodynamic applications. When flow structure of a single body compared with that of two 

objects in a uniform flow, it can be seen that there are considerable differences in terms of flow phenomena such 

as vortex shedding and fluctuating aerodynamic forces. Therefore, flow characteristic around two circular 

cylinders, two square cylinders and square and circular cylinder configuration in arranged tandem [12, 13], side 

by side [14], staggered [15] and combined [16] is widely available in literature. But streamlined and bluff body 

configuration in arranged side by side, tandem and so on is not studied widely in literature. In the following 

paragraphs, aforementioned type bodies’ configuration in literature will be summarized. 

   Keser and Ünal [17] experimentally carried out a study on flow around a blunt-based flat plate at ReL = 

1.4610
5
, 2.7210

5
 and 3.7110

5
 based on the plate length L. They measured the mean pressure distributions for 

the tandem and the staggered configurations that indicate different flow patterns depending upon gap ratios. 

Zhang et al. [18] examined the aerodynamic characteristics of a circular cylinder with an upstream NACA 4412 

airfoil experimentally for Red = 2100-20000, based on the diameter of the cylinder, and Rec = 14700-140000 

based on chord length of the airfoil. They showed that while a lateral distance (T) increase, affected forces such 

as drag and lift suddenly decrease. They also revealed that Reynolds number of 60000 is critical value because of 

determined the vortex formation. While Re is smaller than 60000, vortex generation is occurred from airfoil.  

   Zhou et al. [19] numerically studied the effect of a circular cylinder in behind of NACA 4412 airfoil at 

Reynolds Number 200 based on the cylinder diameter.  Their numerical study is divided into three groups, that is 

effects of attack angle, lateral spacing, and line distance, and are examined the vortex shedding and fluctuating 

forces. For the case of circular cylinder behind of NACA 4412 airfoil, while angle of incidence is bigger, vortex 

generation is decreased because of reattachment of separated shear layer from airfoil. Bajalan et al. [20] carried 

out an experimental study to investigate the effect of wake interaction of NACA 4412 airfoil and circular 

cylinder arranged in tandem with the help of hot wire anemometer. They indicated that circular cylinder placed 

behind the airfoil influenced the wake interaction and vortex formation region. 

   Henning et al. [21] investigated the aeroacoustic characteristic of the circular cylinder, that is used as control 

rod, in front of an airfoil. They measured the velocity field around this model by using particle image 

velocimetry and sound level by the means of phased-microphone array. They indicated that sound source is due 

to the leading edge of airfoil. Nakagawa et al. [22] performed an experimental study to investigate the effect of 

Mach number on flow around square cylinder placed in front of airfoil at Mach number changing between 0.15-

0.9. They showed that vortex shedding around the model is not eliminated and also Strouhal (Sr) number is 

nearly constant up to Ma = 0.7, that is critical value, for the constant spacing ratio between cylinder and airfoil. 

After this critical Mach number, Airfoil placed behind the square cylinder influenced the flow structure. 

Imamura and Takahashi [23] numerically performed a study to investigate the effect of airfoil over noise 

production of circular cylinder arranged in side by side configuration. They showed that airfoil and the circular 

cylinder placed in side by side significantly affected the aerodynamic characteristic such as lift and drag forces, 

and aeroacoustic characteristic such as sound. 

   Munekata et al. [24] investigated the aeroacoustic characteristic such as sound generated from interaction of 

airfoil and circular cylinder arranged in tandem. Flow visualization and acoustic measurements are carried out 

for the airfoil placed behind circular cylinder. They showed that peak sound pressure level is changed 

periodically with gap ratio between airfoil and circular cylinder and also obtained three different flow modes 

based on gap ratio. Strouhal number increases with augmentation of gap ratio. 

   In the study of Percin et al. [25], time-dependent velocity fields or flow around NACA 0012 airfoil is obtained 

by using Particle Image Velocimetry. They showed that airfoil vibration characteristics can strikingly be changed 

depending upon locations of the downstream cylinder. The primary effect of the existence of the downstream 
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cylinder is to diminish the amplitudes of high-frequency modulations. Yıldırım et al. [26] investigated the 

interaction of flow around circular cylinder placed in behind of an airfoil. Their results show vortex shedding 

from this configuration is affected by the position of the airfoil and a circular cylinder. 

   In this paper, an experimental study has been carried out for aerodynamics characteristics of the airfoil-

cylinder combination. In this configuration, the important parameters chosen are the longitudinal spacing and 

attack angle of the airfoil. Because of separation on the airfoil depending on the attack angle, the changes in the 

pressure forces are very significant.  For this reason, in this study it is aimed to give information of pressure 

fields around airfoil and cylinder about the structures of flow around the bodies measuring pressures on an airfoil 

and on a circular cylinder placed in tandem, and also making velocity–spectrum measurements in the wakes of 

the bodies. In the experiments, a circular cylinder as a bluff body and a symmetrical airfoil NACA 0012 as a 

streamlined body have been used. Experiments have been carried out at a Reynolds number of 1.510
5
 based on 

the chord length of the airfoil, C (or at a Reynolds number of 2.510
4
 based on the diameter of the circular 

cylinder, D). Angle of attack of airfoil was varied from 0 to 15 degrees while the dimensionless spacing was 

varied from 0 to 4.3. In this study, both the control of separation on the airfoil using a bluff body placed in the 

wake and also the effect of wake flow, produced from the airfoil, on the characteristics of a bluff body having 

circular cross section have been investigated for different values of the longitudinal spacing between the two 

bodies. 

 

 

2. MATERIALS AND METHOD 
 

   The experiment study was performed at the low-speed, open-type wind tunnel. As shown in Figure 1, working 

section of this wind tunnel has measures 457 mm wide, 457 mm high, and 1830 mm long. At the maximum 

tunnel speed of about 36 m/s, the free stream turbulence intensity was about 0.5%; the turbulence intensity was 

higher at low tunnel speeds, about 1.5% at 5 m/s, which is the lowest speed in the tunnel. Experiments for 

pressure measurement have been carried out at a Reynolds number of 1.510
5
 based on the chord length of the 

airfoil, C (or at a Reynolds number of 2.510
4
 based on the diameter of the circular cylinder, D). 

   The configuration of the airfoil and a circular cylinder in tandem and the coordinate system are shown in 

Figure 2. The chord length of the symmetrical NACA 0012 airfoil, one of the basic airfoil geometries, C and the 

diameter of the circular cylinder tested, which was made of stainless steel, D, were 150 mm and 25 mm, 

respectively. The widths of the models used were 452 mm. The rotation center of the airfoil is 25 mm from the 

leading edge and 125 mm from the trailing edge. The angle of attack of the airfoil  defined in the Figure 2 is 

changed as  = 0°, 5°, 10° and 15° in the rotation centre. The angle  defined in the Figure 2 is the 

circumferential angle measured from the stagnation point on the cylinder. The experiments were carried out in 

the cases of S/D = 0, 1, 2, 3, 4.3. Here, the values of S/D are determined at  = 0°. 

 

 
 

Figure 1. Low-speed, open-type wind tunnel and test section 
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Figure 2. Flow configuration and symbol definition 

 

   For the pressure measurements, 12 pressure taps on the upper surface and 11 pressure taps on the lower surface 

of the airfoil and 1 pressure tap on the circular model have been used. Pressures on the circular cylinder have 

been measured by rotating it in steps of. The pressure taps have a diameter of 0.9 mm. The pressure 

measurements have been made on the middle sections of the models. In the pressure measurements, two pressure 

transmitters with a range of 0 to 50 and 0 to 75 mmSS in conjunction with a TSI Model 157 signal conditioner 

have been used. The transmitters were connected to the pressure taps in reference to the free stream wall 

pressure. 

   TSI IFA 100 model constant temperature anemometer (CTA) used in order to determine the Vortex shedding 

frequency from the airfoil and the cylinder. Two hot-wire probe were located at the positions of x′ = 5.5D, y′ = 

1D between the two bodies and x = 2.5D, y = 1D in the downstream of the circular cylinder. 

   Velocity and pressure measurement data was collected as 2048 with the help of a computer-controlled data 

acquisition system.at Data collection for velocity is carried out at sample frequency of 1 kHz using low-pass 

filter setting of 300 Hz. Data collection for pressure were performed at sample frequency of 200 Hz using low-

pass filter setting of 100 Hz. TSI Thermal-Pro Software was used to obtain signals with a 12-bit A/D converter 

and obtain the statistical results of these signals. 

   The experimental uncertainties in the measurement of velocity, pressure and Strouhal number were determined 

to be less than 3.3% and 6.7% and 3.4 respectively. Blockage correction was not made because of flow 

asymmetry. The vortex shedding frequencies were determined from the spectral density distributions.  

 

 

3. RESULTS AND DISCUSSION 
 

3.1. Flow Visualization 
 

   Smoke-wire flow visualization experiment is performed to see the flow field around a symmetrical airfoil 

NACA 0012 and a circular cylinder at ReC = 3.610
4
. Figure 3 shows flow phenomena such as flow separation, 

attachment and reattachments on the bodies. The variation of vortex formation region behind the bodies can be 

also appeared in this figure. When examined the photographs of the single airfoil, it is seen that wake region 

broadens with increasing , whereas the airfoil has a narrow wake at  = 0°. In addition, in the cases of S/D = 0 

and 2, the wake region broadens with increasing the attack angle and the flow separated from the surface of the 

airfoil reattaches on the surface of the circular cylinder.  

 

 

 
Figure 3. Smoke-wire visualization of the flow around the NACA 0012 airfoil 

and the circular cylinder in tandem for ReC = 3.610
4
 (ReD = 610

3
) 

S/D=0 S/D=2 Single Airfoil 
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3.2. Mean Pressure Distributions  
 

   Measurements of surface pressure were carried out on the surfaces of the NACA 0012 airfoil and the circular 

cylinder at the Reynolds number of ReC = 1.510
5
 for S/D = 0, 1, 2, 3, 4.3 and for the attack angle of the NACA 

0012 airfoil, , in the range 0°-15° and the circumferential angle of the circular cylinder, , in the range 0°-360° 

as shown in Figure 4-7. Pressure distributions were examined together with the visualization photographs. In the 

left side of the figures 4, 5, 6 and 7, pressure coefficient distributions on the upper and lower surfaces of the 

airfoil for the attack angles 0°, 5°, 10° and 15° are given, whereas in the right side, pressure coefficient 

distributions measured on the circular cylinder placed behind the airfoil are given. 

    In Figure 4, in the case of  = 0°, it is seen that the values of pressures on the airfoil are affected slightly by 

the cylinder.  It is well known that the pressure distribution is highest at the leading edge and decreases moving 

towards the trailing edge. Also, the pressure distribution is symmetrical on the airfoil NACA 0012 at  = 0° and 

this means that lift force is zero. For the values of S/D = 0 and 1, there is a small increase in pressures on the rear 

region of the airfoil. In addition, the pressure distributions on the circular cylinder are favorably affected by the 

airfoil especially for the small values of S/D (0 and 1) in the case of the attack angle of  = 0°. Higher pressures 

than those in the case of bare cylinder occur specifically in the rear region. When examining the pressure 

distributions in Figure 4 together with the visualization photographs in Figure 3, it is possible to explain the flow 

structure at  = 0° as follows: when the two body are in contact, that is S/D = 0, the boundary layer developed on 

the airfoil impacts to the front surface of the cylinder, whereas the shear layers above it pass from the bottom and 

upper surfaces of the circular model very closely. For this reason, a narrow wake is formed behind the circular 

model and this causes an increase in the base pressure of the cylinder. With increasing the longitudinal spacing 

between the airfoil and the cylinder, the flow structure changes and the shear layers separated from the upper and 

lower surfaces of the airfoil approach to the front surface of the circular cylinder as seen in the photograph for 

S/D = 2 in Figure 3. Accordingly, the pressure distribution at S/D = 4.3 is close to that in the case of the single 

cylinder. 

   When examined the pressure distributions on the airfoil in the case of  = 5° (Figure 5), it is seen that there is a 

considerable increase in the pressure on the upper surface of the airfoil for S/D = 0 according to that in the case 

of the single airfoil. In this case, also there is important change on the lower surface. Here at S/D = 0, the 

cylinder impresses the flow passing under the airfoil, namely the boundary layer and causes negative pressures. 

That the pressure distributions on the lower surface become more negative means that the lift force working on 

the airfoil influences upside-down. Especially in this case, the shear layers passing over the airfoil reattach on the 

circular cylinder and consequently pressures increase in the region between the shear layer and the surfaces of 

the models. Thus, the pressure coefficient at rear point on the upper surface of the airfoil reaches to a value of 

+0.55. At the values of S/D>0, the flow structure changes and the pressure distributions similar to those in the 

case of bare airfoil appear. 

 

 
 

Figure 4 Pressure distributions on the NACA 0012 airfoil and the circular cylinder at  = 0° 

 

   In the case of S/D = 0, for  = 5° the stagnation point on the cylinder occurs at approximately  = 10° and 

while the pressure value at the stagnation point for  = 0° is about +0.5, it reaches to a value of +1.0 for  = 5° 

S/D>0, the flow structure changes and the pressure distributions seeming those in the case of bare airfoil 

appear. 
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in Figure 5. The pressures in the region of  = 60°-240° on the circular cylinder for the case of S/D = 0 have 

higher values than those in the case of the single cylinder. Because, as seen in the photographs given in Figure 3 

for  = 5° and S/D = 0, the shear layers passing from the upper surface of the airfoil come by the upper surface 

of the cylinder and hence it is formed narrower wake region causing an increase in the base pressure. In return, 

as seen in the flow visualization photographs, due to the inclination of the airfoil ( = 5°), the shear layers 

following the lower surface of the airfoil pass lower of the cylinder according to the case of  = 0° and therefore 

there is a decrease in pressures in the region  = 260°-280° on the cylinder. With increasing S/D, the pressures 

on the surfaces of both the airfoil and the cylinder show similar patterns as in the case of single bodies. 

Especially, at the bigger values of S/D, the shear layers belong to the free stream passing over the airfoil may 

touch the cylinder. Here, the value of the stagnation point occurring at about  = 0° is 1.0. 

 

 

 
 

Figure 5. Pressure distributions on the NACA 0012 airfoil and the circular cylinder at  = 5° 

 

   In the case of  = 10° in Figure 6, when examined the pressure distributions, the effect of S/D on the pressure 

distributions of the airfoil is little whereas pressure recovery occurs in the region  = 60°-300° on the cylinder 

due to the effect of S/D. Because of increasing the velocity on the upper front region of the airfoil (x/C = 0.0-

0.1), the level of pressure decreased considerably and this causes an increase in the lift forces. In the case of  = 

10° and S/D = 0, there is a base bleed flow which passes the gap between the trailing edge of the airfoil and the 

circular model, consequently the pressure distributions on the circular cylinder have a form similar to those of 

the single cylinder. Because of the attack angle of the airfoil, that is  = 10°, the flow coming from the upper 

side of the airfoil influences completely to the front region of the cylinder and hence for all S/D values, CP at the 

front stagnation point of the circular model has a value of 1.0 as being in the case of the circular single cylinder.  

 

 

 
 

Figure 6. Pressure distributions on the NACA 0012 airfoil and the circular cylinder at = 10° 

S/D. Because of increasing the velocity on the upper front region of the airfoil (x/C=0.0-0.1), pressures  
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   In Figure 7, in the case of  = 15°, both the pressure distributions of the airfoil and the circular cylinder have 

quite different characteristics according to those at smaller angles of attack. Because, at this attack angle,  = 

15°, it occurs a wide wake region behind the airfoil owing to the onset of boundary layer from the upper surface 

of the airfoil. For all S/D values, while the pressures on the upper surface of the airfoil nearly coincide with those 

in the case of the single airfoil, these pressure values hardly change with x/C. Because the upper surface of the 

airfoil remains entirely in the wake region. Likewise, the pressures on the lower surface of the airfoil entirely 

coincide with those in the case of the single airfoil. Because the boundary layer belonging to the flow passing the 

lower surface has not been affected by the cylinder. When examined the pressures on the lower surface of the 

airfoil, depending on the attack angle having a big value, Cp gradually decreases from the stagnation point that 

the flow attaches to the surface. Here, the pressures become negative after x/C = 0.35 due to developing of the 

boundary layer. There is no separation from the lower surface of the airfoil but from the trailing edge. This fact 

is clearly seen in the flow photographs given in Figure 3 for the case of  = 15°, the single airfoil and S/D = 0.0 

and 2.0. Examining the pressures on the cylinder for  = 15°, while the pressure distributions for S/D = 4.3, the 

biggest value of S/D, and the single cylinder have same characters, the pressure coefficients for the values of 

S/D<4.3 have completely different distributions. This shows two different flow structures.  

 

 

 

 
 

Figure 7. Pressure distributions on the NACA 0012 airfoil and the circular cylinder at  = 15° 

 

   In the flow structures in the range S/D = 0.0-3.0, the shear layers separated from the upper surface of the airfoil 

reattach on the circular cylinder. As the reattachment point occurs at  = 50° for S/D = 0.0, the angle of the 

reattachment point moves to the front side of the circular cylinder with increasing S/D and it occurs at  = 30° 

for S/D = 3.0. When S/D is increased from the value of 3.0 to 4.3, the flow structure that the shear layer 

reattaches on the circular model changes and the circular cylinder remains in the vortex street produced by the 

rolling shear layers behind the airfoil. Thus, the circular model meets with an approaching flow having high 

turbulence, so the stagnation point occurs at  = 0° and Cp has a value of 1.0. For S/D = 4.3, although the 

pressure distribution has a form similar to that of the single cylinder, as the flow has high turbulence the 

pressures on the rear surface of the circular cylinder are bigger than those of the single cylinder. For S/D1.0 at 

the angles of attack smaller than 15°, the pressure distributions have a concave shape in the middle in the range 

approximately 70°-290° on the surface of the circular cylinder. On the contrary, at  = 15°, they have convex 

distributions in the middle, except S/D = 4.3. As a matter of fact, examining the flow visualization photographs 

given in Figure 3, at the attack angle of 15°, the shear layer separated from the lower surface of the airfoil curls 

up due to the negative pressure in the wake and influences on the base region of the cylinder and thus causes the 

pressures in this region to increase. 

 

3.3. Spectral Measurements and Strouhal Numbers 
 

   Spectra measured at range of Reynolds numbers between 610
3
 and 4.410

4
 are presented in Figure 8. They 

were obtained at the position x′/D= 5.5, y′/D= 1 between the airfoil and the circular cylinder for S/D = 0,  = 0°. 
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As shown in this figure, with increasing the Reynolds number, the shedding frequency increases from 32.23 Hz, 

in Re = 6285, to 240.23 Hz, in Re = 44231.  

   Spectral density distributions measured at different attack angles between  = 0°-15° for S/D = 0 and S/D = 

1.0 are given in Figure 9 for ReD = 2.510
4
. As shown in this figure, single peaks are obtained until   12°, 

while they are unapparent after approximately 12°. The shedding frequency remains nearly constant about 128 

Hz until   12°. 

   Spectra measured at x'/D = 5.5 ve y'/D = 1 in the wake of the airfoil NACA 0012 between the two body in the 

range  = 0°-15° for S/D = 0 and S/D = 1.0 are given in Figure 10 for ReC = 1.510
5
. Single dominant peaks are 

obtained until  = 12° for S/D = 0.0, whereas they are obtained until  = 9° for S/D = 1.0. 
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Figure 8. Spectra measured at x′/D= 5.5, y′/D= 1 between 

the airfoil and the circular cylinder for S/D= 0,  = 0° 

 

 
 

Figure 9. Spectra measured at x/D = 2.5 and y/D = 1 in the wake of the circular cylinder 

(D= 25 mm) in the range = 0°-15° for (a) S/D = 0 and (b) S/D = 1.0 

cylinder for S/D = 0,  = 0°  

 

 
 

Fig. 9 Spectra measured at x/D = 2.5 and y/D = 1 in the wake of the circular cylinder (D = 25 mm) in the  

range  = 0°-15° for (a) S/D = 0 and (b) S/D = 1.0 
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Figure 10. Spectra measured at x'/D = 5.5 and y'/D = 1 in the wake of the airfoil NACA 

0012 (between the two body) in the range  = 0°-15° for (a) S/D= 0 and (b) S/D= 1.0 

 

   Strouhal numbers calculated using vortex shedding frequencies obtained from spectral distributions, versus 

Reynolds number for  = 0° at different x-stations in the wake of the circular cylinder of diameter D = 25 mm 

and D = 35 mm are shown in Figure 11. In Figure 11a, which includes results of the circular cylinder of diameter 

D = 25 mm, there is a relatively small effect of Reynolds number on Strouhal number for S/D<3.0. That is, with 

increasing the Reynolds number, the Strouhal number doesn’t change considerably and it exhibits a distribution 

about the value of 0.20 for S/D<3.0, whereas, it increases gradually with increasing the Reynolds number for 

S/D = 3.0 and 4.3. In Figure 11b, which includes the results of the circular cylinder of diameter D = 35 mm, the 

Strouhal number increases continuously with increasing the Reynolds number for S/D = 0.0-3.0. The Strouhal 

number for S/D= 0.0 has the bigger values according to those for the other S/D’s. The increase in Strouhal 

number with Re number is associated with the moving of the separation point to rear region on the cylinder due 

to high turbulent upcoming flow. 

   Strouhal numbers for different values of S/D are shown in Figure 12. As shown in this figure with increasing 

the attack angle of the airfoil, the Strouhal number is almost constant until 13° and then it sharply decreases. 

Here, it must be said that after this angle of 13°, stall starts. Until this angle, because the shear layers passing 

over the airfoil touch directly on the circular cylinder, it is obtained some explicit single peaks in the spectral 

distributions obtained in the wake of the cylinder. With increasing , the airfoil creates a big projection height 

and thus it behaves as a bluff body having a wide wake region.  

 

 
 

Figure 11. Strouhal numbers versus Reynolds number for  = 0° (a) In the wake of the circular 

cylinder of diameter D = 25 mm at x/D = 2.5, y/D = 1.0 (b) In the wake of the circular cylinder 

of diameter D = 35 mm at x/D = 2.5, y/D = 1.0 

 

 
 

Fig. 10 Spectra measured at x'/D = 5.5 and y'/D = 1 in the wake of the airfoil NACA 0012 (between the two 

body) in the range  = 0°-15° for (a) S/D = 0 and (b) S/D = 1.0 
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Fig. 11 Strouhal numbers versus Reynolds number for =0° : (a) In the wake of the circular cylinder of 

diameter D=25 mm at x/D=2.5, y/D=1.0 (b) In the wake of the circular cylinder of diameter D=35 mm at 

x/D=2.5, y/D=1.0 
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Fig. 11 Strouhal numbers versus Reynolds number for =0° : (a) In the wake of the circular cylinder of 

diameter D=25 mm at x/D=2.5, y/D=1.0 (b) In the wake of the circular cylinder of diameter D=35 mm at 

x/D=2.5, y/D=1.0 
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Figure 12. Strouhal number vs attack angle, , at  x/D = 2.5; 

y/D = 1.0 in the wake of the circular cylinder 

 

   In this case, the shear layers separated from the front upper and the back lower edge of the airfoil roll towards 

its wake having negative pressures and thus it is formed strong vortices behind the airfoil. In these attack angles, 

because the circular cylinder is completely in the wake region of the airfoil, the flow layers coming to the 

circular model are particularly comprised of these vortices. For this reason in these attack angles, in the spectral 

frequencies obtained behind the circular model, it is formed many weak peaks associated with the unsteady flow 

structure, where vortex shedding frequency of the airfoil is effective. While calculating the Strouhal numbers in 

Figure12, the strong ones of these peaks are considered. 

 

3.4. Drag Coefficients 
 

   As seen in Figure 13, variation of the drag coefficients of the cylinder as a function of S/D is plotted at the 

Reynolds number of 2.510
4
. Drag coefficient is obtained from mean pressure measurement data. Here, drag 

results include the effect of the airfoil. As shown in this Figure, S/D has nearly no effect on the CD for =0°-10°, 

whereas, the drag coefficient increases gradually with S/D for = 15°. At  = 0°-10°, because of the effect of the 

airfoil, the wake of the cylinder becomes narrower according to that of the bare cylinder. So, the increase in base 

pressure of the cylinder causes CD to be lower than the value of about 1.2 of the bare cylinder. Also, as = 15°, 

because the cylinder remains entirely in the wake, pressures in front of the cylinder have negative values. 

 

 
 

Figure 13. Drag coefficient on the circular cylinder of diameter  

D= 25 mm vs S/D 
 

   For this reason, especially in the cases of S/D = 0 and 1.0, CD has negative values, namely, thrust force acts to 

the cylinder instead of drag force. With increasing S/D, increase in the pressure of the front surface causes CD to 

go up. 

   The drag coefficients of the circular cylinder versus  for different values of S/D are given in Figure 14. As 
shown in this figure, CD remains almost constant until = 10° but decreases sharply after 10° for all of the values 
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of S/D except for S/D = 4.3. For S/D = 4.3, the drag coefficient is nearly constant for all of the values of the 

attack angles considered. 

 

 
 

Figure 14. Variation of the drag coefficient of the circular 

cylinder of diameter D= 25 mm with  

 

 

4. CONCLUSIONS 
 

   The flow characteristics around a symmetrical airfoil NACA 0012 at incidence and a circular cylinder placed 

in tandem have been investigated experimentally. Pressure distributions of the models at ReC = 1.510
5 

based on 

the chord length of the airfoil (C) and ReD = 2.510
4 

based on the diameter of the cylinder (D) are obtained. The 

variation in the flow structures according to the attack angle of the airfoil and the longitudinal spacing between 

the airfoil and the cylinder are revealed utilizing the flow visualization photographs. 

   It is seen that in the case of  = 5°, for only S/D = 0.0, the pressures on the upper and the lower surfaces of the 

airfoil and the flow structure are different than those of the values of the single airfoil, while the pressures of the 

airfoil are not affected by the circular model in the case of  = 0°. In the case of  = 10° and 15°, the pressure 

distributions of the airfoil are same with those of the single airfoil.  

   The pressure distributions of the circular cylinder have similar characteristics with those of the circular single 

cylinder at the attack angles of 0°, 5° and 10° but their values are a bit higher level. At the attack angle of =15°, 

the pressure distributions for S/D<4.3 have fairly different character according to the pressures of the circular 

model only and they have higher values at especially  = 60°-300°. It is seen that the flow structure for these 

small values of S/D causes the separated shear layer from the front upper edge of the airfoil to reattach on the 

surface of the circular cylinder between  = 30°-50° and the separated shear layer from the back lower edge to 

increase the pressure in the region behind the circular cylinder.  

   In the spectra measured at the location x′/D = 5.5, y′/D = 1 between the airfoil and the circular cylinder for 

S/D= 0,  = 0°, with increasing the Reynolds number, the shedding frequency increases from 32.23 Hz, while 

the Reynolds number is 6285, to 240.23 Hz, while the Reynolds number is 44231. 

   With increasing the attack angle of the airfoil, the Strouhal numbers obtained behind the circular model remain 

nearly constant until  = 12° because of hitting of the shear layers passing over the airfoil directly to the circular 

cylinder. The airfoil constitutes a wide wake region acting as a bluff body due to having a big projection height 

after  = 12°. For this reason, the vortex shedding structure of the circular cylinder is under the effect of the 

vortices created by the airfoil. For the circular cylinder of diameter D = 25 mm, there is a comparatively small 

effect of Reynolds number on Strouhal number for S/D<3.0, whereas, the Strouhal number increases gradually 

with increasing the Reynolds number for S/D = 3.0 and 4.3. But for the circular cylinder of diameter D = 35 mm, 

the Strouhal number continuously increases with increasing of the Reynolds number for S/D = 0.0-3.0. 
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