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1. INTRODUCTION

pilepsy has been seen in written sources dating back to

4000 BC. It is defined as the involuntary movement of
part or all of the body. The reason for these movements is the
electrical discharge in the brain. This electrical discharge can
be caused by an infarction, tumor, progressive brain disease
(rare), or head injury. However, there are some electrical
discharges of unknown cause. Epilepsy is a genetic, non-
communicable disease and is not related to age, gender, or
race [1.2].

Electroencephalography (EEG) signals have been
important in the diagnosis of epilepsy due to the recognition
of spikes in EEG signals during epileptic seizures [3]. In
epilepsy diagnosis, in addition to EEG, neurological
information and neurodiagnostic tests are also used.
Electrodes are placed on the scalp in the laboratory
environment for EEG recordings. These recordings are
classified as ictal, postictal, and interictal. The ictal period is
called for during the seizure period, the postictal is called for
the post-seizure period and the interictal is for the period
between the seizures [4]. Interictal EEG recordings are used
in the diagnosis and in the management of the treatment
course of epilepsy. In order to diagnose epilepsy, the
patient's EEG data, as well as physical examination, seizure

history, and neurological tests are taken into account [5]. Of
all data, the most important finding is the EEG recordings.
Furthermore, having one seizure is not enough to diagnose
epilepsy, patients must have at least two or more seizures.

The anti-epileptic drugs are used first in the treatment
of epilepsy. The dose of the drug is calculated according to
the severity of the seizures of the patient [6]. Drugs can
prevent most seizures, however, there are some patients'
seizures that cannot be prevented despite using high-dose.
Generally, surgical interventions can be a treatment for
epilepsy patients. However, there are some cases where
surgical intervention is not a solution [7]. Vagus nerve
stimulation, in addition to surgical intervention, is a
treatment method in which an electrical current is sent to the
brain at regular intervals to prevent seizures [8].
Unfortunately, there are some patients who do not respond to
any treatment method. In these cases, the moment of seizure
should be predicted and it should be ensured that the seizure
can be overcome with the least damage. In the diagnosis and
treatment stages of epilepsy, it is very time-absorbing to
examine long-term EEG recordings by experts and to detect
seizures. Therefore, EEG signals are analyzed with linear or
nonlinear signal analysis methods in order to detect the
epileptic region in EEG. Although EEG signals are not
linear, in the linear signal analysis they are considered linear
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[9]. In our study, we deal with predicting the moment of the
seizure by implementing linear signal analysis methods and
nonlinear signal analysis methods of EEG.

In the linear analysis method, EEG signals are analyzed
in the time, frequency, and time-frequency domain. In the
time domain, energy, power, variance, standard deviation,
mean, and root mean square (RMS) of signals are reviewed
[9,12,16,17,18,19]. In the frequency domain, spectral power
density and subband frequency values are investigated
[9.23]. The epileptic region in the signal was identified using
the Elman neural network with features extracted in the time
and frequency domain [10]. For the diagnosis of seizures in
the EEG signal, the signals are separated into subbands by
wavelet decomposition and classified by genetic algorithm
[11]. A prediction filter has been proposed to show the
existence of spikes and sharp waves in seizure regions in
EEG signals. In the EEG signals, the seizure region was
determined by the increase in the estimation error energy of
the filter [12]. The difference between healthy EEG and
epileptic EEG signals was shown with the aid of an artificial
neural network and genetic algorithm [13]. Furthermore,
epilepsy disease was defined by performing EEG signal
analysis with a single hidden layer feedforward artificial
neural network machine (ELM) in 2012 [14]. The seizure
was detected in EEG signals applied to artificial neural
networks with multi-stage nonlinear filtering preprocessing
[15]. In another study, classifying preictal and interictal EEG
signals by using features such as frequency and amplitude in
gamma band signal has been shown [16]. Singh et al.
classified the EEG signals using the difference in RMS
bandwidth and average frequency seen in epileptic zone
rhythms [17]. Raghu et al. showed that the epileptic EEG
signals have a larger variance, maximum value, wavelet log
energy entropy, RMS, and band power properties, while the
normal EEG signals have a larger minimum value, wavelet
Shannon entropy, and zero-crossing characteristics [18].
Mabhapatra et al. classified ictal and interictal EEG signals
using the RMS frequency [19]. To distinguish the epileptic
region in EEG signals, a feature has been proposed as a time-
domain energy-based called exponential energy [20]. In
recent studies, the features used for the diagnosis of seizures
in the EEG signals were examined. It has been shown that
seizures can be determined by using the variance, energy,
nonlinear energy, and Shannon entropy calculated in the raw
EEG signals or by using the variance, energy, kurtosis, and
line length calculated over the wavelet coefficients [21,22].
Ficici et al. analyzed the EEG signals divided into sub-bands
with autoregressive coefficients and linear estimation error
energy from linear analysis methods, and Shannon entropy
and approximate entropy methods from non-linear analysis
methods. It has been shown that better accuracy will be
obtained with the use of linear and non-linear methods
classified as healthy and epileptic EEG signals [23].

In linear signal analysis, EEG signals are considered
linear, although they are not linear. For this reason, the
preference for nonlinear analysis methods (dimension
property, Lyapunov exponents, and entropy) may give better
information for the diagnosis of epilepsy [25-45]. In a study
conducted in 2019, it was stated that structural changes can
be detected early using the Lyapunov Exponents values of
EEG signals (non-linear dynamic methods) [24]. One other
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of these methods, entropy is a thermodynamic concept that
gives information about system disorder [9]. It is used to
measure the irregularity in EEG signals during an epileptic
seizure. Kannathal et al. [25] and Song et al. [26] showed
the difference between epileptic and healthy EEG signals
using the entropy methods such as Shannon entropy, Renyi's
entropy, Kolmogorov-Sinai entropy, sample entropy, and
approximate entropy. When the entropy values of the
epileptic and normal signals were compared, it was observed
that the entropy values of the epileptic signal were higher
than the normal ones. This indicated a decrease in the flow of
information during the seizure [25,26]. In different studies,
EEG signals were decomposed into signal subbands by
applying discrete wavelet transform at different levels. These
decomposed signals were determined for the seizure by using
approximate entropy and spectral entropy [26.27]. EEG
signals were classified with the calculated wavelet entropy,
spectral entropy, and sample entropy values by repetitive
Elman-based neural networks and radial-based neural
networks [28]. Song et.al. combined the extreme learning
machine with the optimized sample entropy (O-SampEn)
algorithm. With this combination, it was determined whether
there was a seizure in the EEG signals [29].

Nicolaou et al. and Xiang et al. classified the
permutation entropy, fuzzy entropy, and sample entropy
values of EEG signals calculated by support vector machine
[30.31]. It has been shown that fuzzy entropy has a better
seizure detection index than sample entropy [31]. In another
entropy method, distribution entropy, the epilepsy signal was
segmented in three different ways and entropy values were
calculated. Distribution entropy has been observed
minimally affected in the parameter selection [32]. Raghu et
al. used Shannon spectral entropy to differentiate between
two groups of patients with idiopathic epilepsy. They
showed that Shannon spectral entropy measured in a specific
frequency range can serve to follow the development of
patients suffering from idiopathic epilepsy [33]. In another
study, EEG signals were separated into subbands by discrete
wavelet transform. Of the power spectral analysis in the
frequency domain and of the amplitude values in the time
domain, the sigmoid entropy was calculated. It was
concluded that sigmoid entropy, which has less
computational complexity, can be used to analyze epileptic
seizure behavior, which also includes brain dynamics [34]. In
a recent study, it was shown that the patients can be warned
before the seizure by determining the time between the
preictal and ictal state by inferring the distribution entropy
feature has been stated [35]. Multidimensional sample
entropy is proposed and compared with sample entropy.
They showed that seizure onset was more notable in the
multidimensional sample entropy [36].

Li et al. found that the permutation entropy was more
sensitive than the sample entropy for recognizing the
nonlinear activity in EEG data and predicting absence
seizures [37]. Since permutation entropy is a fast complexity
measure in time series, it has been used for seizure detection
in online devices. It was observed that the permutation
entropy makes a reliable distinction, but the sensitivity of the
study could not be measured due to limited data [38]. Jouny
et al. proposed that seizure detection was attempted with a
combination of eighteen different feature extraction methods,
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including Shannon entropy, sample entropy, and permutation
entropy [39]. In a study in 2012, the permutation entropy was
calculated by making different synchronizations of the EEG
electrodes. Within the analyzed database, the frontal-
temporal scalp areas appeared to be consistently associated
with higher permutation entropy levels compared to the
remaining electrodes, while lower permutation entropy
values were seen in the parieto-occipital areas. It is shown
that abnormalities from different parts of the brain were
leading to the onset of the seizures [40]. Multiscale
permutation entropy (MPE) was proposed to describe the
dynamics in EEG recordings and MPE values were classified
using linear discriminant analysis. It has been shown that the
seizure-free state, pre-seizure, and seizure moments can be
differentiated by dynamic features in MPE and EEG. This
result supported the opinion that the seizures were
predictable from EEG data [41]. Bhanot et al. used four
feature vectors for seizure detection: short-term permutation
entropy (STPE), STPE gradient (GSTPE), short-term energy
(STE), and short-term mean (STM) subtracted from ictal and
interictal EEG signals. With these features, RBBoost
(Random Balance Boost) algorithm with k-fold cross-
validation was used to classify data as ictal and interictal
[42]. Peng et al. extracted nine features for each EEG
channel, including power spectral density in six subbands,
sample entropy, permutation entropy, and spectral entropy.
The features of each channel were ordered according to the
F-statistic value and the classification results were improved
by selecting the most informative features [43]. In a recent
study, channel selection has been made in EEG signals to
minimize the complexity and computational power of
classification. The channels were selected according to their
permutation entropy values using the K-nearest neighbor
algorithm combined with the genetic algorithm. By channel
selection, accuracy, sensitivity, and specificity values in
seizure detection were improved. They tried to determine
which part of the brain was associated with the onset of
seizures for a particular patient and determined that the P7-
O1 channel was most effective in the selected patient group.
Furthermore, they found that the seizure predictions made by
selecting the channel are more accurate and have less
computational burden than the seizure predictions made by
using all channels [44].

In this study, we prefer to analyze two linear analysis
methods, namely the mean of RMS and epileptic EEG
signals. We also checked for permutation entropy and
sample entropy values for EEG signals, as they have fast
complexity measurements in time series. We aimed to
predict the seizure moment before a certain time by
examining these linear and non-linear methods among
themselves.

With this study, the following contributions are made to
the ongoing studies on the early detection and diagnosis of
seizure activity in EEG signals:

e RMS, mean value, sample entropy, and permutation
entropy were used together for the first time for the
detection of seizure activity.

e It was determined that the detection rate of seizure
activity was higher with non-linear methods.

e It has been determined that using more than one
method in detecting seizure activity has higher
accuracy than using a single method.

e It has been determined that there are sudden changes
before seizure activity.

e It has been shown that sudden changes in EEG
signals detected by any method before seizure
activity occurs in some methods but not in others.
Based on this situation, it has been suggested that
using two or more methods for seizure detection will
yield better results.

2. MATHEMATICAL MODEL

In the prediction and diagnosis of epileptic seizures,
EEG data has an important role. Signal processing of EEG
data could be done to detect seizures. It is used to convert
features (frequency, energy, power, and complexity of the
signal) of EEG signals into numerical data. These features
are not clearly visible from the raw EEG data, so they are
extracted by linear and non-linear analysis methods [9],
which are given in the following sub-sections.

2.1. Linear Analysis Methods

In linear analysis methods, the signal is examined in the
time, frequency, and time-frequency domains. In time-
domain analysis, statistical properties such as energy, power,
mean, standard deviation, variance, and root mean value
(RMS) of the signal are generally considered. Of these
properties, mean and RMS values are expected to be close to
zero if the signal is periodic and sinusoidal. If the signal is
not periodic and not sinusoidal, these values are expected to
move away from zero, either positively or negatively [45].
The mean (i) and RMS values of the signal are defined as
followsi=1, 2, .., N for the x signal:

1
n=52k X M

1
Rus = [L3N, 2 @

where N is the number of samples in the data.

One can comment on the complexity of the signal with its
mean value of it. If the mean value of the signal is around
zero, the signal is assumed a periodic signal. However, if this
value is far away from zero, the signal is assumed a complex
signal. This situation is also valid for the RMS value. If the
RMS value is around zero, the signal is considered to be
regular. If it is far from zero, it may indicate that there is
confusion in the signal. In this study, we analyzed the mean
and RMS values of EEG signals to deal with their
complexity of them.

2.2. Non-Linear Analysis Methods

Linear signal analyzes are preferred because of the ease of
implementation and simplicity of the theory. In non-linear
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analysis, more detailed information is obtained about the
signal. An essential problem in non-linear analysis is the
noise of the signal. For better and more accurate analysis,
nonlinear analysis methods should be applied after the signal
is eliminated from the noise. Nonlinear analysis methods can
be considered into three categories. The first is the dimension
property, which gives an idea of how complex a system is;
the second is the Lyapunov exponents' property which gives
an idea of how predictable a system is; and the third is the
entropy property, which gives an idea of how random a
system is. In this study, we preferred to analyze the entropy
property of the signal to pre-predict the seizure a certain time
ago using its irregularity of it [9].

Entropy was used for the first time in thermodynamics to
give information about the disorder of a system. It is also a
measure of randomness and can be calculated based on the
different properties of the signals. In general, all entropies
give information about the disorder and regularity of the
system [9].

In literature, the researchers performed several types of
entropy methods such as Shannon, distribution, approximate,
permutation, sample, fuzzy, sigmoid, transfer, and spectral
entropy [26-37]. In this study, we preferred the sample and
the permutation entropy methods.

2.21,

Sample entropy (SmpE) is a method of measuring the
regularity of physiological signals regardless of their length.
The SmpE(m,r,n) value can be defined as the negative
algorithm of the similarity probability of the tolerance value
(r) for the points (m) in any time series of length n. The
Sample entropy formula is given as [47]:

Sample Entropy

SmpE(m,r,n) = — logg 3

where m is the length of the arrays to be compared, r is the
tolerance value to accept matches, and n is the length of the
original data. A and B are defined as follows:

4 =m0 4y 0

B = (n_m_i)(n_m) Bm(T‘) (5)

where Am(r) is the probability that two sequences will match
for the m+1 points and Bm(r) is the probability that two
sequences will match for the $m$ point. SmpE is consistent
for each (m,r) value to be selected [47]. This situation has
been effective in the preference of sample entropy in the
selection of entropy.

In this study, signals with 256 samples are taken from the
data for sample entropy calculation. To calculate sample
frequencies, the number of each amplitude repetition is
calculated. Then, the possible class probabilities are
calculated using the sample frequencies. The resultant
probability value is used in the entropy calculation. m is
chosen as 1 for this study. Since the sample entropy value
increases as the signal become more complex, the sample
entropy values will be higher at the beginning of the seizure
and during the seizure.

19

2.2.2,

Another method for evaluating the complexity of the signals
in time series is the permutation entropy, which is based on a
comparison of neighboring values. In permutation entropy,
low noise in the signal does not affect the complexity of the
chaotic signal. In this entropy, without requiring pre-
processing, robust information can be obtained fast
regardless of the size of the data.

Permutation Entropy (PE)

The first step in calculating permutation entropy is to convert
a one-dimensional time series into a matrix of overlapping
column vectors. After, permutation vectors of size M up to
M! are generated. Then, the data in each column of the
matrix is reconstructed based on the permutation vectors.
Reconstructed columns are matched with unique
permutations. The relative frequency of each permutation is
then determined by dividing the number of times the
permutation occurs in the columns by the total number of
sequences. Finally, Equation (6) is used to calculate the PE
of order M of the signals [48]:

PEy = Y pilog,p; (6)

The embedded parameter, M, should be chosen between 3-7
in order to distinguish the stochastic and deterministic
features of the signal. In this study, M is chosen as 3. PE
values are in the range of 0-1. In a regular time series, the PE
value is close to 0 (zero), whereas in an irregular and random
time series, the PE value is close to 1. Since the EEG series
becomes regular during the seizure, the PE value is close to
zero during the seizure.

3. RESULTS

In this study, CHB-MIT EEG data collected from Boston
children's hospital were used. There are 24 subjects; 5 men
from 3-22 years old and 18 women from 1.5-19 years old.
The EEG data in files 1 and 24 belong to the same person
(subject) but they were recorded at different times. EEG
signals of 24 patients (subjects) with a 256 Hz sampling rate
of 23 channels were recorded as FP1-F7 (1), F7-T7 (2), T7-
P7 (3), P7-O1 (4), FP1-F3 (5), F3-C3 (6), C3-P3 (7), P3-O1
(8), FP2-F4 (9), F4-C4 (10), C4-P4 (11), P4-O2 (12), FP2-F8
(13), F8-T8 (14), T8-P8 (15), P8-02 (16), FZ-CZ (17), CZ-
PZ (18), P7-T7 (19), T7-FT9 (20), FT9-FT10 (21), FT10-T8
(22) and T8-P8 (23). The places of electrodes are labeled as
FP: frontopolar, F: frontal, T: temporal, O: occipital, C:
central, and P: parietal [49]. Fig. 1 shows the electrode
diagram of the data and Fig. 2 shows the raw EEG data of a
19-year-old female patient. In this study, the MATLAB
program was used for data analysis [50].

In Fig. 3, the RMS value of the P7-O1 channel of a 19-year-
old female is calculated. RMS value in the ictal period is
higher than it's in the preictal period. Furthermore, the mean
value of the same patient moves away from zero in positive
and negative directions (Fig. 3). As given in Fig. 4, this
situation is also seen in other channels of the same patient.
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Fig.1. Placement of EEG electrodes for each channel is labeled as red.
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Fig. 5. RMS and mean graphs from different channels of different patients.

Fig. 5(a) shows the RMS and mean values of the F7-T7
channel of a 14-year-old female patient. In this graph, it
is seen that the RMS value is increased in the ictal state
compared to the preictal state, and its mean value is
moved away from zero in positive and negative
directions when the ictal state is compared to the preictal
state. In addition, it is observed that there is a change in
the RMS value and the mean value of 50 and 150 seconds
before the seizure onset. Fig. 5(b) shows the RMS and
mean values of the P4-O2 channel of a 2-year-old female
patient. In this patient, an increase in RMS values and a
getaway from zero in the mean value are observed in the
ictal state compared to the preictal state. More noticeable
changes were seen up to 200 seconds before the onset of
the seizure. Fig. 5(c) shows the RMS and mean values
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of the P3-O1 channel of a 7-year-old female patient. This
patient's RMS and mean values in the ictal state cannot be
clearly differentiated from the values in the preictal state.
However, an average of 250 seconds before the onset of the
seizure, a change is observed in the RMS and mean values.
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Fig. 6. RMS and mean graphs from different channels of different patients.
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Fig. 6(a) shows the RMS and means values of the FP1-F3
channel of another 7-year-old female patient. The RMS
value increases in the ictal state compared to the preictal
state. The difference between the mean value in the ictal
state and the preictal state cannot be distinguished. Fig. 6(b)
shows the RMS and mean values of the T7-FT9 channel of a
22-year-old female patient. Towards the end of the ictal
region, a change is observed in the RMS and mean values. In
addition, changes are observed in both RMS and mean
values about 100 seconds before the onset of the seizure. Fig.
6(c) shows the RMS and mean values of the P8-O2 channel
of an 18-year-old female patient. In the ictal state, an
increase in RMS values and a deviation from zero in mean
values are observed. RMS and mean values change about
250 seconds before the seizure. The patient data given in Fig.
5 and fig. 6 were randomly selected to show the changes in
RMS and mean values. These states are randomly chosen to
show the different states observed in entropy values.

In 18 of the 24 patients' data, it was observed that the RMS
values increased in the ictal state compared to the pre-ictal
state. Furthermore, the mean value gets away from zero in
the ictal state compared to the preictal state in 14 of them.
That is, regarding the average and RMS values of the EEG
signal, the ictal region was determined at the rate of 58.4%
and 75%, respectively.

EEG signals are considered linear while using RMS and
mean methods. However, EEG signals are not linear. There
is an information loss in the linear analysis of non-linear
EEG signals. Nonlinear analysis methods should be used to
obtain more comprehensive information about epileptic
seizures. In this study, we prefer to analyze the permutation
entropy and the sample entropy methods of nonlinear
analysis methods.

Permutation entropy is a type of embedded entropy that
directly uses the time series to estimate entropy. Sample
entropy is a method that measures the regularity of
physiological signals regardless of their size.
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Sample Entropy

0 100 200 300 400 500 600
Time

Fig. 7. Sample entropy and permutation entropy values of the T7-P7 channel
of an 11-year-old female patient. The y-axis on the left side of the graph
shows the sample entropy values. The y-axis on the right shows the
permutation entropy values. The x-axis represents the time in s. The ictal
state representing the seizure is framed in purple.
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Fig. 8. Sample entropy and permutation entropy values of all channels of an 11-year-old female patient.
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In epileptic seizures, the whole brain is usually affected. In
the passage from the preictal state to the ictal state,
complexity occurs in the signals. Due to this complexity, it is
expected that while the sample entropy value will increase at
the onset of the seizure [37], permutation entropy is expected
to decrease at the onset of the seizure [40]. In this study, it is
observed that the permutation entropy value is decreased in
the majority of the patients at the onset of the seizure. In Fig.
7, the sample and permutation entropy values of the T7-P7
channel of an 11-year-old female patient are given. In this
figure, it is seen that the sample entropy value increases at
the beginning of the seizure, while the permutation entropy
decreases. In other words, the ictal region can be determined
by regarding the sudden decreases and increases in entropy
values. Fig. 8 shows the sample entropy and permutation
entropy values of all channels of the same patient.

Fig. 9(a) shows the entropy values of the T7-P7 channel of
an 18-year-old female patient. There was an increase in both
entropy values in the ictal state compared to the preictal
state. In addition, changes in entropy values are observed
about 250 seconds before the onset of the seizure. Fig. 9(b)
P8-O2 channel values of a 22-year-old male patient are
shown. The distinction between the ictal state and the
preictal state cannot be seen completely with both entropy
methods. However, a sudden change in entropy values is
observed up to 120 seconds before the onset of the seizure.
Fig. 9(c) shows the entropy values of the P7-O1 channel of a
16-year-old male patient. While the sample entropy value
increases in the ictal state compared to the preictal state, it
decreased in the permutation entropy value. Fig. 9(d) shows
the values of the P8-O2 channel of a 12-year-old female
patient. In this patient, while the sample entropy value
increases in the ictal state, it is not possible to distinguish
between the ictal state and the preictal state in permutation
entropy.

Fig. 10(a) shows the values of the C3-P3 channel of a 2-year-
old female patient. In the sample entropy of the ictal state,
there is a slight increase compared to the preictal state, while
there is a slight decrease in the permutation entropy. In
addition, there was a sudden change in both entropy values
about 210 seconds before the onset of the seizure. Fig. 10(b)
shows the entropy values of the F7-T7 channel of a 3-year-
old female patient. The difference between the ictal state and
the preictal state cannot be distinguished in both entropy
methods. Fig. 10(c) shows the values of the P3-O1 channel
of a 19-year-old female patient. While there is an increase in
both entropy values at the beginning of the seizure, sudden
decreases are observed in both entropy values during the
seizure. Fig. 10(d) shows the sample entropy and
permutation entropy values of the T7-P7 channel of a 7-year-
old female patient. The seizure duration was very short. With
both entropy methods, the difference between ictal and
preictal states could not be determined. In addition, a sudden
change is observed in both entropy methods about 250
seconds before the onset of the seizure. These states are
randomly chosen to show the different states observed in
entropy values.
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Fig. 10. Sample entropy and permutation entropy values of different

channels of different patients.

tion Entropy

When the sample entropy and permutation entropy values are
analyzed one by one, it is observed that the sample entropy
value increase in 16 (66.6 %) of the 24 patient data in the
ictal state compared to the preictal state. A decrease in
permutation entropy is observed at the onset of seizure in 16
(66.6 %) of 24 patients. When both entropy methods are
examined together, two different situations emerged. In the
first situation, it is observed that during the seizure, the
sample entropy value increases, and the permutation entropy
value decreases in 13 (54,2 %) patients. In the second
situation, during the seizure, the increase in the sample
entropy value or the decrease in the permutation entropy is
observed in 19 (79,2 %) patients.

Tine:

Fig. 11. Sample entropy and permutation entropy values of an hour EEG
signals of the P3-O1 channel of a 3.5-year-old male patient.

Sample entropy and permutation entropy values of an hour's
EEG recordings of channel P3-O1 of a 3.5-year-old male
patient are shown in fig. 11. As seen in this figure, changes
in entropy values can be detected in one-hour EEG
recordings. The seizure period is seen more clearly in the
parts taken 5 minutes before and 5 minutes after the seizure
onset.

4. CONCLUISONS

In this study, epileptic EEG signals were examined and
the prediction of epileptic seizure onset (ictal region) was
investigated. First, EEG signals were accepted as linear. In
linear analysis, RMS and the mean value of the signals were
calculated. The epileptic seizure onset was determined by
RMS and mean value methods with a success rate of 75 %
and 58.4 %, respectively. However, since the EEG signals
are not linear, these examinations were not considered
sufficient, and then entropy methods were used for epileptic
region detection. Among the entropy methods, sample
entropy is preferred due to its consistency feature, and
permutation entropy is preferred because the noise in the
signal affects the analysis least. When both entropy methods
were preferred separately, the onset of seizure was found
with a success rate of 66.6 %. When the entropy methods are
considered together, the success rates have changed. When
seizure was considered using both sample entropy and
permutation entropy, it was determined with a success rate of
54.2 %, while considering sample entropy or permutation
entropy, it was determined with a success rate of 79.2 %.
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Consequently, when one entropy method could not catch the
onset of the seizure, the other might have the possibility to
catch it.

In future studies, epileptic EEG signals can be analyzed with
more entropy methods. Furthermore, different studies can be
carried out to determine the changes that occur before the
seizure with different feature extraction methods.
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