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Abstract
This research paper introduces and establishes the concept of compact operators in the
context of Riesz spaces, specifically considering statistical order convergence. We define
statistical order compact operators as operators that map statistical order bounded se-
quences to sequences with statistical order convergent subsequences. Additionally, we
define statistical M -weakly compact operators. By utilizing these non-topological con-
cepts, we derive some new results pertaining to these operators.
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1. Introduction
Fast [11] and Steinhaus [19] independently introduced the concept of statistical con-

vergence in 1951. Thereafter, it garnered the attention of numerous mathematicians and
became the focus of their studies (cf. [3, 4, 11, 14, 19]). On the other hand, Riesz initially
introduced the concept of vector lattice (or Riesz space) in 1921 [18], which has found
numerous applications in diverse disciplines such as economics, operator theory, and mea-
sure theory (cf. [1–6, 13, 22]). Convergences in Riesz spaces, such as order convergence
and statistical order convergence, are not topological in general (cf. [12, Thm.2]). How-
ever, certain types of continuous operators, such as statistical order continuous operators,
have been defined with respect to order convergence (cf. [6, 8,16]). The aim of this study
is to introduce the notion of statistically compact operators on Riesz spaces, as there is
currently no comprehensive study of compact operators in the theory of Riesz space with
respect to statistical convergence.

Recall that an ordered vector space is referred to as a Riesz space if the infimum and
supremum of all pairs x and y exist. In this paper, unless stated otherwise, Riesz spaces
are denoted by the letters E and F . In Riesz spaces, a sequence (xn) is called;

- order bounded if |xn| ≤ u holds for each n ∈ N and for some positive elements
θ ≤ u.

- order Cauchy sequence if the inequality |xn+k −xn| ≤ qn holds for all n, k ∈ N and
for some sequences qn ↓ θ.
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- order convergent to a vector x if the inequality |xn − x| ≤ qn holds for a sequence
qn ↓ θ, denoted as xn

o−→ x.
Throughout this paper, operators are assumed to be linear, and vector spaces are consid-
ered real. The notation L(E, F ) represents the collection of all operators from E to F .
Let T ∈ L(E, F ) be an operator. The following definitions are used:

(a) T is termed sequentially order compact if the image of an order bounded sequence
possesses an order convergent subsequence.

(b) T is referred to as an order bounded operator if the range of each order bounded
set is order bounded.

(c) If xn
o−→ x implies Txn

o−→ Tx, then T is called a σ-order continuous operator.
(d) T is called an order continuous operator if Txα

o−→ Tx holds for every xα
o−→ x.

The collection Lb(E, F ), denoting all order bounded operators between E and F , forms
a vector space. Moreover, it follows from [2, Thm.1.18] that Lb(E, F ) is also a Dedekind
complete Riesz space whenever F possesses the Dedekind completeness property, i.e., every
order bounded subset has a supremum and infimum.

Let K be a subset of natural numbers. The asymptotic density of K, denoted as δ(K),
is defined as the limit (if it exists):

lim
n→∞

1
n
K

(
{k ≤ n : k ∈ K}

)
,

where K represents the cardinality. Furthermore, a sequence (xk) in a Riesz space is said
to be statistically convergent to x if the following limit (if it exists) holds:

lim
n→∞

1
n
K

(
{k ≤ n : |xk − x| ≥ ε}

)
= 0

for every ε > 0.
Consider a sequence (xn) in a Riesz space. The following definitions are introduced

(refer to [3, 4, 20] for further details):
- Statistically order decreasing (denoted as xn ↓sto θ) to θ if there exists a set K ⊆ N

with δ(K) = 1 such that xk ↓ θ on K.
- Statistically order convergent (denoted as xn

sto−−→ x) to x ∈ E if |xk − x| ≤ qk holds
for a sequence qn ↓sto θ with a set K ⊆ N such that δ(K) = 1 and for all k ∈ K.

- Statistically order bounded (denoted as sto-bounded) if there exists a positive vector
θ ≤ u ∈ E+ and an index set K ⊆ N such that δ(K) = 1 and |xk| ≤ u for every
k ∈ K.

It should be noted that every statistically order convergent sequence and order bounded
sequence is sto-bounded. However, the converse is not generally true. Additionally, the
following notions from [8] are worth recalling. An operator T between Riesz spaces is
considered:

- Statistically σ-order continuous if Txn
sto−−→ Tx holds in F whenever xn

sto−−→ x in E.
- Statistically order bounded if it maps statistically order bounded sequences to sta-

tistically order bounded sequences.
Lastly, it is worth mentioning that a positive vector u ≥ 0 in a Riesz space is termed an
atom if x ∧ y implies either x = θ or y = θ for each pair x, y ∈ [θ, u].

2. Statistical order compact operators
Recall that an operator T defined between normed spaces is called compact if the image

of the unit ball under T is relatively compact, or equivalently, if every norm-bounded
sequence has a subsequence whose image under T converges. Now, let’s define compact
operators with respect to statistical order convergence among Riesz spaces.
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Definition 2.1. Let T ∈ L(E, F ). T is called statistically order compact (or sto-compact)
if every statistically order bounded sequence (xn) in E has a subsequence (xjn) such that

T (xjn) sto−−→ z

holds in F for some z ∈ F .

Note that T is sto-compact if and only if there exists a further subsequence (xjnk
) of

(xjn) such that T (xjnk
) o−→ z. In this paper, we denote Lsto(E, F ) as the set of all sto-

compact operators between E and F .

Remark 2.2. It can be easily observed that a sequentially order compact operator is
statistically order compact because an order-convergent sequence is statistically order
convergent.

Since a statistically order convergent sequence is not order convergent in general (see
for example [20, Exam.3]), the converse of Remark 2.2 does not hold in general. Now, let’s
prove that Lsto(E, F ) is a vector space.

Lemma 2.3. The set Lsto(E, F ) is a vector space.

Proof. Suppose S, T ∈ Lsto(E, F ) and (xn) is an sto-bounded sequence in E. Then,
there exist subsequences (xi)i∈I and (xj)j∈J of (xn) with subsets δ(I) = δ(J) = 1 such
that T (xi)

sto−−→ y and S(xj) sto−−→ z for some y, z ∈ F . By applying [20, Thm.6], we have
(T + S)(xm) sto−−→ y + z for m ∈ M := I ∩ J , where δ(M) = 1. Thus, we have shown
the sto-compactness of T + S. Similarly, we can prove the case of multiplication by a
scalar. □
Proposition 2.4. Take three operators R, S ∈ L(E) and T ∈ Lsto(E).

(i) S ◦ T ∈ Lsto(E) holds whenever S is statistical σ-order continuous.
(ii) T ◦ P ∈ Lsto(E) holds if P is sto-bounded.

Proof. (i) Assume that S is a statistically σ-order continuous operator and (xn) is an
sto-bounded sequence. Then, by using the sto-compactness of T , we have a subsequence
(xk)k∈K of (xn) such that T (xk) sto−−→ y for some y ∈ E and some index set δ(K) = 1. Now,
by applying sto-continuity of S, we have S(T (xk)) sto−−→ S(y), i.e., (S ◦ T )(xk) sto−−→ S(y). So,
we get the desired result.

(ii) Suppose that P is an sto-bounded operator and (xn) is an sto-bounded sequence.
Then, (Pxn) is also an sto-bounded sequence. So, we have a subsequence (Pxk)k∈K of
(Pxn) such that T

(
Rxk

) sto−−→ y for some y ∈ E and for an index set δ(K) = 1 because T
is sto-compact operator. Therefore, we obtain that T ◦ P is an sto-compact operator. □
Proposition 2.5. Every operator T ∈ L(E, F ) is sto-compact if T is sto-bounded and F
is an atomic KB-space.

Proof. Assume (xn) is an sto-bounded sequence in E. Since T is sto-bounded, T (xn) is
an sto-bounded sequence in F . Thus, there exists an index set K with δ(K) = 1 such
that |T (xk)| ≤ u for all k ∈ K and for some u ∈ F+, i.e., T (xn) has an order bounded
subsequence (T (xk))k∈K with δ(K) = 1. According to [7, Rem.6], there exists a further
subsequence (T (xm))m∈M of (T (xk))k∈K such that T (xm) o−→ y for the same vector y ∈ F .
Since δ(M) = 1, we conclude that T ∈ Lsto(E, F ). □
Theorem 2.6. Every statistically order compact operator is statistically order bounded.

Proof. Assume T ∈ Lsto(E, F ) is not statistically order bounded. By contradiction,
we can find a sequence (xn) that is statistically order bounded in E, but (Txn) is not
statistically order bounded in F . Since every order bounded sequence is statistically order
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bounded, this implies that (Txn) is not order bounded. Therefore, for all positive elements
w in F+ := {x ∈ F : θ ≤ x}, there exist some indexes nw ∈ N such that

|Txnw | ≰ w.

On the other hand, using the sto-compactness of T , we have a subsequence (xk)k∈K of
(xn) such that T (xk) sto−−→ z for some z ∈ F because (xn) is a statistically order bounded
sequence in E. Therefore, there exists a further sequence qk ↓sto θ in F with an index
subset J ⊆ K such that δ(J) = 1 and

|Txj − z| ≤ qj

for each j ∈ J . This implies that (Txj) is order bounded in F since qj ↓ θ on J . However,
there exists u ∈ F+ such that

|Txj | ≰ u

for some ju ∈ J , which contradicts the assumption. Hence, every statistically order
compact operator must be statistically order bounded. □

In general, the converse of Theorem 2.6 may not hold. The following example illustrates
that both sto-bounded and statistically σ-order continuous operators may not be sto-
compact.

Example 2.7. Consider the Riesz space L1[0, 1]. It can be observed that the identity
operator I on L1[0, 1] is both statistically order bounded and statistically σ-order contin-
uous. However, I is not statistically order compact. To see this, let (rn) be the sequence
of Rademacher functions defined on [0, 1] as rn(t) := sgn(sin(2nπt)) for each n ∈ N and
t ∈ [0, 1]. Since |rn| = 1 for every n ∈ N, (rn) is statistically order bounded. Suppose that
(rk)k∈K is a subsequence of (rn) such that rk

sto−−→ f for some f in L1[0, 1]. This implies
that there exists a further subsequence (rj)j∈J of (rk)k∈K with δ(J) = 1 and rj

o−→ f . Let
j0 ∈ J be fixed. Then, for every j ≥ j0, we have

∫ 1
0 rj0rjdµ = 0. Since rj0rj

o−→ rj0r, we
have the following convergence:∫ 1

0
rjrdµ →

∫ 1

0
rrdµ =

∫ 1

0
r2dµ.

By utilizing the order continuity of the integral, we conclude that
∫ 1

0 rjrdµ = 0. Thus,
we obtain

∫ 1
0 r2dµ = 0. However, this contradicts the fact that |r| = 1. Hence, we

demonstrate that (rn) does not have any sto-convergent subsequence, and therefore, I is
not sto-compact.

Example 2.8. Not every statistically order compact operator is order bounded. An
example illustrating this fact can be found in [10, Exam.6], where the given operator is
sequentially order compact. Thus, by applying Remark 2.2, it is also statistically order
compact. However, it is not an order bounded operator.

Consider [15, Exam.4.2] for the following example.

Example 2.9. A statistically order compact operator may not be statistically σ-order
continuous. Consider any ultrafilter U on the Boolean algebra B consisting of the Borel
subsets of [0, 1] modulo null sets. The operator TU from L∞[0, 1] to R defined by

TU(S) := lim
A∈U

1
µ(A)

∫
A

Sdµ

is statistically order compact but not statistically σ-order continuous.
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3. More results of sto-compact operators
We remind that a lattice norm on Riesz spaces as a norm ∥·∥ that satisfies ∥x∥ ≤ |y∥

for all vectors |x| ≤ |y|.
Theorem 3.1.

(i) If T ∈ L(E, F ) is a compact operator, where E is a normed lattice and F is a Banach
lattice, then T is sto-compact.

(ii) If T ∈ Lsto(E, F ) is an operator, where E is an AM -space (i.e., x ∧ y = 0 implies
∥x ∨ y∥ = ∥x∥ ∨ ∥y∥) with a strong norm unit and F is an order continuous normed
lattice, then T is compact.

Proof. (i) Let (xn) be an sto-bounded sequence in E. This means there exists an index
set K and some positive element u ∈ E+ such that |xk| ≤ u for all k ∈ K, which implies
that (xk)k∈K is order bounded. Since E is a normed lattice, we have ∥xk∥ ≤ ∥u∥ for all
k ∈ K. Thus, (xk)k∈K is a norm bounded sequence in E. By the compactness of T , we
have T (xm) ∥·∥−−→ y for some subsequence (xm)m∈M of (xk)k∈K and y ∈ F . Applying a
result from [21, Thm.VII.2.1], there exists a further subsequence (xi)i∈I of (xm)m∈M such
that T (xi)

o−→ y because F is a Banach lattice. Therefore, since (xk)k∈K is order bounded
and the subsequence (xi)i∈I of (xk)k∈K satisfies T (xi)

o−→ y, we obtain δ(I) = 1, which
means T is sto-compact.

(ii) Consider an arbitrary norm bounded sequence (xn) in E. Since E satisfies the AM -
property with a strong norm unit, according to [22, p.490], (xn) is also order bounded.
Thus, (xn) is an sto-bounded sequence. By using the sto-compactness of T , we have
Txk

sto−−→ y for some subsequence (xk)k∈K of (xn) with δ(K) = 1 and for some y ∈ F . This
implies that there is a further subsequence (xm)m∈M of (xk)k∈K satisfying Txm

o−→ y with
the index set δ(M) = 1. The convergence of Txm

∥·∥−−→ y can be obtained from the order
continuous lattice norm. Therefore, T is compact. □

Consider an operator T defined on E as T (x) = f(x)u, where x belongs to E, f is an
order bounded linear functional on E, and u is a fixed vector in F . This defines an operator
T belonging to Lb(E, F ), which is referred to as a rank one operator (cf. [2, p.64]).
Theorem 3.2. Every sto-bounded finite rank operator is sto-compact.
Proof. Let u be a fixed vector in F . Without loss of generality, assume that T is defined
as T (x) = f(x)u for all x ∈ E, where f : E → R is an sto-bounded functional. For an
arbitrary sto-bounded sequence (xn) in E, f(xn) is sto-bounded in R because f is an sto-
bounded functional. Hence, there exists a subsequence (xk)k∈K of (xn) such that f(xk)
is bounded in R and δ(K) = 1. By applying the Bolzano-Weierstrass Theorem, we obtain
a further subsequence (xm)m∈M of (xk)k∈K such that f(xm) → α for some α ∈ R, where
δ(M) = 1. Thus, we observe the following inequality:

|T (xm) − αu| = |f(xm)u − αu| = |f(xm) − α||u| → 0.

This is due to the Archimedean property of F and the fact that |f(xm)−α| → 0. Therefore,
we conclude that T is sto-compact. □
Example 3.3. The space Lsto(E, F ) is not necessarily order closed. To illustrate this,
consider an operator T defined as T (en) = (rn)+, where en denotes the standard unit
basis in ℓ1 and (rn) represents the Rademacher function as given in Example 2.7. Let πn

be a projection and (Sn) be a sequence defined by Sn(x) := (T ◦ πn)(x) =
∑n

k=1 xkr+
k for

all x ∈ ℓ1. It is evident that each Sn is a finite rank one operator. By applying Theorem
3.2, we deduce that (Sn) is a sequence in Lsto(ℓ1, L1). However, it is clear that Sn

o−→ T .
Example 2.7 shows that (rn) does not possess any sto-convergent subsequence. Hence, we
conclude that T is not sto-compact.
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Remind that an operator T ∈ L(E, F ) satisfying the property T (x ∨ y) = T (x) ∨ T (y)
for each pair x and y in E is called Riesz homomorphism (or lattice homomorphism) (cf.
[1, Def.1.30]).

Proposition 3.4. Let T be a Riesz homomorphism in Lsto(E, F ), where F is an order
complete Riesz space. If θ ≤ S ≤ T holds for some operator S ∈ L(E, F ), then S is
sto-compact.

Proof. Suppose that (xn) is an sto-bounded sequence in E. By selecting a subsequence,
we assume that (Txk) sto−−→ y for some y ∈ F , and consider a subsequence (xkn)kn∈K of (xn)
with δ(K) = 1. By utilizing [13, Thm.18.2], we have the following inequality:

|Sxkn − Sxkm | ≤ S(|xkn − xkm |) ≤ T (|xkn − xkm |) = |Txkn − Txkm |
for all kn ∈ K, as T is a Riesz homomorphism and S is a positive operator. Consequently,
we deduce from the last inequality that (Sxkn)kn∈K is a statistical order Cauchy sequence
due to (Txkn −Txkm) sto−−→ θ. By utilizing the order completeness of F , we obtain Sxkn

o−→ z

for some z ∈ F . Applying [20, p.7], we further conclude that Sxkn

sto−−→ z since δ(K) = 1.
Hence, S is an sto-compact operator, which completes the proof. □
Theorem 3.5. Let E be a Dedekind complete Riesz space, and T be a positive, statistically
σ-order continuous, and sto-compact operator on E. Then, T ◦ Sn

sto−−→ T ◦ S holds for
any sequence (Sn) of statistically σ-order continuous and decreasing operators on E with
Sn

sto−−→ S for some operator S on E.

Proof. Suppose that T and (Sn) satisfy the assumptions of the theorem. It follows from
the statistically σ-order continuity of T and S for each n that T ◦ Sn is a statistically σ-
order continuous operator for every n. Moreover, since Sn

sto−−→ S holds for some operator
S on E, we have a subsequence (Sk)k∈K of (Sn) with δ(K) = 1 such that Sk

o−→ S. Thus,
by considering [21, Thm.VIII.2.3], we obtain Skx

o−→ Sx for all vectors x in E. Therefore,
Snx

sto−−→ Sx for every x ∈ E. This implies that T (Snx) sto−−→ T (Sx) or (T ◦ Sn)(x) sto−−→(T ◦
S)(x) holds for each x ∈ E since T is statistically σ-order continuous. Additionally, since
(Sn) is decreasing and T is positive, then (T ◦Sk) forms a decreasing sequence. Therefore,
by applying [21, Thm.VIII.2.4], we obtain T ◦ Sk

sto−−→ T ◦ S, i.e., T ◦ Sn
sto−−→ T ◦ S. □

Theorem 3.6. Let (Tj) be a sequence of statistically σ-order compact operators in Lb(E, F ),
where F is Dedekind complete. If (Tj) is statistically σ-order convergent to T ∈ Lb(E, F ),
then T ∈ Lσsto(E, F ).

Proof. Assume that (xn) is a statistically σ-order bounded sequence in E. This means
that there exist an index set I and a positive element u ≥ 0 in E such that |xi| ≤ u holds
for each i ∈ I. Using a standard diagonal argument, we can find a subsequence (xm)m∈M

of (xn) such that Tjxm
sto−−→ yj for any j ∈ N and for some yj ∈ F with δ(M) = 1 as

m → ∞, because Tj is statistically σ-order compact for each j. Since (Tj) is statistically
σ-order convergent to T , we have a subsequence (Tjk

)jk∈K of (Tj) with index set δ(K) = 1
such that Tjk

o−→ T as jk → ∞. It can be observed that Tjk
xm

o−→ yjk
as m → ∞ for each

jk ∈ K.
Now, we will show that (yjk

)jk∈K is a statistically σ-order Cauchy sequence in F . Firstly,
we observe the following inequality:

|yjn − yjk
| = |yjn − Tjnxm + Tjnxm − Tjk

xm + Tjk
xm − yjk

|
≤ |yjn − Tjnxm| + |Tjnxm − Tjk

xm| + |Tjk
xm − yjk

|. (∗)
for every jn, jk ∈ K. Then, we obtain that both the first and third terms in the last
inequality converge to zero in the statistical σ-order as jn → ∞ and jk → ∞, respectively.
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Using the Dedekind completeness of F , we can apply Theorem 1.18 from [2], and thus we
have

|Tjnxm − Tjk
xm| ≤ |Tjn − Tjk

|(|xm|) ≤ |Tjn − Tjk
|(u)

for all m ∈ I. Considering [21, Thm.VIII.2.3], it follows from Tjk

o−→ T in Lb(E, F ) that
|Tjn − Tjk

|(u) o−→ 0 in F as jk → ∞. Thus, it follows from (∗) that |yjn − yjk
| o−→ 0 in F

as jn, jk → ∞. Therefore, (yjk
) is a statistically σ-order Cauchy sequence in F . Using

Remark 7.2 from [17], we know that Dedekind completeness implies order completeness.
Therefore, F is order complete, and thus (yjk

) is order convergent to some element y in F
as jk → ∞. Hence, using [2, Thm.1.14], we have

|Txm − y| ≤ |Txm − Tjk
xm + Tjk

xm − yjk
+ yjk

− y|
≤ |Tjk

− T |(|xm|) + |Tjk
xm − yjk

| + |yjk
− y|

≤ |Tjk
− T |(u) + |Tjk

xm − yjk
| + |yjk

− y|.

Fixing jk, we take m → ∞ to obtain

lim sup
m→∞

|Txm − y| ≤ |Tjk
− T |(u) + |yjk

− y|.

Since jk is arbitrary, we have lim sup
m→∞

|Txm − y| = 0. Therefore, we have |Txm − y| o−→ 0,

i.e., Txn
sto−−→ y. Thus, T is statistically σ-order compact as desired. □

Theorem 3.7. Let T ∈ Lσsto(E, F ) and S ∈ L(E, F ) be a Riesz homomorphism. If F is
an order continuous Banach lattice, then S ◦ T ∈ Lσsto(E, F ).

Proof. Suppose that (xn) is a statistically σ-order bounded sequence in E. Then, there
exists a subsequence (xk)k∈K of (xn) with δ(K) = 1 such that T (xk) sto−−→ y for some y ∈ F ,
because T ∈ Lσsto(E, F ). Thus, there exist a further sequence qk ↓sto θ in F such that

|T (xm) − y| ≤ qm

for each m ∈ M , where M is an index set with δ(M) = 1. Since qm ↓ 0 holds and F
has an order continuous lattice norm, it follows that ∥qm∥ ↓ 0. On the other hand, by
applying [2, Thm.4.3], we have ∥S(qm)∥ ↓ because every Riesz homomorphism is a positive
operator. Now, by using [21, Thm.VII.2.1], there exists a subsequence (qj)j∈J of (qm)m∈M

such that S(qj) o−→ 0, i.e., S(qj) ↓ 0 because of the positivity of S, where δ(J) = 1 by our
assumption in this paper. Therefore, by considering [2, Thm.2.14], we have

|(S ◦ T )(xj) − S(y)| = S(|T (xj) − y|) ≤ S(qj)

for all j ∈ J . Hence, we have (S ◦ T )(xj) o−→ S(y), i.e., (S ◦ T )(xn) sto−−→ S(y). Therefore, we
obtain the statistically σ-order compactness of S ◦ T . □

Proposition 3.8. Let E be a Banach lattice and F be a σ-order continuous Banach
lattice. Then an sto-compact operator from E to F is norm bounded.

Proof. Suppose that T is not norm bounded. So, there exists a norm bounded sequence
(xn) in E such that ∥xn∥ ≤ 1

3n and (Txn) is not norm bounded in F . It is clear that
(xn) is also sto-bounded. Then, it follows from sto-compactness of T that (xn) has a
subsequence (xk)k∈K with δ(K) = 1 such that Txk

sto−−→ y for some y ∈ F . Thus, there
exists a further subsequence (xm)m∈M with δ(M) = 1 of (xk)k∈K such that Txk

o−→ y. It
follows from σ-order continuity norm on F that Txk

∥·∥−−→ y, which is contradicting with
∥Txn∥ → ∞. Thus, T is norm bounded. □

Proposition 3.9. Let T ∈ Lsto(E, F ) and G be a regular, majorizing and order complete
sublattice of F . If T (E) is a subspace of G, then T : E → G is sto-compact.
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Proof. Assume that (xn) is an sto-bounded sequence in E. Then, there exists a subse-
quence (xk)k∈K of (xn) with δ(K) = 1 such that T (xk) sto−−→ y for some y ∈ F because of
T ∈ Lsto(E, F ). Also, it follows from Theorem 2.6 that T : E → F is an sto-bounded
operator. Thus, since (xn) is sto-bounded in E, (Txn) is an sto-bounded sequence in F .
Then, (xn) has a further subsequence (xm)m∈M of (xn) with δ(M) = 1 such that (Txm)
is order bounded in F . Moreover, the subsequence (Txm) is order bounded in G because
G is majorizing and T (E) is a subspace of G. Now, by applying [9, Lem.27], we obtain
that Txm

o−→ y in G, i.e., Txn
sto−−→ y in G. Thus, we get the desired result. □

4. Statistical M-weakly compact operators
Remind that any two elements x and y in Riesz spaces are called disjoint whenever

|x| ∧ |y| = 0. A norm-bounded operator from a normed lattice to a normed space is said
to be M -weakly compact if the image of each disjoint norm-bounded sequence under this
operator is norm convergent to zero. Motivated by this, we give the following notions.

Definition 4.1. An operator T ∈ L(E, F ) is said to be statistical M -weakly compact (or
shortly st-Mw-compact) if Txn

s−→ 0 holds for all disjoint sto-bounded sequences (xn).

Proposition 4.2. A statistically σ-order continuous operator is st-Mw-compact.

Proof. Suppose that T ∈ L(E, F ) is a statistically σ-order continuous operator. Take a
disjoint sto-bounded sequence (xn) in E. Then, (xn) has an order-bounded subsequence
(xk)k∈K with δ(K) = 1. It follows from [6, Rem.10] that xk

o−→ 0 because (xk) is also a
disjoint subsequence. Thus, we have xn

s−→ 0 in E. By using the sto-continuity of T , we
have Txn

s−→ 0 in F . Therefore, T is st-Mw-compact. □

In the following work, we show that the domination property holds for st-Mw-compact
operators.

Proposition 4.3. If S, T ∈ L(E, F ) satisfy 0 ≤ S ≤ T and T is st-Mw-compact, then S
is st-Mw-compact.

Proof. Suppose that (xn) is a disjoint sto-bounded sequence in E. By applying the st-
Mw-compactness of T , we have Txn

s−→ 0 in F . Thus, there exists a subsequence (xk)k∈K

of (xn) with δ(K) = 1 such that Txk
o−→ 0. Since 0 ≤ S|xk| ≤ T |xk| for all k ∈ K, we

have Sxk
o−→ 0 because the inequality |Sxk| ≤ S|xk| holds for each k ∈ K. Therefore,

Sxn
s−→ 0, and thus, S is st-Mw-compact. □

Proposition 4.4. Every sto-bounded and M -weakly compact operator from a σ-order
continuous normed lattice to an atomic normed lattice is st-Mw-compact.

Proof. Suppose that T ∈ L(E, F ) satisfies the conditions of the proposition. Let (xn) be
a disjoint sto-bounded sequence in E. Then, it has an order-bounded subsequence (xk)k∈K

with δ(K) = 1. Thus, (xk)k∈K is norm-bounded in E. Therefore, lim
k→∞

|Txk| = 0 because
T is M -weakly compact and (xk)k∈K is a disjoint sequence. On the other hand, since
(xk)k∈K is order-bounded, it is also sto-bounded. Therefore, (Txk)k∈K is an sto-bounded
sequence in F because T is an sto-bounded operator. Hence, it has an order-bounded
subsequence (Txm)m∈M with δ(M) = 1. Take any atom a ∈ F . Then, we have the
following inequality: ∣∣fa

(
Txm)

∣∣ ≤ ∥fa∥∥Txm∥ → 0

Thus, we obtain Txm
o−→ 0 because F is atomic, and therefore, we have Txn

s−→ 0.
Consequently, T is st-Mw-compact. □
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