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Abstract
In this paper, we introduce new algorithms for finding a solution of a variational inequality
problem involving pseudo-monotone operator which is also a fixed point of a Bregman rel-
atively nonexpansive mapping in p-uniformly convex and uniformly smooth Banach spaces
that are more general than Hilbert spaces. We prove weak and strong convergence theo-
rems for proposed algorithms. Finally, we give some numerical experiments for supporting
our main results.
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1. Introduction
Let H be a real Hilbert space with inner product 〈., .〉 and its norm ‖.‖, C be a nonempty,

closed and convex subset of H. Let F : H → H be an operator. The classical variational
inequality problem (V I) for F on C is to find x∗ ∈ C such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C. (1.1)
We denote by Sol(C, F ) the solution set of problem (1.1). This problem was first intro-
duced in [17, 45] for modeling problems arising from mechanics. Variational inequality
problem plays an important role in many fields such as in transportation, engineering
mechanics, economics and others [2, 15, 28, 30]. There are several papers available in the
literature which are devoted to this subject, most of which deal with conditions for the ex-
istence of a solution (cf. [8,16,26,46,47,53]). Many numerical iterative methods have been
constructed for solving variational inequalities and their related optimization problems (see
[9,10,20] and the references therein). The simplest one is the following projection method,
which can be considered an extension of the projected gradient method for optimization
problems:

xn+1 = PC(xn − λF (xn)), n ≥ 1, (1.2)
where PC denotes the metric projection from H onto C [46]. Convergence results for this
method require some monotonicity properties of F. This method converges under quite
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strong hypotheses. If F is Lipschitz continuous with Lipschitz constant L and α-strongly
monotone, then the sequence generated by (1.2) converges to an element of Sol(C, F ) for
λ ∈ (0,

2α

L2 ). In order to find an element of Sol(C, F ) under weaker hypotheses, Korpelevich
[31] introduced the following double projection method in Euclidean space:

x0 ∈ C,

yn = PC(xn − λF (xn)),
xn+1 = PC(xn − λF (yn)),

(1.3)

where λ ∈ (0,
1
L

) and F : Rm → Rm is monotone and L-Lipschitz continuous. The
sequence {xn} generated by (1.3) converges to an element of Sol(C, F ) provided that
Sol(C, F ) is nonempty. In recent years, the extragradient method has been extended to
infinite dimensional spaces in various ways; see, for example, [8–10, 14, 35, 49] and the
references cited therein.

We may observe that, when F is not Lipschitz continuous or the constant L is very
difficult to compute, Korpelevich’s method is not so practical because we cannot determine
the step size λ. To overcome this difficulty, Iusem [23] proposed in the Euclidean space
Rn the following iterative algorithm for solving Sol(C, F ):

yn = PC(xn − γnFxn), xn+1 = PC(xn − λnFyn) (1.4)

where γn > 0 is computed through an Armijo-type search and λn = 〈F yn,xn−yn〉
‖F yn‖2 . This

modification has allowed the authors to establish convergence without assuming Lipschitz
continuity of the operator F .

In (1.4), we require an Armijo-like line search procedure to compute the step size γn

with a new projection needed for each trial, which leads to expensive computation. To
overcomes this difficulty Iusem and Svaiter [26] proposed a modified extragradient method
for solving monotone variational inequalities which only requires one projection onto C at
each iteration. A few years later, this method was improved by Solodov and Svaiter [47].
They introduced an algorithm for solving (1.1) in finite dimensional spaces. As a matter
of fact, their method applies to a more general case, where F is merely continuous and
satisfies the following condition:

〈Fx, x − x∗〉 ≥ 0, ∀x ∈ C and x∗ ∈ Sol(C, F ). (1.5)

Property (1.5) holds if F is monotone or, more generally, pseudo-monotone on C in the
sense of Karamardian [27]. Vuong and Shehu [51] have recently modified the result of
Solodov and Svaiter [47] in the spirit of Halpern [18], and obtained strong convergence
in infinite-dimensional real Hilbert spaces. Recently, Reich et al. [43] introduced new
algorithms for solving variational inequalities with uniformly continuous pseudo-monotone
operators. In particular, they used a different Armijo-type line search in order to obtain a
hyperplane which strictly separates the current iterate from the solutions of the variational
inequality under consideration. Their algorithm is of the following form:
Algorithm 1.1. Initialization: Choose µ>0, λ∈(0,

1
µ

), l∈(0, 1). Let x1∈C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute

zn = PC(xn − λFxn),

and rλ(xn) : =xn − zn. If rλ(xn)=0, then stop; xn belongs to Sol(C, F ). Otherwise,
Step 2. Compute

yn = xn − τnrλ(xn),
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where τn := ljn and jn is the smallest non-negative integer j satisfying:

〈Fxn − F (xn − ljrλ(xn)), rλ(xn)〉 ≤ µ

2 ‖rλ(xn)‖2,

Step 3. Compute
xn+1 = PCn(xn),

where
Cn := {x ∈ C : hn(x) ≤ 0},

and
hn(x) = 〈Fyn, x − xn〉 + τn

2λ
‖rλ(xn)‖2.

Set n := n + 1 and go to Step 1.
Reich et al. proved that if the operator F : C → H is pseudo-monotone and uniformly
continuous on C and satisfies:

whenever {xn} ⊂ C, xn ⇀ z, one has ‖F (z)‖ ≤ lim inf
n→∞

‖Fxn‖,

then any sequence {xn} generated by Algorithm 1.1 converges weakly to an element of
Sol(C, F ). In addition, they introduced another algorithm and proved strong convergence
theorem for the sequences generated by this new method.
Many iterative methods have been proposed for finding a common element of fixed point
set Fix(T ) and the solution set Sol(C, F ) of variational inequality problem (1.1) in Hilbert
space H, see, e.g.,[6, 7, 36, 37, 49] and the references therein. The motivation for studying
this problem is that many mathematical models such as signal processing, image recovery
and network resource allocation can be expressed as fixed point problems and variational
inequality problems, see [21,22,33] and the references therein. Takahashi and Toyoda [48]
introduced the following iterative algorithm for finding a common element of solution set
Sol(C, F ) and Fix(T ) :

xn+1 = (1 − αn)xn + αnTPC(xn − λnFxn).

Precisely, they proved that the sequence {xn} generated by the above algorithm converges
weakly to some element of Sol(C, F ) ∩ Fix(T ).
Throughout this paper, let E be a p-uniformly convex and uniformly smooth Banach space
and C be a nonempty, closed and convex subset of E. We shall denote the dual space of
E by E∗. The norm and the duality pairing between E and E∗ are respectively denoted
by ‖.‖ and 〈., .〉.

Motivated and inspired by [43] and by the ongoing research in these directions, we in-
troduce new algorithms for finding a solution of a variational inequality problem involving
pseudo-monotone operator which is also a fixed point of a Bregman relatively nonexpan-
sive mapping in p-uniformly convex and uniformly smooth Banach spaces that are more
general than Hilbert spaces. We prove weak and strong convergence theorems for the pro-
posed algorithms. Finally, we give some numerical experiments which support our main
results.
The paper is organized as follows: In section 2, we recall some definitions and preliminary
results for further use. Section 3 deals with our algorithms and the relevant convergence
analysis. Finally, in section 4, we present some numerical experiments which illustrate the
performance of the algorithms.

2. Preliminaries
In this section, we recall some definitions and preliminaries. Let C be a nonempty,

closed and convex subset of Banach space E. Let rB = {z ∈ E : ‖z‖ ≤ r} for all r > 0.
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A function f : E → R is said to be uniformly convex on bounded sets if ρr(t) > 0 for all
r, t > 0, where ρr : [0, ∞) → [0, ∞] is defined by:

ρr(t) = inf
x,y∈rB,‖x−y‖=t,α∈(0,1)

αf(x) + (1 − α)f(y) − f(αx + (1 − α)y)
α(1 − α) ,

for all t ≥ 0 [54]. The function ρr is called the gauge of uniform convexity of f . It is known
that ρr is a nondecreasing function. Let 1 < q ≤ 2 ≤ p with 1

p + 1
q = 1. The modulus of

convexity δE : [0, 2] → [0, 1] is defined by:

δE(ε) = inf{1 − ‖x + y‖
2 : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2], p-uniformly convex if there is
a cp > 0 so that δE(ε) ≥ cpεp for any ε ∈ (0, 2]. The modulus of smoothness ρE : [0, ∞) →
[0, ∞) is defined by:

ρE(τ) = sup{‖x + τy‖ + ‖x − τy‖
2 − 1 : ‖x‖ = ‖y‖ = 1}.

E is called uniformly smooth if lim
τ→0

ρE(τ)
τ

= 0, q-uniformly smooth if there is a Cq > 0 so
that ρE(τ) ≤ Cqτ q for any τ > 0. It is known that E is p-uniformly convex if and only if
its dual E∗ is q-uniformly smooth [32].
For any convex mapping f : E → R, we denote by f◦(x, y) the right-hand derivative of f
at x ∈ E in the direction y, that is

f◦(x, y) := lim
t↓0

f(x + ty) − f(x)
t

. (2.1)

If the limit as t → 0 in (2.1) exists for each y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the linear function ∇f(x), which
is defined by 〈∇f(x), y〉 := f◦(x, y) for all y ∈ E. The function f is said to be Gâteaux
differentiable if it is Gâteaux differentiable at each x ∈ E. When the limit as t → 0 in (2.1)
is attained uniformly for any y ∈ E with ‖y‖ = 1, we say that f is Fréchet differentiable
at x. Finally, f is said to be uniformly Fréchet differentiable on a subset K of E if the
limit is attained uniformly for x ∈ K and ‖y‖ = 1.
A Banach space E is called smooth if its norm is Gâteaux differentiable. Let p, q ∈ (1, ∞)
and 1

p + 1
q = 1. The duality mapping Jp

E : E → 2E∗ is defined by:

Jp
E(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1},

for every x ∈ E. We know that E is smooth if and only if Jp
E is single-valued mapping of

E into E∗. We also know that E is reflexive if and only if Jp
E is surjective, and E is strictly

convex if and only if Jp
E is one-to-one. Therefore, if E is smooth, strictly convex and

reflexive Banach space, then Jp
E is a single-valued bijection and in this case, Jp

E = (Jq
E∗)−1

where Jq
E∗ is the duality mapping of E∗. Furthermore, we known that E is uniformly

smooth if and only if the mapping fp(x) = 1
p‖x‖p is uniformly Fréchet differentiable on

bounded sets if and only if Jp
E is single-valued and uniformly continuous on bounded sets.

We also known that E is uniformly convex if and only if the mapping fp is uniformly
convex. (see [1, 12,41]).

Given a Gâteaux differentiable convex function f : E → R, the Bregman distance with
respect to f is defined as:

Df (x, y) := f(x) − f(y) − 〈∇f(y), x − y〉, x, y ∈ E.

It should be noted that the Bregman distance is not a distance in the usual sense of the
term. Clearly Df (x, x) = 0 but Df (x, y) = 0 may not imply x = y. In general, Df is not
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symmetric and does not satisfy the triangle inequality. However, Df satisfies the three
point identity

Df (x, y) + Df (y, z) − Df (x, z) = 〈∇f(z) − ∇f(y), x − y〉.

More information regarding Bregman functions and distances can be found in [40].
It is worth noting that the duality mapping Jp

E on the smooth Banach space E is the
derivative of the function fp. Then the Bregman distance with respect to fp is given by:

Dfp(x, y) =1
p

(‖x‖p − ‖y‖p) + 〈Jp
E(y), y − x〉

=1
p

‖x‖p + 1
q

‖y‖p − 〈Jp
E(y), x〉

=1
q

(‖y‖p − ‖x‖p) − 〈Jp
E(y) − Jp

E(x), x〉.

For the p-uniformly convex space, the metric and Bregman distance have the following
relation :

τ‖x − y‖p ≤ Dfp(x, y) ≤ 〈Jp
E(x) − Jp

E(y), x − y〉, (2.2)

where τ > 0 is some fixed number [44].
Let C be a nonempty closed and convex subset of reflexive, smooth and strictly convex
Banach space E. Bregman projections are defined as minimizers of Bregman distances.
The Bregman projection of x ∈ E onto C with respect to the function fp is the unique
element ΠCx ∈ C such that

Dfp(ΠCx, x) = min
y∈C

Dfp(y, x).

In Hilbert spaces the Bregman projection with respect to the function f2 coincides with
the metric projection, but in general they differ from each other. Using ( [4, Corollary
4.4]) and [5, Theorem 2.1]), in uniformly convex Banach spaces Bregman projections can
be characterized by the variational inequality:

〈Jp
E(x) − Jp

E(ΠCx), ΠCx − y〉 ≥ 0, ∀y ∈ C. (2.3)

Moreover this variational inequality is equivalent to the descent property

Dfp(y, ΠCx) + Dfp(ΠCx, x) ≤ Dfp(y, x), ∀y ∈ C. (2.4)

For p = 2, the duality mapping Jp
E , is called the normalized duality and is denoted by J.

The function φ : E2 → R is defined by:

φ(y, x) =‖ y ‖2 −2〈Jx, y〉+ ‖ x ‖2, ∀x, y ∈ E,

and
ΠC(x) = argminy∈Cφ(y, x), ∀x ∈ E.

Following [1, 11], we make use of the function Vfp : E × E∗ → [0, +∞) associated with fp

which is defined by:

Vfp(x, x∗) = 1
p

‖x‖p − 〈x∗, x〉 + 1
q

‖x∗‖q, ∀x ∈ E, x∗ ∈ E∗. (2.5)

So Vfp(x, x∗) = Dfp(x, Jq
E∗(x∗)) for all x ∈ E and x∗ ∈ E∗. Moreover, by the subdifferential

inequality, we have

Vfp(x, x∗) + 〈y∗, Jq
E∗(x∗) − x〉 ≤ Vfp(x, x∗ + y∗), (2.6)
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for all x ∈ X and x∗, y∗ ∈ E∗ [29]. Furthermore Vfp is convex in the second variable. Thus
for all z ∈ X, we have

Dfp

(
z, Jq

E∗

(
N∑

i=1
tiJ

p
E(xi)

))
≤

N∑
i=1

tiDfp(z, xi), (2.7)

where {xi}N
i=1 ⊂ X and {ti}N

i=1 ⊂ [0, 1] with
∑N

i=1 ti = 1.

Lemma 2.1. [5] Let E be a uniformly convex Banach space and {xn}, {yn} be two se-
quences in E such that the first one is bounded. If lim

n→∞
Dfp(yn, xn) = 0, then lim

n→∞
‖yn −

xn‖ = 0.

Let T : C → C be a mapping. We denote the set of fixed points of T by F (T ), that is
F (T ) = {x ∈ C : x = Tx}. A point x ∈ C is called an asymptotic fixed point of T if there
exists a sequence {xn} in C that converges weakly to x such that limn→∞ ‖xn −Txn‖ = 0.
We denote by F̂ (T ) for the set of asymptotic fixed points of T. The concept of an asymp-
totic fixed point was introduced by Reich in [42].
A mapping T : C → C is called Bregman relatively nonexpansive with respect to fp, if
F (T ) = F̂ (T ) 6= ∅ and Dfp(u, Tx) ≤ Dfp(u, x), for all x ∈ C and u ∈ F (T ).

Definition 2.2. Let C be a nonempty subset of E, the mapping F :C→E∗ is said to be
(i) monotone on C if for any x, y ∈ C,

〈F (x) − F (y), x − y〉 ≥ 0,

(ii) pseudo-monotone on C if for any x, y ∈ C the following implication holds:
〈F (x), x − y〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0,

(iii) L-Lipschitz continuous on C if there exists a scalar L > 0 satisfying
‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ C,

(iiii) weakly sequentially continuous if for each sequence {xn}we have, {xn} converges
weakly to x implies {F (xn)} converges weakly to F (x).

We can establish the following lemmas.

Lemma 2.3. [38] Let E be a Banach space, r > 0 be a constant and f : E → R be a
uniformly convex function on bounded subsets of E. Then

f(
n∑

k=0
αkxk) ≤

n∑
k=0

αkf(xk) − αiαjρr(‖xi − xj‖),

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ rB, αk ∈ (0, 1) and k = 0, 1, 2, ..., n with
∑n

k=0 αk = 1,
where ρr is the gauge of uniform convexity of f .

Lemma 2.4. [24, 25] Let E1 and E2 be two Banach spaces. Suppose F : E1 → E2 is
uniformly continuous on bounded subsets of E1 and M is a bounded subset of E1. Then
F (M) is bounded.

Lemma 2.5. [13] Let C be a nonempty, closed and convex subset of a real Banach space
E, and let F : C → E∗ be pseudo-monotone and continuous. Then x∗ belongs to Sol(C, F )
if and only if

〈F (x), x − x∗〉 ≥ 0, ∀x ∈ C.

Lemma 2.6. Let E be a smooth and reflexive Banach space such that the duality mapping
Jp

E is weakly sequentially continuous. Let {xn} be a sequence in E and C be a nonempty
subset of E. Suppose that for every x ∈ C, {Dfp(x, xn)} converges and every weak cluster
point of {xn} belongs to C. Then {xn} converges weakly to a point in C.
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Proof. It follows from (2.2) that {xn} is bounded. So there is at least one weak cluster
point of {xn}. Hence it is suffices to show that there is exactly one weak cluster point
of {xn}. Assume that x and y are two weak cluster point of {xn} in C, say xkn ⇀ x
and xln ⇀ y. Since Jp

E is weakly sequentially continuous, we have Jp
E(xkn) ⇀ Jp

Ex and
Jp

E(xln) ⇀ Jp
Ey. It follows from x, y ∈ C, that the sequences {Dfp(x, xn)} and {Dfp(y, xn)}

converge. Since
Dfp(x, y) + Dfp(y, xn) − Dfp(x, xn) = 〈Jp

Exn − Jp
Ey, x − y〉,

passing to the limit along xkn and along xln , respectively, yields
〈Jp

Ex − Jp
Ey, x − y〉 = 〈Jp

Ey − Jp
Ey, x − y〉 = 0.

Thus Dfp(x, y) + Dfp(y, x) = 0 and hence x = y. �

It is known that, for 1 < p < ∞, the sequence space lp has a sequentially weakly
continuous duality map Jp [39].
The following lemma was given in Rn in [19]. The proof of the lemma is the same if given
in Banach spaces. Hence, we state the lemma and omit the proof in Banach spaces.

Lemma 2.7. Let C be a nonempty closed and convex subset of a Banach space X. Let
h be a real-valued function on X and define K := {x ∈ C : h(x) ≤ 0}. If K is nonempty
and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x, K) ≥ θ−1 max{h(x), 0}, ∀x ∈ C.

where dist(x, K) denotes the distance function from x to K.

Lemma 2.8. [52] Let {sn} be a sequence of nonnegative real numbers satisfying the in-
equality:

sn+1 ≤ (1 − αn)sn + αnβn, ∀n ≥ 0,

where {αn} and {βn} satisfy the conditions:
(i) {αn} ⊂ [0, 1] and

∑∞
n=0 αn = ∞,

(ii) lim sup
n→∞

βn ≤ 0, or
∑∞

n=0 |αnβn| < ∞.

Then lim
n→∞

sn = 0.

Lemma 2.9. [34] Let {an} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a subsequence
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

3. Main results
Now, we introduce our algorithms for finding a solution of a variational inequality

problem involving pseudo-monotone and non Lipschitz continuous operator which is also
a fixed point of a Bregman relatively nonexpansive mapping in p-uniformly convex and
uniformly smooth Banach spaces. In this section, we assume that the following conditions
hold.
(B1) The feasible set C is a nonempty, closed and convex subset of the Banach space E.
(B2) The operator F : C → E∗ associated with the problem (1.1) is pseudo-monotone and
uniformly continuous on C.
(B3) The operator F : C → E∗ satisfies the following property:

whenever {xn} ⊂ C, xn ⇀ z, one has ‖F (z)‖ ≤ lim inf
n→∞

‖Fxn‖.
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(B4) T : C → C is a Bregman relatively nonexpansive mapping.
(B5) Ω := Sol(C, F ) ∩ F (T ) 6= ∅.

3.1. Weak convergence
Algorithm 3.1
Initialization: Let x1∈C be arbitrary. Choose µ>0, λ∈(0,

1
µ

), l∈(0, 1), αn∈(0, 1)
and lim inf

n→∞
αn(1 − αn)>0.

Iterative steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute

zn = ΠC(Jq
E∗(Jp

Exn − λFxn)),
and rλ(xn):=xn−zn. If rλ(xn)=0 and Txn=xn, then stop, xn belongs to Sol(C, F )∩F (T ).
Otherwise,
Step2. Compute

yn = xn − τnrλ(xn),
where τn := ljn and jn is the smallest non-negative integer j satisfying

〈Fxn − F (xn − ljrλ(xn)), rλ(xn)〉 ≤ µ

2 Dfp(xn, zn). (3.1)

Step3. Compute
tn = Jq

E∗

(
αnJp

E(xn) + (1 − αn)Jp
E(Txn)

)
,

xn+1 = ΠCn∩Qn(xn),
where

Qn := {x ∈ C : Dfp(x, tn) ≤ Dfp(x, xn)},

Cn := {x ∈ C : hn(x) ≤ 0},
and

hn(x) = 〈Fyn, x − xn〉 + τn

2λ
Dfp(xn, zn). (3.2)

Set n := n + 1 and go to Step 1.
The following lemmas are used in the sequel in the proofs of our main results.

Lemma 3.1. Assume that the sequence {xn} is generated by Algorithm 3.1. Then, we
have

〈Fyn, rλ(xn)〉 ≥ 1
λ

Dfp(xn, zn).

Proof. By the definition of zn and properties of ΠC , we have

〈Jp
E(xn) − λFxn − Jp

E(zn), z − zn〉 ≤ 0, ∀z ∈ C.

Substituting z = xn into the last inequality and using the definition of Bregman distance,
we have

Dfp(xn, zn) ≤ 〈Jp
E(xn) − Jp

E(zn), xn − zn〉 ≤ λ〈Fxn, xn − zn〉,
hence, we get the desired result. �

Lemma 3.2. The Armijo-type search rule (3.1) and the sequence {xn} generated by Al-
gorithm 3.1 are well defined.

Proof. For the proof of first part see [43]. It is easy to see that for every n ∈ N, Cn and
Qn are closed and convex. We show that Ω ⊂ Cn ∩ Qn. Let x∗ ∈ Ω. Using (2.7), we have

Dfp(x∗, tn) ≤αnDfp(x∗, xn) + (1 − αn)Dfp(x∗, Txn)
≤αnDfp(x∗, xn) + (1 − αn)Dfp(x∗, xn) = Dfp(x∗, xn),
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hence x∗ ∈ Qn. On the other hand, applying Lemma 2.5, we have 〈Fyn, yn − x∗〉 ≥ 0.
Hence

hn(x∗) = 〈Fyn, x∗ − xn〉 + τn

2λ
Dfp(xn, zn)

= 〈Fyn, x∗ − yn〉 + 〈Fyn, yn − xn〉 + τn

2λ
Dfp(xn, zn)

≤ −τn〈Fyn, rλ(xn)〉 + τn

2λ
Dfp(xn, zn). (3.3)

Due to (3.1), we have

〈Fxn − Fyn, rλ(xn)〉 ≤ τn

2λ
Dfp(xn, zn).

Using this and Lemma 3.1, we have

〈Fyn, rλ(xn)〉 ≥ 〈Fxn, rλ(xn)〉 − µ

2 Dfp(xn, zn)

≥ 1
λ

Dfp(xn, zn) − µ

2 Dfp(xn, zn).

This together with (3.3) implies that

hn(x∗) ≤ −τn

2
( 1
λ

− µ
)
Dfp(xn, zn) ≤ 0,

and hence Ω ⊂ Cn ∩ Qn. Hence the sequence {xn} is well define. �

Lemma 3.3. Let {xn} be the sequence generated by Algorithm 3.1. If there exists a subse-
quence {xnk

} of {xn} such that {xnk
} converges weakly to z ∈ C and lim

k→∞
‖xnk

−znk
‖=0,

then z ∈ Sol(C, F ).

Proof. Applying (2.3), we have

〈Jp
Exnk

− λFxnk
− Jp

Eznk
, x − znk

〉 ≤ 0, ∀x ∈ C,

therefore 〈
Jp

Exnk
− Jp

Eznk

λ
, x − znk

〉
≤ 〈Fxnk

, x − znk
〉 , ∀x ∈ C,

which implies〈
Jp

Exnk
− Jp

Eznk

λ
, x − znk

〉
+ 〈Fxnk

, znk
− xnk

〉 ≤ 〈Fxnk
, x − xnk

〉 ∀x ∈ C. (3.4)

Using the boundedness of {Fxnk
} and uniform continuity of Jp

E on bounded subsets of E,
we get

lim inf
k→∞

〈Fxnk
, x − xnk

〉 ≥ 0. (3.5)

Now, we choose a decreasing sequence {εk} of positive numbers which εk → 0 as k → ∞.
For each k, we denote by Nk the smallest positive integer such that

〈Fxnj , x − xnj 〉 + εk ≥ 0, ∀j ≥ Nk, (3.6)

where the existence of Nk follows from (3.5). Since the sequence {εk} is decreasing, it is
easy to see that the sequence {Nk} is increasing. Let A := {k ∈ N : F (xNk

)=0}. If A
is infinite, then the assertion is obvious. Otherwise there exists a subsequence {Nkm} of
{Nk} such that F (xNkm

) 6= 0. Without loss of generality, we can assume that F (xNk
) 6= 0.

Setting

νNk
:= FxNk

‖FxNk
‖

q
q−1

,
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we have 〈FxNk
, Jq

E∗νNk
〉 = 1 for each k. Indeed, using Proposition 4.7 of [12], we get

〈FxNk
, Jq

E∗νNk
〉 = ‖FxNk

‖q−1

(‖FxNk
‖

q
q−1 )q−1

× 1
‖FxNk

‖q−1 〈FxNk
, Jq

E∗(FxNk
)〉 = 1,

for each k. It follows from (3.6) that
〈FxNk

, x − xNk
〉 + εk〈FxNk

, Jq
E∗νNk

〉 ≥ 0,

therefore
〈FxNk

, x + εkJq
E∗νNk

− xNk
〉 ≥ 0.

By the pseudo-monotonicity of F , we obtain
〈F (x + εkJq

E∗νNk
), x + εkJq

E∗νNk
− xNk

〉 ≥ 0. (3.7)

Now, we show that lim
k→∞

εkJq
E∗νNk

=0. Since, xnk
⇀z, using the condition B3, we obtain

0 ≤ ‖Fz‖ ≤ lim inf
k→∞

‖Fxnk
‖.

Since {xNk
} ⊂ {xnk

} and εk tends to zero, we get

0 ≤ lim sup ‖εkJq
E∗νNk

‖ = lim sup εk

‖FxNk
‖

≤ lim supk→∞ εk

lim inf
k→∞

‖FxNk
‖

= 0,

this implies that lim
k→∞

εkJq
E∗νNk

= 0. Hence, taking the limit as k → ∞ in (3.7) and using
condition B2, we get 〈Fx, x − z〉 ≥ 0. Using Lemma 2.5, we get z ∈ Sol(C, F ).

�

Lemma 3.4. Let {xn} be the sequence generated by Algorithm 3.1. If lim
n→∞

τnDfp(xn, zn) =
0, then lim

n→∞
Dfp(xn, zn) = 0.

Proof. For the proof we consider two possible cases:
Case 1. In this case, we suppose that lim inf

n→∞
τn > 0. Therefore, there is a constant τ > 0

such that τn ≥ τ > 0 for all n ∈ N. We obtain that

Dfp(xn, zn) = 1
τn

τnDfp(xn, zn) ≤ 1
τ

τnDfp(xn, zn). (3.8)

Considering the limit in the last inequality as n → ∞ and using the assumptions, we have
lim

n→∞
Dfp(xn, zn) = 0.

Case 2. We suppose that lim inf
n→∞

τn = 0. Taking a subsequence if necessary, we may
assume without loss of generality that lim

n→∞
τn=0. Define yn=1

l τnzn+(1−1
l τn)xn. Applying

(2.2) and noting that lim
n→∞

τnDfp(xn, zn)=0, we have lim
n→∞

τn‖xn − zn‖p=0 and hence

lim
n→∞

‖yn − xn‖p = lim
n→∞

(τp−1
n

lp
)τn‖zn − xn‖p = 0. (3.9)

Since F is uniformly continuous on bounded subsets of C, we obtain
lim

n→∞
‖Fxn − Fyn‖ = 0. (3.10)

Using (3.1) and the definition of yn, we have

〈Fxn − Fyn, xn − zn〉 >
µ

2 Dfp(xn, zn). (3.11)

Now, letting n→∞ and from (3.10) we have lim
n→∞

Dfp(xn, zn)=0 and hence lim
n→∞

‖xn−zn‖=0.
�

Now, we are ready to prove the weak convergence theorem.
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Theorem 3.5. Let E be a p-uniformly convex and uniformly smooth Banach space such
that the duality mapping Jp

E is weakly sequentially continuous. Then the sequence {xn}
generated by Algorithm 3.1 converges weakly to an element of Ω.

Proof. Let w ∈ Ω. From (2.2) and (2.4) we have
Dfp(w, xn+1) ≤Dfp(w, xn) − Dfp(xn+1, xn)

=Dfp(w, xn) − Dfp(ΠCn∩Qnxn, xn)
≤Dfp(w, xn) − Dfp(ΠCnxn, xn)
≤Dfp(w, xn) − τ‖xn − ΠCnxn‖p

≤Dfp(w, xn) − τ‖xn − PCnxn‖p

=Dfp(w, xn) − τdistp(Cn, xn). (3.12)
This implies that lim

n→∞
Dfp(w, xn) exists. Hence the sequence {xn} is bounded. conse-

quently, we conclude that {Fxn}, {zn}, {yn} and {tn} are also bounded. Since {xn}
is bounded and X is reflexive, then there exists a subsequence {xnk

} of {xn} such that
xnk

⇀ z. We show that z ∈ Ω. Since xn+1 ∈ Qn, from the definition of Qn and (3.12), we
have

Dfp(xn+1, tn) ≤ Dfp(xn+1, xn)
≤ Dfp(w, xn) − Dfp(w, xn+1).

This implies that lim
n→∞

Dfp(xn+1, xn) = lim
n→∞

Dfp(xn+1, tn) = 0, and hence

lim
n→∞

‖xn+1 − xn‖ = 0 = lim
n→∞

‖xn+1 − tn‖.

Hence,
lim

n→∞
‖xn − tn‖ = 0. (3.13)

On the other hand using Lemma 2.3, we get
Dfp(w, tn) =Vfp(w, αnJp

Exn + (1 − αn)Jp
ETxn)

≤1
p

‖w‖p − αn〈Jp
Exn, w〉 − (1 − αn)〈Jp

ETxn, w〉 + αn

q
‖Jp

Exn‖q

+ (1 − αn)
q

‖Jp
ETxn‖q − αn(1 − αn)ρ∗

b‖Jp
Exn − Jp

ETxn‖

=1
p

‖w‖p − αn〈Jp
Exn, w〉 − (1 − αn)〈Jp

ETxn, w〉 + αn

q
‖xn‖p

+ (1 − αn)
q

‖Txn‖p − αn(1 − αn)ρ∗
b‖Jp

Exn − Jp
ETwn‖

=αnDfp(w, xn) + (1 − αn)Dfp(w, Txn) − αn(1 − αn)ρb∗‖Jp
Exn − Jp

ETxn‖
≤Dfp(w, xn) − αn(1 − αn)ρ∗

b‖Jp
Exn − Jp

ETxn‖.

Therefore
αn(1 − αn)ρ∗

b‖Jp
Exn − Jp

ETxn‖ ≤ Dfp(w, xn) − Dfp(w, tn)
≤ Dfp(w, xn) − Dfp(w, tn) + Dfp(xn, tn)
= 〈Jp

Etn − Jp
Exn, w − xn〉.

Taking the limit in the above inequality as n → ∞ and using uniform continuity of Jp
E on

bounded subsets of E, (3.13) and lim inf
n→∞

αn(1−αn)>0, we get lim
n→∞

ρ∗
b‖Jp

Exn−Jp
ETxn‖=0

and so lim
n→∞

‖Jp
Exn−Jp

ETxn‖=0. This together with uniform continuity of Jq
E∗ on bounded

subset of E∗ implies that lim
n→∞

‖xn −Txn‖ = 0. Therefore z ∈ F̂ (T ) = F (T ). Now we show
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that z ∈ Sol(C, F ). Since {Fyn} is bounded there exists L > 0 such that ‖Fyn‖ < L. Let
x, y ∈ C, then

|hnx − hny| = |〈Fyn, x − y〉| ≤ ‖Fyn‖‖x − y‖ ≤ L‖x − y‖,

which show that hn(x) is L-Lipschitz continuous on C. Using Lemma 2.7, we get

dist(Cn, xn) ≥ 1
L

hn(xn) = τn

2λL
Dfp(xn, zn). (3.14)

Using (3.12) and (3.14), we obtain( ττn

2λL
Dfp(xn, zn)

)p
≤ Dfp(w, xn) − Dfp(w, xn+1). (3.15)

Hence lim
n→∞

τnDfp(xn, zn) = 0. By Lemma 3.4, lim
n→∞

‖xn − zn‖ = 0. This together with
Lemma 3.3 imply that z ∈ Sol(C, F ). Now, applying Lemma 2.6, we conclude that xn ⇀
z. �

3.2. Strong convergence
In this subsection, we prove a strong convergence theorem for approximating a solution

of a variational inequality which is also a fixed point of a Bregman relatively nonexpansive
mapping.

Algorithm 3.2
Initialization. Choose x1 ∈ C, µ > 0, l ∈ (0, 1) and λ ∈ (0, 1

µ). βn∈(0, 1) and

lim inf
n→∞

βn(1 − βn)>0. Also, αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞.

Iterative steps: Assume that xn ∈ C, calculate xn+1 as follows:
Step 1. Compute

zn = ΠC(Jq
E∗(Jp

Exn − λFxn)),
and rλ(xn) := xn − zn. If rλ(xn) = 0 and Txn = xn, then stop. Otherwise,
Step 2. Compute

yn = xn − τnrλ(xn),
where τn := ljn and jn is the smallest non-negative integer j satisfying〈

Fxn − F (xn − ljrλ(xn)), rλ(xn)
〉

≤ µ
2 Dfp(xn, zn).

Step 3. Compute
tn = Jq

E∗(βnJp
Exn + (1 − βn)Jp

E(TΠCnxn)),

xn+1 = ΠC(Jq
E∗(αnJp

Eu + (1 − αn)Jp
Etn)),

where
Cn := {x ∈ C : hn(x) ≤ 0},

and
hn(x) = 〈Fyn, x − xn〉 + τn

2λDfp(xn, zn).
Set n:=n+1 and go to Step 1.

Theorem 3.6. Suppose that Conditions B1 −B5 hold. Then, the sequence {xn} generated
by Algorithm 3.2 converges strongly to ΠΩu.

Proof. We divide our proof into four steps.
step 1. The sequence {xn} is bounded.
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Set wn = ΠCnxn and û = ΠΩu. Using (2.4) and (2.7), we have
Dfp(û, xn+1) ≤Dfp(û, Jq

E∗(αnJp
Eu + (1 − αn)Jp

Etn))
≤αnDfp(û, u) + (1 − αn)Dfp(û, tn)
≤αnDfp(û, u) + (1 − αn)[βnDfp(û, xn) + (1 − βn)Dfp(û, wn)]
≤αnDfp(û, u) + (1 − αn)[βnDfp(û, xn) + (1 − βn)Dfp(û, xn)]
≤ max{Dfp(û, u), Dfp(û, xn)}
...

≤ max{Dfp(û, u), Dfp(û, x1)}.

This together with (2.2), implies that {xn} is bounded. Consequently, we conclude that
{Fxn}, {zn}, {yn}, {wn}, {Twn} and {tn} are also bounded.
Step 2. In this step, we show that

(1 − βn)Dfp(wn, xn) ≤ Dfp(û, xn) − Dfp(û, xn+1) + αn〈Jp
Eu − Jp

E û, sn − û〉.

Set b = sup{‖xn‖p−1, ‖Twn‖p−1}. Using Lemma 2.3, we have
Dfp(û, tn) =Vfp(û, βnJP

E xn + (1 − βn)JP
E Twn)

≤1
p

‖û‖p − βn〈Jp
Exn, û〉 − (1 − βn)〈Jp

ETwn, û〉 + βn

q
‖Jp

Exn‖q

+ (1 − βn)
q

‖Jp
ETwn‖q − βn(1 − βn)ρ∗

b‖Jp
Exn − Jp

ETwn‖

=1
p

‖û‖p − βn〈Jp
Exn, û〉 − (1 − βn)〈Jp

ETwn, û〉 + βn

q
‖xn‖p

+ (1 − βn)
q

‖Twn‖p − βn(1 − βn)ρ∗
b‖Jp

Exn − Jp
ETwn‖

=βnDfp(û, xn) + (1 − βn)Dfp(û, Twn) − βn(1 − βn)ρb∗‖Jp
Exn − Jp

ETwn‖
≤Dfp(û, xn) − βn(1 − βn)ρ∗

b‖Jp
Exn − Jp

ETwn‖.

Set sn = Jq
E∗(αnJp

Eu + (1 − αn)Jp
Etn). Using (2.6), we have

Dfp(û, xn+1) ≤Dfp(û, Jq
E∗(αnJp

Eu + (1 − αn)Jp
Etn))

=Vfp(û, αnJp
Eu + (1 − αn)Jp

Etn)
≤Vfp(û, αnJp

Eu + (1 − αn)Jp
Etn − αn(Jp

Eu − Jp
E û))

+ αn〈Jp
Eu − Jp

E û, sn − û〉
≤αnDfp(û, û) + (1 − αn)Dfp(û, tn) + αn〈Jp

Eu − Jp
E û, sn − û〉

≤(1 − αn)Dfp(û, tn) + αn〈Jp
Eu − Jp

E û, sn − û〉 (3.16)
≤(1 − αn)Dfp(û, xn) − βn(1 − βn)ρ∗

b‖Jp
Exn − Jp

ETwn‖
+ αn〈Jp

Eu − Jp
E û, sn − û〉 (3.17)

≤(1 − αn)Dfp(û, xn) + αn〈Jp
Eu − Jp

E û, sn − û〉. (3.18)
On the other hand

Dfp(û, tn) ≤βnDfp(û, xn) + (1 − βn)Dfp(û, wn)
≤βnDfp(û, xn) + (1 − βn)[(û, xn) − Dfp(wn, xn)]
=Dfp(û, xn) − (1 − βn)Dfp(wn, xn).

Substituting the above inequality into (3.16), we get
Dfp(û, xn+1) ≤ Dfp(û, xn) − (1 − βn)Dfp(wn, xn) + αn〈Jp

Eu − Jp
E û, sn − û〉.
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This implies that

(1 − βn)Dfp(wn, xn) ≤ Dfp(û, xn) − Dfp(û, xn+1) + αn〈Jp
Eu − Jp

E û, sn − û〉. (3.19)

Step 3. In this step, we prove that

(1 − αn)(1 − βn)
( τn

2λL
Dfp(xn, zn)

)p
≤ αnDfp(û, u) + Dfp(û, xn) − Dfp(û, xn+1).

Employing a similar argument to the one used in the proof of (3.15), we get

Dfp(û, wn) ≤ Dfp(û, xn) −
( τn

2λL
Dfp(xn, zn)

)p
. (3.20)

Applying (3.20), we have

Dfp(û, xn+1) ≤Dfp(û, Jq
E∗(αnJp

Eu + (1 − αn)Jp
Etn))

≤αnDfp(û, u) + (1 − αn)Dfp(û, tn)

≤αnDfp(û, u) + (1 − αn)
[
βnDfp(û, xn) + (1 − βn)Dfp(û, wn)

]
≤αnDfp(û, u) + (1 − αn)βnDfp(û, xn)

+ (1 − αn)(1 − βn)
[
Dfp(û, xn) −

( τn

2λL
Dfp(xn, zn)

)p]
≤αnDfp(û, u) + Dfp(û, xn) − (1 − αn)(1 − βn)

( τn

2λL
Dfp(xn, zn)

)p
. (3.21)

Step 4. In this step, we prove that xn → û as n → ∞.
Since {xn} is bounded, there exists a subsequence {xnk

} of {xn} such that xnk
⇀ z, as

n → ∞. In order to prove that xn → û as n → ∞, we consider two possible cases.
Case 1. Suppose that there exists n0 ∈ N such that {Dfp(û, xn)}∞

n=n0 is nonincreasing.
In this situation, {Dfp(û, xn)} is convergent. Since lim

n→∞
αn = 0, lim inf

n→∞
βn(1 − βn) > 0

and the sequence {sn} is bounded, from (3.19), we have lim
n→∞

Dfp(wn, xn) = 0 and hence,

lim
n→∞

‖wn − xn‖ = 0. (3.22)

By similar argument from inequality (3.17), we obtain that

lim
n→∞

ρ∗
b‖Jp

Exn − Jp
ETwn‖ = 0,

and hence

lim
n→∞

‖Jp
Exn − Jp

ETwn‖ = 0. (3.23)

From the uniform continity of Jq
E∗ on bounded subset of X∗ and (3.23), we have

lim
n→∞

‖xn − Twn‖ = 0. (3.24)

This together with (3.22) implies that

lim
n→∞

‖wn − Twn‖ = 0. (3.25)

Since xnk
⇀ z, from (3.22), we get wnk

⇀ z. Hence, using (3.25) we get z ∈ F̂ (T ) = F (T ).
Next we show that z ∈ Sol(C, F ). Applying (3.21), we have, lim

n→∞
τn

2λLDfp(xn, zn) = 0, and
therefore

lim
n→∞

τnDfp(xn, zn) = 0. (3.26)

Using Lemma 3.4, we infer that

lim
n→∞

‖xn − zn‖ = 0. (3.27)
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Applying Lemma 3.3 and (3.27), we conclude that z ∈ Sol(C, F ). Next, we show that
lim sup

n→∞
〈Jp

Eu − Jp
E û, sn − û〉 ≤ 0. We can choose a subsequence {xnj } of {xn} such that

lim sup
n→∞

〈Jp
Eu − Jp

E û, xn − û〉 = lim
j→∞

〈Jp
Eu − Jp

E û, xnj − û〉.

Since {xnj } is bounded, there exists a subsequence {xnjk
} of {xnj } such that xnjk

⇀v ∈ Ω,

as k → ∞. Without loss of generality, we can assume that xnj ⇀ v as j → ∞. Using (2.3),
we deduce

lim sup
n→∞

〈Jp
Eu − Jp

E û, xn − û〉 = lim
j→∞

〈Jp
Eu − Jp

E û, xnj − û〉

=〈Jp
Eu − Jp

E û, v − û〉 ≤ 0. (3.28)
On the other hand

Dfp(xn, sn) ≤αnDfp(xn, u) + (1 − αn)Dfp(xn, tn)
≤αnDfp(xn, u) + (1 − αn)[βnDfp(xn, xn) + (1 − βn)Dfp(xn, Twn)]. (3.29)

Hence, taking the limit as n→∞ in (3.29) and using (2.2) and (3.24), we get that lim
n→∞

Dfp(xn, sn) =
0, and hence

lim
n→∞

‖xn − sn‖ = 0. (3.30)

This together with (3.28) implies that
lim sup

n→∞
〈Jp

Eu − Jp
E û, sn − û〉 ≤ 0. (3.31)

Using (3.18), (3.31) and Lemma 2.8, we get that xn → û, as n → ∞.
Case 2. There exists a subsequence {nj} of {n} such that Dfp(û, xnj ) < Dfp(û, xnj+1)
for all j ∈ N. Then by Lemma 2.9, there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞,

Dfp(û, xmk
) ≤ Dfp(û, xmk+1) and Dfp(û, xk) ≤ Dfp(û, xmk+1), (3.32)

for all k ∈ N. Using (3.32) and employing a similar argument to the one used in case 1,
we deduce

lim
k→∞

‖wmk
− Twmk

‖ = lim
k→∞

‖zmk
− xmk

‖ = lim
k→∞

‖xmk
− smk

‖ = 0, (3.33)

and
lim sup

k→∞
〈Jp

Eu − Jp
E û, smk

− û〉 ≤ 0. (3.34)

It follows from (3.18) that
Dfp(û, xmk+1) ≤ (1 − αmk

)Dfp(û, xmk
) + αmk

〈Jp
Eu − Jp

E û, smk
− û〉. (3.35)

This together with (3.32) implies that
αmk

Dfp(û, xmk
) ≤ αmk

〈Jp
Eu − Jp

E û, smk
− û〉.

Since αmk
> 0 and lim sup

k→∞
〈Jp

Eu − Jp
E û, smk

− û〉 ≤ 0, we deduce

lim
k→∞

Dfp(û, xmk
) = 0. (3.36)

From (3.34), (3.35) and (3.36), we get that
lim

k→∞
Dfp(û, xmk+1) = 0. (3.37)

Now from (3.32), we have lim
k→∞

Dfp(û, xk) = 0. Hence lim
k→∞

‖xk − û‖ = 0. This completes
the proof. �
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Setting F = 0 in Algorithm 3.1, we immediately obtain the following result for the fixed
pint problem.

Corollary 3.7. Let E be a p-uniformly convex and uniformly smooth Banach space such
that the duality mapping Jp

E is weakly sequantially continuous. Let T : C → C be a
Bregman relatively nonexpansive mapping such that F (T ) 6= ∅. For x1 ∈ C, let {xn} be a
sequence defined by: 

tn = Jq
E∗

(
αnJp

E(xn) + (1 − αn)Jp
E(Txn)

)
,

Qn = {x ∈ C : Dfp(x, tn) ≤ Dfp(x, xn)},

xn+1 = ΠQn(xn),

where αn∈(0, 1) and lim inf
n→∞

αn(1 − αn)>0. Then the sequence {xn} converges weakly to an
element of F (T ).

Putting T = I, the identity mapping, in Algorithm 3.2, we obtain the following corollary
for the variational inequality problem.

Corollary 3.8. Let x1∈C and u ∈ E be arbitrary. Choose µ>0, λ∈(0,
1
µ

), l∈(0, 1), βn∈(0, 1)

and lim inf
n→∞

βn(1 − βn)>0. Also, αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞. Com-

pute

zn = ΠC

(
Jq

E∗(Jp
E(xn) − λFxn)

)
,

and rλ(xn) : =xn − zn. If rλ(xn)=0, then stop. Otherwise,
Compute

yn = xn − τnrλ(xn),
where τn := ljn and jn is the smallest non-negative integer j satisfying

〈Fxn − F (xn − ljrλ(xn)), rλ(xn)〉 ≤ µ

2 Dfp(xn, zn),

Compute

tn = Jq
E∗

(
βnJp

E(xn) + (1 − βn)Jp
E(ΠCnxn)

)
,

where
Cn := {x ∈ C : hn(x) ≤ 0},

and
hn(x) = 〈Fyn, x − xn〉 + τn

2λ
Dfp(xn, zn).

Compute
xn+1 = ΠC (Jq

E∗ (αnJp
Eu + (1 − αn)Jp

Etn)) .

Assume that Conditions B1 − B5 hold. Then, the sequence {xn} converges strongly to
ΠSol(C,F )u.

4. Numerical experiments
In this section, we perform two numerical experiments to illustrate the behavior of

Algorithm 3.1 and Algorithm 3.2. In the next remark, we provide closed form expressions
for the projectors onto a half space.



New algorithms for solving pseudo-monotone variational inequalities in Banach spaces 997

Remark 4.1. [3] Let H be a Hilbert space, u ∈ H, η ∈ R and C = {x ∈ H : 〈x, u〉 ≤ η}.
Then exactly one of the following holds:
(i) u = 0 and η ≥ 0, in which case C = H and PC = Id.
(ii) u = 0 and η < 0, in which case C = ∅.
(iii) u 6= 0, in which case C 6= ∅ and for all x in H we have

PCx =


x, 〈x, u〉 ≤ η,

x + η − 〈x, u〉
‖u‖2 u, 〈x, u〉 > η.

Example 4.2. Let E=R and C=[0, 4]. Define F (x)=
√

x+ sin x and Tx= arctan x. We
consider µ=1

2 , λ = 1, l = 0.9 and αn = 1
2 + 1

n + 2 . Note that F is not Lipschitz continuous
and F (T ) ∩ Sol(C, F ) = {0}. Using Algorithm 3.1 with the initial point x1 = 4, we have
the numerical results in Fig 1.

Example 4.3. Take E = L2[0, 1] with inner product 〈x, y〉 :=
∫ 1

0 x(t)y(t)dt and norm

‖x‖2 := (
∫ 1

0 |x(t)|2dt)
1
2 . Suppose C = {x ∈ E : ‖x‖2 ≤ 2}. Define T := C → C by

Tx = 1
2x and F : L2[0, 1] → L2[0, 1] by:

F (x)(t) := exp−‖x‖2

∫ t

0
x(s)ds,

where x ∈ L2[0, 1] and t∈[0, 1]. It can also be shown that F is pseudo-monotone but not
monotone on E [50]. Take µ = 0.3, λ = 3 and l = 0.9. Also, we take βn = 1

2 + 1
n + 2 and

αn = 1
100n + 1 . Using Remark 4.1 and Algorithm 3.2 with the initial point x1(t) = t2 we

have the numerical results in Fig 2.
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Figure 1. Plotting of |xn| and
|xn − xn−1| in Example 4.2
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