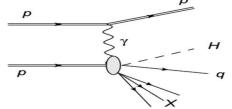
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi

BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE ISSN: 2147-3129/e-ISSN: 2147-3188 VOLUME: 12 NO: 2 PAGE: 396-401 YEAR: 2023 DOI:10.17798/bitlisfen.1226395

Gülistan AKKAYA SELÇİN1*

Bitlis Eren Üniversitesi, Tatvan Meslek Yüksekokulu, Elektrik ve Enerji Bölümü, Bitlis (*ORCID: 0000-0003-4720-6631*)


Keywords: Photon Induced Process, Anomalous Higgs Couplings, Large Hadron Collider Proton-Proton Collider with 100 TeV Energy. **Abstract** γp and $\gamma \gamma$, called photon induced processes, have been examined in various colliders like Large Hadron Collider (LHC) and proton-proton collider with 100 TeV energy. One of the importance of these processes is that they allow for probing the anomalous Higgs couplings. The anomalous Higgs couplings constitute a testing ground for electroweak symmetry breaking (EWSB) mechanism and mass production system. For measuring anomalous H $\gamma\gamma$ and HZ γ couplings at the LHC and at the proton-proton collider with 100 TeV energy, the potential of the pp \rightarrow p γ p \rightarrow pHqX has been examined. Sensitivity bounds on anomalous Higgs couplings have been obtained at %95 confidence level. The analyses have been done for various integrated luminosities and different scenarios Then the results of them have been compared. Model-independent effective Lagrangian technique has been used, and the Higgs boson couplings to gauge bosons have been examined by dimension-six operators.

1. Introduction

The Large Hadron Collider (LHC) which has a center of mass energy with 14 TeV and luminosity of 10^{34} cm^{-2} s^{-1} is one of the most important accelarator of the world.

ATLAS and CMS Collaborations discovered the Higgs boson estimated by Standard Model (SM) of particle physics at the LHC [1,2]. The next stage is to examine the features of this significant particle and its couplings to other SM particles. These studies have a great importance for supporting SM and investigating new physics . On the other hand the future100 TeV proton-proton collider ensures an ideal venue to examine new physics. [3-5]. Such studies on anomalous Higgs couplings at LHC and at future 100 TeV proton-proton collider have been speedily increasing in the literature. (6-18) In this paper Higgs production via the main boson process $pp \rightarrow p\gamma p \rightarrow pHqX$ haven been examined at the LHC

and at future 100 TeV collider. This process can be shown as follow diagram(40):

Figure 1. Representation of the process $pp \rightarrow p\gamma p \rightarrow pHqX$.

Here, q and X constitute quarks and proton remnants respectively.

The top quark distribution has been ignored and 10 independent subprocess for q= u,d,s,c,b, \overline{u} , \overline{d} , \overline{s} , \overline{c} , \overline{b} have been considered. In the existence of anomalous H $\gamma\gamma$ and HZ γ couplings the Feynmann diagrams of subprocess $\gamma q \rightarrow Hq$ is drawn as follows(40):

^{*} Corresponding author: <u>gakkaya@beu.edu.tr</u>

Received: 29.12.2022, Accepted: 18.03.2023

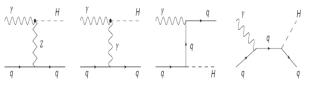


Figure 2. Feynman diagrams of $\gamma q \rightarrow Hq$ at the tree-level.

At last studies, the presence of these photon-induced processes have been confirmed by CMS ATLAS Collaborations [19-23]. And also it is verified that these reactions have an important potential to examine new physics [21-23]. In such a process, photon-proton collision takes place when.quasirel photon has been emitted from one of the incoming protons. So that it can be thought that proton-photon is a subprocess of the proton-proton collision In that paper equivalent collision. photon approximation (EPA) [24-26] has been taken into account. According to this approximation, emitted photons are accepted to be real becouse of having a very low virtuality. The protons which emit quasireal photons do not divide into partons and they keep to be intact [27-28].

2. Material and Method

2.1. Anomalous Hyy and HZy Couplings And The Cross Section

For examining anomalous HZ γ and H $\gamma\gamma$ couplings one of the ways is to employ effective Lagrangian formalism. [7-9,29-33]

In this formalism total effective Lagrangian can be expressed as follows:

$$L_{eff} = \sum_{n} \frac{f_n}{\Lambda^2} O_n \tag{1}$$

Here f_n indicates the anomalous couplings and the scale of new physics is described by Λ . Also O_n indicates five dimension- six operators which alter the Higgs boson couplings to Z and γ bosons [7-9,29-33] They can be explicitly expressed as follows:

$$O_{ww} = \phi^{t} W \mu \nu W^{\mu \nu} \phi$$

$$O_{W} = (D_{\mu} \phi)^{+} W^{\mu \nu} (D_{\nu} \phi)$$

$$O_{BB} = \phi^{t} B_{\mu \nu} B^{\mu \nu} \phi$$

$$O_{B} = (D_{\mu} \phi)^{+} B^{\mu \nu} (D_{\nu} \phi)$$

$$O_{BW} = \phi^{t} B_{\mu \nu} W^{\mu \nu} \phi$$
(2)

Here, Φ indicates the scalar doublet and Dµ indicates the covariant derivative. Also the other fields can be expressed as follows:

$$W_{\mu\nu} = i \frac{g}{2} (\vec{\sigma} \cdot \overrightarrow{W_{\mu\nu}})$$

$$B_{\mu\nu} = i \frac{g'}{2} \overrightarrow{B_{\mu\nu}}$$
(3)

where g is the $SU(2)_L$ gauge coupling and g' is the $U(1)_Y$ gauge coupling. Also σ is the pauli matrices. The effective Lagrangian in Eq-1 can be described as follows after the symmetry breaking. :

$$L_{eff} = g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g^{1}_{Hz\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{2}_{Hz\gamma} H A_{\mu\nu} Z^{\mu\nu}$$
(4)

Here, $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ with V=A(photon) and Z field. Also $g_{H\gamma\gamma}$, $g_{Hz\gamma}^1$ ve $g_{Hz\gamma}^2$ are anomalous couplings which involve the couplings f_n as follows:

$$g_{H\gamma\gamma} = -\left(\frac{g_{m_W}}{\Lambda^2}\right) \sin \theta_W^2 \left(\frac{f_{BB+} f_{WW-} f_{BW}}{2}\right)$$
(5.1)

$$g_{HZ\gamma}^{1} = \left(\frac{g_{m_{W}}}{\Lambda^{2}}\right) \sin \theta_{W} \left(\frac{f_{W} - f_{B}}{2\cos \theta_{W}}\right)$$
(5.2)

$$g_{HZ\gamma}^{2} = \frac{\left(\frac{g_{m_{W}}}{\Lambda^{2}}\right)\frac{\sin\theta_{w}}{2\cos\theta_{w}}\left[2\sin\theta_{w}^{2}f_{BB-}2\cos\theta_{w}^{2}f_{ww} + \left(\cos\theta_{w}^{2} - \sin\theta_{w}^{2}\right)f_{Bw}\right] + \left(\cos\theta_{w}^{2} - \sin\theta_{w}^{2}\right)f_{Bw}\right]$$
(5.3)

Here, θ_w and m_w indicates Weinberg angle and W boson's mass respectively. Also in the calculations taken into account the energy scale of new physics as Λ =1 TeV. For the aim of the easiness six scenarios of new physics have been considered as follows:

Senaryo I ; $f_B = f_w = 0$, $f_{WW} = f_{BB}$ Senaryo II ; $f_{WW} = f_{BB} = 0$, $f_B = -f_W$ Senaryo III ; $f_B = f_W = 0$, $f_{WW} = -f_{BB}$ Senaryo IV ; $f_B = f_W = 0$, $f_{WW} = tan^2 \theta_W f_{BB}$ Senaryo V ; $f_{WW} = f_W = 0$ Senaryo V ; $f_{BB} = f_B = 0$

For ignoring the contributions of HZZ and HWW couplings in the calculations f_{BW} is taken to be zero ($f_{BW} = 0$). Taking into account one-loop level contribution of SM for the anomalous H $\gamma\gamma$ ve HZ γ couplings, the effective Lagrangian can be written as follows [34,35];

$$\mathcal{L}_{eff}^{(SM)} = g_{H\gamma\gamma}^{(SM)} H A_{\mu\nu} A^{\mu\nu} + g_{HZ\gamma}^{(SM)} H A_{\mu\nu} Z^{\mu\nu} \tag{6}$$

Here,
$$g_{HZ\gamma}^{(SM)} = \frac{\alpha}{4\pi\nu\sin\theta_W} (5.508 - 0.004i)$$
 and
 $g_{H\gamma\gamma}^{SM} = \frac{2\alpha}{9\pi\nu}$.

The cross section of the main process is given as;

$$\sigma(pp \to p\gamma p \to pHqX) = \int_{x_{1min}}^{x_{1max}} dx_1 \int_0^1 dx_2 \int_{Q_{min}^2}^{Q_{max}^2} dQ^2 \left(\frac{dN_{\gamma}}{dx_1 dQ^2}\right) \left(\frac{dN_q}{dx_2}\right) \times \hat{\sigma}(\gamma q \to Hq)$$
(7)

where $\left(\frac{dN_q}{dx_2}\right)$ and $\left(\frac{dN_{\gamma}}{dx_1 dQ^2}\right)$ are quark distribution and equivalent photon functions, respectively.

Detailed information and the integral bounds for equivalent photon distribution function can be found in the literature [36,37]. Also, using the MSTW2008 programme (38), the quark distribution functions can be calculated numerically At the high energies (E>>m_p), x_1 can be taken as $x_1 = \frac{E-E'}{E} = \frac{E_{\gamma}}{E} \approx \xi \xi$ is called forward detector acceptance. Here, E is energy of the initial proton and E' is energy of final (scattered) proton. Also E γ indicates the equivalent photon energy. ξ is called forward detector acceptance states the equivalent photon energy. ξ is called forward detector acceptance x_{1min} and x_{1max} are taken as $x_{1min} = \xi_{min} = 0.015$ ve $x_{1max} = \xi_{max} = 0.15$.

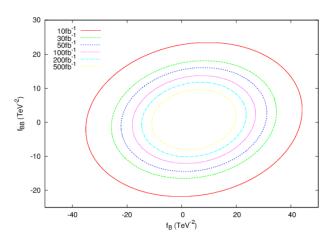
In the analysis χ^2 criterion has been used and bounds on anomalous Higgs couplings have been determined at 95% (C.L.). χ^2 criterion is taken as follows:

$$\chi^2 = \left(\frac{N_{AN} - N_{SM}}{N_{SM}\delta_{err}}\right)^2 \tag{8}$$

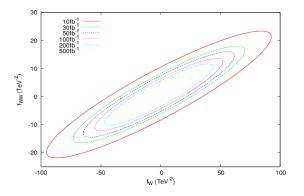
Here, N_{AN} is number of events which contains SM and new physics contributions, N_{SM} is number of events in the SM and δ_{err} is the statistical error. $N_{AN(SM)}$ is calculated from the formula:

 $N_{(AN)SM}$ = E x S x L_{int} x Br x $\sigma_{(AN)SM}$, where S represents the survival probability factor (S=0.7), E represents the b-tagging efficiency (E = 0.6), L_{int} represents the integrated luminosity and BR is the branching ratio for H $\rightarrow b\bar{b}$ (Br = 0.6.) Also, σ_{SM} and σ_{AN} are SM and anomalous cross sections respectively.

The background subprocesses $\gamma q \rightarrow k, b, b$ (q = u, d, s, c, b, u, d, s, c, b); k = u, d, s, c, b, t, u, d, s, c, b, t) which contribute to main process $pp \rightarrow p\gamma p \rightarrow pbbqX$, are calculated by using CalcHEP 3.6.20. [39]


At the background caculations, $H \rightarrow bb$ decay channel of Higgs boson has been considered and $b\bar{b}$ final state with invariant mass in the interval 120 GeV < M(b, \bar{b}) < 130 GeV is identified as the signal. When these cuts are applied to the signal, the cross section of the background decline dramatically.

For LHC, taking into account scenarios I-IV, the bounds on anomalous f_W , f_{WW} and f_{BB} couplings are obtained in the Table –I at 95% C.L.


Table I. For various scenarios and luminosities the anomalous bounds are given at 95% C.L for LHC(\sqrt{s} =14 TeV)

Luminosite	$(Senaryo-I)f_{ww}$	$(Senaryo-\Pi)f_w$	$(Senaryo-III)f_{bb}$	$(Senaryo-IV) f_{bl}$
$10 f b^{-1}$	(-6.3, 7.9)	(-19.8, 15.4)	(-9.9, 7.7)	(-13.2, 15.6)
$30 f b^{-1}$	(-4.6, 6.2)	(-15.6, 11.3)	(-7.8, 5.6)	(-9.8, 12.2)
$50 f b^{-1}$	(-3.9, 5.6)	(-14.1, 9.7)	(-7.0, 4.9)	(-8.5, 10.8)
$100 f b^{-1}$	(-3.2, 4.8)	(-12.2, 7.9)	(-6.1, 3.9)	(-7.0, 9.3)
$200 f b^{-1}$	(-2.6, 4.2)	(-10.7, 6.4)	(-5.3, 3.2)	(-5.7, 8.1)
$500 f b^{-1}$	(-1.9, 3.6)	(-9.0, 4.7)	(-4.5, 2.4)	(-4.3, 6.7)

For scenarios V and VI, at LHC, with 95% C.L. restricted regions in two-dimensional $f_B - f_{BB}$ and $f_W - f_{WW}$ parameter spaces are given in Figure 3-4.

Figure 3. At 95% C.L. the restricted areas on $f_B - f_{BB}$ parameter spaces are shown for LHC. (\sqrt{s} =14 TeV)

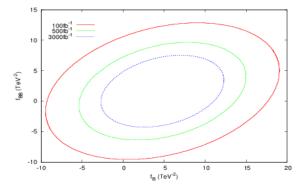
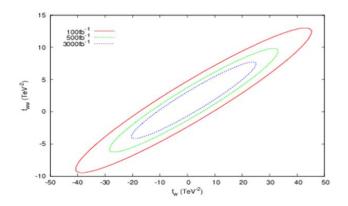


Figure 4. At 95% C.L. the restricted areas on $f_w - f_{ww}$ parameter spaces are shown for LHC. (\sqrt{s} =14 TeV) Similarly, for 100 TeV proton-proton collider ,taking into account scenarios I-IV, the bounds on anomalous f_w , f_{ww} and f_{BB} couplings are obtained in the Table –II at 95% C.L.


Table II. For various scenarios and luminosities the anomalous bounds are given at 95% C.L for future 100 TeV proton-proton collider .

Luminosity	$(Scenario-I)f_{ww}$	$(Scenario-II)f_w$	$(Scenario-III)f_{bb}$	$(Scenario-IV)f_{bb}$
$100 f b^{-1}$	(-1.9,4.2)	(-8.2,4.0)	(-4.1,2.0)	(-4.9,9.0)
$500 f b^{-1}$	(-1.1, 3.3)	(-6.4, 2.2)	(-3.2, 1.1)	(-2.8,6.9)
$3000 f b^{-1}$	(-0.5, 2.8)	(-5.3, 1.1)	(-2.7, 0.6)	(-1.4, 5.6)

For scenarios V and VI, at 100 TeV proton-proton collider, with 95% C.L. restricted regions in twodimensional $f_B - f_{BB}$ and $f_w - f_{ww}$ parameter spaces are given in Figure 5-6.

Figure 5. At 95% C.L. the restricted areas on $f_B - f_{BB}$ parameter spaces are shown for 100 TeV proton-proton collider.

Figure 6. At 95% C.L. the restricted areas on $f_w - f_{ww}$ parameter spaces are shown for 100 TeV proton-proton collider.

3. Conclusion and Suggestions

As expected, γp collision at 100 TeV proton-proton collider with a higher energy and a higher luminosity relatively, probes the anomalous H $\gamma\gamma$ and HZ γ couplings with better sensitivity than γp collision at the LHC. Consequently, we can say that, the sensitivity bounds on anomalous Higgs couplings are refined by an improvement factor of 2.

References

- [1] G. Aad et al., "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett. B*, vol. 716, no. 1, pp. 1–29, 2012
- [2] S. Chatrchyan et al., "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," *Phys. Lett. B*, vol. 716, no. 1, pp. 30–61, 2012.
- [3] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, "Physics opportunities of a 100 TeV protonproton collider," *Phys. Rep.*, vol. 652, pp. 1–49, 2016.

- [4] M.L. Mangano, G. Zanderighi, J.A Aguilar Saavedra, S. Alekhin, S. Badger, C.W. Bauer, T. Becher, V. Bertone, S. Bonvini Boselli, E. Bothmann, et al. "Physics at the FCC-hh, a 100 TeV pp collider," *Cern Yellow Report.*, vol. 3, pp.1-254, Oct 2017.
- [5] R. Contino, D. Curtin, A. Katz, M.L. Mangano, G. Panico, M.J Ramsey-Musolf, G. Zanderighi, C. Anastasiou, W. Astill, G. Bambhaniya, et al. "Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies," *Cern Yellow Report.*, vol. 3,pp. 255-440, Jun 2016.
- [6] V. Khachatryan et al., "Constraints on the spin-parity and anomalousHVVcouplings of the Higgs boson in proton collisions at 7 and 8 TeV," *Phys. Rev.*, vol. 92, no. 1, 2015..
- [7] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, "Constraining anomalous Higgs boson interactions," *Phys. Rev.*, vol. 86, no. 7, 2012.
- [8] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, "Robust determination of the Higgs couplings: Power to the data," *Phys. Rev.*, vol. 87, no. 1, 2013.
- [9] E. Massó and V. Sanz, "Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC," *Phys. Rev.*, vol. 87, no. 3, 2013.
- [10] S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, "Higher dimensional operators and LHC Higgs data : the role of modified kinematics" *Phys. Rev. D.*, vol.89, pp.1-5,March 2014.
- [11] S. Taheri Monfared, S. Fayazbakhsh, and M. Mohammadi Najafabadi, "Exploring anomalous HZγ couplings in γ-proton collisions at the LHC," *Phys. Lett. B*, vol. 762, pp. 301–308, 2016
- [12] F. P. An et al., "New measurement of antineutrino oscillation with the full detector configuration at Daya Bay," *Phys. Rev. Lett.*, vol. 115, no. 11, p. 111802, 2015.
- [13] A. J. Barr, M. J. Dolan, C. Englert, D. E. F. de Lima, and M. Spannowsky, "Higgs self-coupling measurements at a 100 TeV hadron collider," *J. High Energy Phys.*, vol. 2015, no. 2, 2015.
- [14] C. Degrande, V. V. Khoze, and O. Mattelaer, "Multi-Higgs-boson production in gluon fusion at 100 TeV," *Phys. Rev. D.*, vol. 94, no. 8, 2016.
- [15] B. Fuks, J. H. Kim, and S. J. Lee, "Probing Higgs boson self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV," *Phys. Rev. D.*, vol. 93, no. 3, 2016.
- [16] J. Baglio, A. Djouadi, and J. Quevillon, "Prospects for Higgs physics at energies up to 100 TeV," *Rep. Prog. Phys.*, vol. 79, no. 11, p. 116201, 2016.
- [17] A. Papaefstathiou and K. Sakurai, "Triple Higgs boson production at a 100 TeV proton-proton collider," J. High Energy Phys., vol. 2016, no. 2, 2016.
- [18] A. Abada et al., "FCC-hh: The hadron collider: Future circular collider conceptual design report volume 3," *Eur. Phys. J. Spec. Top.*, vol. 228, no. 4, pp. 755–1107, 2019.
- [19] The CMS collaboration et al., "Exclusive $\gamma \gamma \rightarrow \mu + \mu production in proton-proton collisions at $\sqrt s = 7 $ TeV,"$ *J. High Energy Phys.*, vol. 2012, no. 1, 2012.
- [20] The CMS collaboration et al., "Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e+e- production in pp collisions at \$ \sqrts=7 \$ TeV," J. High Energy Phys., vol. 2012, no. 11, 2012.
- [21] The CMS collaboration et al., "Study of exclusive two-photon production of W+W- in pp collisions at \$\sqrts=7 \$ TeV and constraints on anomalous quartic gauge couplings," J. High Energy Phys., vol. 2013, no. 7, 2013.
- [22] V. Khachatryan et al., "Evidence for exclusive $\gamma \gamma \rightarrow W + W production$ and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 \$\$ \sqrts=7 \$\$ and 8 TeV," *J. High Energy Phys.*, vol. 2016, no. 8, 2016.
- [23] M. Aaboud et al., "Measurement of exclusiveγγ→W+W-production and search for exclusive Higgs boson production inppcollisions ats=8 TeVusing the ATLAS detector," *Phys. Rev. D.*, vol. 94, no. 3, 2016.
- [24] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, "The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation," *Phys. Rep.*, vol. 15, no. 4, pp. 181–282, 1975.
- [25] G. Baur, "Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders," *Phys. Rep.*, vol. 364, no. 5, pp. 359–450, 2002.
- [26] K. Piotrzkowski, "Tagging two-photon production at the CERN Large Hadron Collider," *Phys. Rev. D Part. Fields*, vol. 63, no. 7, 2001.

- [27] X. Rouby, "Measurements of photon induced processes in CMS and forward proton detection at the LHC," Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, Sept.2008. [Online] Available: http://cp3.irmp.ucl.ac.be/~rouby/files/xavier_rouby_final.pdf
- [28] N. Schul, "Measurements of two-photon interactions at the LHC", Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, July 2011 [Online] Available: http://cds.cern.ch/record/1423327/files/TS2011_030_2.pdf
- [29] W. Buchmüller and D. Wyler, "Effective lagrangian analysis of new interactions and flavour conservation," *Nucl. Phys. B.*, vol. 268, no. 3–4, pp. 621–653, 1986.
- [30] C. N. Leung, S. T. Love, and S. Rao, "Low-energy manifestations of a new interactions scale: Operator analysis," Z. Phys. C - Particles and Fields, vol. 31, no. 3, pp. 433–437, 1986
- [31] A. De Rújula, M. B. Gavela, P. Hernandez, and E. Massó, "The self-couplings of vector bosons: does LEP-1 obviate LEP-2?," *Nucl. Phys. B.*, vol. 384, no. 1–2, pp. 3–58, 1992.
- [32] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, "Low energy effects of new interactions in the electroweak boson sector," *Phys. Rev. D Part. Fields*, vol. 48, no. 5, pp. 2182–2203, 1993.
- [33] M. C. Gonzalez-Garcia, "Anomalous Higgs couplings," Int. J. Mod. Phys. A, vol. 14, no. 20, pp. 3121– 3156, 1999.
- [34] J. F. Donoghue, E. Golowich, and B. R. Holstein, *Dynamics of the standard model*. Cambridge, England: Cambridge University Press, 2014
- [35] M. Farina, Y. Grossman, and D. J. Robinson, "ProbingCPviolation inh→Zγwith background interference," *Phys. Rev.*, vol. 92, no. 7, 2015.
- [36] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, "The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation," *Phys. Rep*, vol.15, pp.181-282, Jan.1975.
- [37] O. Kepka and C. Royon, "AnomalousWWγcoupling in photon-induced processes using forward detectors at the CERN LHC," *Phys. Rev.*, vol. 78, no. 7, 2008.
- [38] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, "Parton distributions for the LHC," *Eur. Phys. J. C Part. Fields*, vol. 63, no. 2, pp. 189–285, 2009
- [39] A. Belyaev, N. D. Christensen, and A. Pukhov, "CalcHEP 3.4 for collider physics within and beyond the Standard Model," *Comput. Phys. Commun.*, vol. 184, no. 7, pp. 1729–1769, 2013.
- [40] G. Akkaya Selçin and İ. Şahin, "Non-standard Higgs couplings in single Higgs boson production at the LHC and future linear collider," *Chin. J. Phys.*, vol. 55, no. 6, pp. 2305–2317, 2017