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Introduction 

Bending analyses of plates are performed using the 

differential equations of appropriate plate theories. The 

well-known Kirchhoff plate theory (Kirchhoff PT) which 

is used in the analysis of thin plates and where the shear 

deformation effects are neglected is developed 

by Love [1] following the assumptions given by Kirchhoff 

[2]. According to the theory, the thickness of the plate does 

not change and straight lines orthogonal to the midplane 

of the undeformed plate remain straight and orthogonal 

after deformation and C1 continuous elements are required 

in the finite element implementation. The Reissner-

Mindlin plate theory (R-M PT) [3,4] which is mostly used 

for the analysis of thick plates can also be used for the 

analysis of thin plates. In this theory, shear 

deformation and rotary inertia effects are taken into 

consideration and straight lines orthogonal to the midplane 

of the plate remain straight but not orthogonal to the 

midplane after deformation. In the finite element 

implementation, C0 continuous elements suffice.  

Shear locking problem arises when R-M plate elements 

are used in the analysis of thin plates which is due to the 

excessive effect of the transverse shear deformation terms 

in the formulations. This problem can be alleviated using 

several techniques like reduced or selective integration, 

non-conforming element method, assumed shear strain 

method, the discrete shear gap method, or the mixed 

interpolation of tensorial components method. In this 

paper, selective integration technique is utilized to 

eliminate the shear locking problem as done in [5]. 

The simplest model used for the analysis of plates resting 

on elastic foundations is the Winkler (one-parameter) 

model [6] where the interaction between the plate and the 

foundation is accounted for using independent linear 

elastic springs. In this model, shear interaction between 

the springs does not exist which leads to deflection 

discontinuity on the plate surface. This deficiency is 

avoided in Pasternak (two-parameter) model [7] where the 

shear interaction between the springs is defined via a 

second parameter. Static analyses of isotropic rectangular 

plates resting on Pasternak foundation are performed in 

many studies as in [8-9]. A semi-analytical solution   

for the static analysis of thin skew plates on Winkler and  

Pasternak foundations is presented by [10]. In a recent 

study, a computing method for bending analysis of thin 

plates resting on Pasternak foundation is developed, [11]. 

Vibration analyses of isotropic rectangular plates resting 

on Pasternak foundation are also performed in many 

studies, [12-14].  
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In this study, a MATLAB code is written for the 

convergence studies on static analysis of thin plates resting 

on Pasternak foundations using [15]. The plates are 

discretized using two different finite elements which are 

based on Kirchhoff and R-M plate theories. The Kirchhoff 

plate finite element is a popular four-noded twelve degree 

of freedom (DOF) rectangular plate element developed by 

[16] and [17,18] (also known as MZC plate element) and 

the R-M plate finite element is a bilinear four-noded 

twelve DOF quadrilateral plate element developed by 

[19,20].  

Elastic bedding and shear parameter matrices of a soil 

finite element which are derived by [9] are added to the 

corresponding terms of the plate stiffness matrices to 

account for the Pasternak foundation. Midpoint 

deflections and convergence rates of thin plates 

discretized using Kirchhoff plate elements and R-M plate 

elements with full integration and selective integration, are 

obtained for different plate thicknesses, foundation 

parameters and boundary conditions.  

Kirchhoff Plate Element  

The thin plate bending finite element, the formulation of 

which is based on Kirchhoff plate theory is a four-noded 

rectangular finite element having three DOFs (one 

deflection and two rotations) at each node, Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plate finite element 

 

The displacement vector of the finite element is 

𝑢 = {𝑤 𝜃𝑥 𝜃𝑦}𝑇                          (1) 
where the rotations are expressed in terms of deflections 

as 

        𝜃𝑥 =
𝜕𝑤

𝜕𝑦
      ,           𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
                (2) 

The stress-strain relation of classical elasticity is 

[𝜎𝑏] = [𝐶𝑏][𝜀]                                 (3) 
where the strain vector is  

[𝜀] =

{
  
 

  
 −

𝜕2𝑤

𝜕𝑥2
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𝜕𝑦2
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𝜕2𝑤

𝜕𝑥𝜕𝑦}
  
 

  
 

                                       (4) 

and the material matrix for the isotropic material is defined 

as  

[𝐶𝑏] =
𝐸ℎ3

12(1 − 𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

]                    (5) 

where E is the modulus of elasticity, h is the thickness of 

the plate and 𝜈 is the Poisson’s ratio. The displacement 

function of the twelve DOF finite element consists of 

incomplete 3rd order polynomials only satisfying the 

deflection compatibility.  

The continuum displacements u are obtained by solving the 

fourth-order partial differential equation (p.d.e.) 

𝐿𝑇𝐶𝑏𝐿𝑢 + 𝑏 = 0                                              (6) 

where L is the derivative operator given as 

[𝐿] =

{
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𝜕2

𝜕𝑥2

−
𝜕2

𝜕𝑦2

−2
𝜕2

𝜕𝑥𝜕𝑦}
  
 

  
 

                          (7) 

and b are the body forces. In the finite element 

discretization, the continuum displacements u are 

expressed in terms of nodal displacements 𝑢 as 𝑢 = 𝑁𝑘𝑢 

where 𝑁𝑘  are C1 continuous shape functions used to obtain 

the unknown nodal displacements. The discretization gives 

∫𝐵𝑇𝐶𝑏𝐵𝑑𝐴 𝑢 = 𝐾𝑢 = 𝐹
𝐴

                         (8) 

where 𝐾 is the element stiffness matrix, 𝐵 = 𝐿𝑁𝑘 and 𝐹 is 

the element nodal external force vector.  

Reissner-Mindlin Plate Element 

The Reissner-Mindlin plate finite element is a four-noded 

quadrilateral element having the same DOFs, Figure 1. The 

displacement components of the element are 

𝑤       ,         𝜃𝑥 =
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦  ,         𝜃𝑦 =

𝜕𝑤

𝜕𝑥
+ 𝜑𝑥         (9) 

where additional rotations (𝜑𝑦 and 𝜑𝑥) arise due to the 

shear deformation effects. Thus, the rotations θx and θy 

depend on both deflection and additional rotations and they 

are taken as independent variables.  

For bending and shear, the stress-strain relations of 

classical elasticity are  

[𝜎𝑏] = [𝐶𝑏][𝜀𝑏]         ,     [𝜎𝑠] = [𝐶𝑠][𝜀𝑠]         (10)                                                

and the isotropic material matrix for shear is 

[𝐶𝑠] =
𝑘𝐸ℎ

2(1 + 𝜐)
[
1 0
0 1

]                                     (11) 

where k is the shear correction factor. Strains for bending 

and shear are 

𝜀𝑏 = 𝐿𝑏𝑢           ,      𝜀𝑠 = 𝐿𝑠𝑢                    (12) 

respectively where the derivative operators are defined as 

[𝐿𝑏] =

[
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   ,    [𝐿𝑠] =
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The finite element discretization gives 

∫(𝐵𝑏
𝑇𝐶𝑏𝐵𝑏 + 𝐵𝑠

𝑇𝐶𝑠𝐵𝑠)𝑑𝐴 𝑢 = 𝐾𝑢 = 𝐹
𝐴

          (14) 

where,  𝐵𝑏 = 𝐿𝑏𝑁𝑖  ,  𝐵𝑠 = 𝐿𝑠𝑁𝑖 and 𝑢 indicates the nodal 

displacement components.  

 Note that 𝐶0 continuous bilinear shape functions (𝑁𝑖) are 

used for all of the nodal unknowns in the finite element 

discretization and the two stiffness matrix components in 

Eq. (14) are for bending and shear, respectively.  

Idealization of the Pasternak Foundation 

The Pasternak foundation under the Kirchhoff and 

Reissner-Mindlin plates is represented by the inclusion of 

elastic bedding and shear parameter matrices of a soil finite 

element derived by [9] in the plate finite element stiffness 

matrices. The elastic bedding and shear parameter matrix 

terms 𝐶𝑖𝑗  and 𝐶𝑇𝑖𝑗 are obtained via 

𝐶𝑖𝑗 = 𝑘𝑤∫𝑤𝑖𝑤𝑗𝑑𝐴                                       (15)
𝐴

 

𝐶𝑇𝑖𝑗 = 𝑘𝑝∫
𝜕𝑤𝑖
𝜕𝑥

𝜕𝑤𝑗

𝜕𝑥
+
𝜕𝑤𝑖
𝜕𝑦

𝜕𝑤𝑗

𝜕𝑦
𝑑𝐴         (16)

𝐴

 

where 𝑘𝑤 and 𝑘𝑝 respectively indicate the coefficient of 

subgrade reaction and the shear modulus of the 

foundation. The elastic bedding and shear parameter 

matrices [𝐶] and [𝐶𝑇] are obtained as 

[𝐶] =
𝑘𝑤𝑎𝑏

36
[

4
2
2
1

   2
   4
   1
   2

   2
   1
   4
   2

   1
   2
   2
   4

]                   (17) 

and 

[𝐶𝑇] =
𝑘𝑝

3
[

𝛼 + 𝛽
𝛼/2 − 𝛽
𝛽/2 − 𝛼

−(𝛼 + 𝛽)/2

   𝛼/2 − 𝛽
   𝛼 + 𝛽

   −(𝛼 + 𝛽)/2
   𝛽/2 − 𝛼

   𝛽/2 − 𝛼
   −(𝛼 + 𝛽)/2
   𝛼 + 𝛽
   𝛼/2 − 𝛽

   −(𝛼 + 𝛽)/2
   𝛽/2 − 𝛼
   𝛼/2 − 𝛽
   𝛼 + 𝛽

] 

(18) 

Here, 𝛼 = 𝑎/𝑏 and 𝛽 = 𝑏/𝑎 where a and b are the plate 

dimensions. 

These matrix terms are added to the stiffness matrix terms 

of the Kirchhoff and R-M plate elements which correspond 

to deflections. In [21], this procedure is carried out for the 

Kirchhoff plate element only.  

Thus, the resulting system of equations is  

𝐾𝑢 + 𝐶𝑢 + 𝐶𝑇𝑢 = 𝐹                       (19) 

Numerical Examples 

Verification Example 

In order to verify the present model, a simply supported 

square plate resting on a Pasternak foundation subjected to 

a uniformly distributed load of q=E/105 kN/m2 is solved 

for different foundation parameters using Kirchhoff and 

R-M plate finite elements and dimensionless midpoint 

deflections are compared with those in [22] as given in 

Table 1. A schematic representation of the plate-

foundation system is given in Figure 2 noting that the 

system is created with plate finite elements only, since the 

properties of the foundation are embedded in the plate 

stiffness matrix. 

  

 

 

 

  

Figure 2. Simply supported square plate-foundation 

system  

Thickness to length ratio (h/L) of the plate is 1/100 and 

υ=0.3. kw' and kp' are dimensionless soil parameters which 

are defined as kw' = kw L4 / D and kp' = kp L2 / D where     

𝐷 =
𝐸ℎ3

12(1−𝜐2)
.  It is seen that the deflections obtained using 

Kirchhoff plate finite elements and R-M plate finite 

elements with selective integration (2x2 and 1x1 gauss 

points for bending and shear stiffness matrices, 

respectively) are very close to the reference values. It is 

also observed that the dimensionless deflection values 

decrease as the shear modulus of the foundation increases. 

Table 1. Dimensionless midpoint deflections of the 

simply supported square plate on Pasternak foundation  

kw' kp' 

Dimensionless midpoint  

deflection (w'= 103 D w / qL4) 

Kirchhoff 

PT 

R-M PT 

(sel.int.) 
[22] 

1 1 3.8517 3.8855 3.8530 

1 34 0.7637 0.7647 0.7630 

1 54 0.1154 0.1154 0.1150 

Simply supported square plate on Pasternak 

foundation 

A simply supported square plate resting on an isotropic 

Pasternak foundation is solved for different plate 

thicknesses and foundation parameters. The plate is 

subjected to a uniformly distributed load q=1 kN/m2. The 

plate length is L=1 m, the modulus of elasticity is E=1x108 

kN/m2 and the Poisson’s ratio is υ =0.3.  

The finite element implementation of the plate-foundation 

system is carried out both using Kirchhoff and R-M plate 

finite elements for two different thickness to length ratios 

(1/50 and 1/100) as well as for successively refined 

meshes ((4x4), (8x8), (16x16), (32x32), (64x64)). 

Comparisons are made for the dimensionless midpoint 

deflections and for the convergence rates which are 

obtained via L2 norm displacement error analysis.  

The relative displacement errors are obtained using 

‖𝑒‖2 =
‖𝑢𝑒 − 𝑢𝑐‖

‖𝑢𝑒‖
= √

∫ (𝑢𝑒 − 𝑢𝑐)
2𝑑𝐴

𝐴

∫ (𝑢𝑒)
2𝑑𝐴

𝐴

      (20) 

L

L

q
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which is in L2 norm. Here, 𝑢𝑐 indicate the calculated 

values of the displacements, 𝑢𝑒 are the exact 

displacements obtained using an overkill mesh (64x64) 

and 𝐴 is the plate domain. 

In the finite element implementation using Kirchhoff plate 

elements, (2x2) gauss integration points suffice according 

to the gauss quadrature rule since the displacement 

function of the element is an incomplete third order 

polynomial. In the implementation using R-M plate 

elements, two different gauss quadrature rules are utilized, 

full integration with (2x2) gauss points both for bending 

and shear stiffness matrices and selective integration with 

(2x2) gauss points for the bending stiffness matrix and a 

single gauss point for the shear stiffness matrix. 

In Figure 3, dimensionless central deflections of the 

simply supported plate on Pasternak foundation are 

plotted against the total DOFs for h/L=1/50 and increasing 

foundation shear parameters. It is seen that the midpoint 

deflections are underestimated due to the shear locking 

problem when full integration is used in the 

implementation of R-M PT. It is also observed that the 

shear locking effect decreases with increasing shear 

parameter of the foundation. Besides, for dimensionless 

foundation parameters kw'=1 and kp'=1, very close 

deflection values are obtained for the Kirchhoff plate 

solution and R-M plate solution with selective integration 

even by using (8x8) meshes, Figure 3a. These values attain 

closer values for kw'=1 and kp'=34 and the same values for 

kw'=1 and kp'=54 as seen in Figures 3b and 3c, respectively. 

 
a) kw'=1   kp'=1 

 
b) kw'=1   kp'=34 

 
c) kw'=1   kp'=54 

Figure 3. Dimensionless central deflections (w') of the 

simply supported square plates on Pasternak foundations 

for mesh refinement (h/L=1/50) 

 

Then, the thickness to length ratio of the plate is decreased 

to 1/100. For this case, the shear locking effect is much 

more pronounced for kw'=1 and kp'=1, Figure 4a. 

Dimensionless deflections are the same for Kirchhoff 

plate solution and R-M plate solution with selective 

integration for all foundation parameters as seen in Figure 

4. For kw'=1 and kp'=54 foundation parameters, the same 

deflection values are achieved using the finest mesh when 

R-M solution with full integration is used, Figure 4c.  

 

 
a) kw'=1   kp'=1 

 
b) kw'=1   kp'=34 
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c) kw'=1   kp'=54 

Figure 4. Dimensionless central deflections (w') of the 

simply supported square plates on Pasternak foundations 

for mesh refinement (h/L=1/100) 

 

Computation time is also obtained both for the Kirchhoff 

PT and R-M PT solutions for successively refined meshes 

and given comparatively in Table 2. 

  

Table 2. Comparison of computation time between 

Kirchhoff  and R-M (sel. int.)  solutions for successively 

refined meshes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed that the computation time for both of the 

solutions are close to each other and the solutions abruptly 

become computationally expensive in terms of time when 

using the finest mesh (64x64). Note that the computation 

time does not significantly change when selective and full 

integrations are used in the implementation of R-M PT 

except for the finest mesh. Running time is even longer 

(51.015 seconds) when full integration is used. 

The relative displacement errors of the simply supported 

square plate on the Pasternak foundation are obtained for 

the two thickness to length ratios and for different 

foundation parameters in L2 norm and given 

comparatively in logarithmic scale as shown in Figures 5-

6.  

For both of the h/L ratios and all foundation parameters, it 

is observed that the errors are the least when Kirchhoff 

plate elements are used and the largest when R-M plate 

elements with full integration are used in the 

implementation.  

For h/L=1/50, the relative errors decrease with increasing 

shear parameter for R-M solution with full integration. 

The error values do not change for the R-M solution with 

selective integration and decrease for the Kirchhoff  

solution when the shear parameter of the foundation is 

kp'=34 as seen in Figure 5. 

Then, the relative errors for the plate-foundation system 

are obtained for h/L=1/100 and given in Figure 6. The 

relative errors decrease when using the R-M plate 

elements with full integration and do not change for the 

rest of the solutions except for the Kirchhoff solution for 

kp'=34 where there is a slight decrement in the relative 

error values.  

  

 

kw'=1   kp'=1 

 

kw'=1   kp'=34 

 

kw'=1   kp'=54 

Figure 5. Relative errors of the simply supported square 

plates on Pasternak foundations for mesh refinement 

(h/L=1/50) 
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kw'=1   kp'=1 

 

 

kw'=1   kp'=34 

 

 

kw'=1   kp'=54 

Figure 6. Relative errors of the simply supported square 

plates on Pasternak foundations for mesh refinement 

(h/L=1/100) 

 

The slopes of relative error-total DOF lines which give the 

convergence rates of the numerical solutions to the exact 

solutions are also obtained, Table 3.  

For both of the thickness to length ratios, the R-M 

solutions with full integration have considerably smaller 

convergence rates which is due to the shear locking effect. 

The convergences rates decrease as h/L ratio decreases 

from 1/50 to 1/100 and increase as the shear parameter of 

the foundation increases. The convergence rates for the 

Kirchhoff solutions are the largest and they almost remain 

the same for decreasing h/L ratio and increasing shear 

parameter. 

 

 

Table 3. Convergence rates for the simply supported 

plate-foundation system 

h/L kw' kp' Kirchhoff 
R-M  

(full int.) 

R-M  

(sel. int.) 

1/50 

1 1 2.2 0.7 1.8 

1 34 2.3 0.9 1.8 

1 54 2.1 1.3 1.8 

1/100 

1 1 2.2 0.4 1.8 

1 34 2.1 0.8 1.8 

1 54 2.2 1.3 1.8 

Clamped square plate on Pasternak foundation 

The boundary conditions of the same plate-foundation 

system are converted from simply supported to clamped 

and the system is solved for the same thickness to length 

ratios and foundation parameters, Figure 7.  

Figure 7. Clamped square plate-foundation system 

 

It is observed from the dimensionless midpoint deflections 

that the shear locking problem is more effective than the 

simply supported case for h/L=1/50 and this effect is more 

evident as the thickness to length ratio decreases from 1/50 

to 1/100 as seen in Figures 8-9. The dimensionless 

deflections are the same for the Kirchhoff solution and the 

R-M solution with selective integration. For the 

dimensionless foundation parameters kw'=1 and kp'=1, the 

curves obtained for mesh refinement are steeper for 

h/L=1/100 and there is no tendency to converge to specific 

values even for the finest mesh, Figure 9a. Closer values 

are obtained using the R-M elements with full integration 

as the dimensionless foundation shear parameter 

increases, Figures 9b-9c.  
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b) kw'=1   kp'=34 

 
c) kw'=1   kp'=54 

Figure 8. Dimensionless central deflections (w') of the 

clamped square plates on Pasternak foundations for mesh 

refinement (h/L=1/50) 

 
a) kw'=1   kp'=1 

   
b) kw'=1   kp'=34 

 
c) kw'=1   kp'=54 

Figure 9. Dimensionless central deflections (w') of the 

clamped square plates on Pasternak foundations for mesh 

refinement (h/L=1/100) 

The relative errors for the clamped plate-foundation 

system are given in Figures 10-11. Compared to the 

simply supported case, the errors obtained using the R-M 

elements with selective integration are closer to those 

obtained using the Kirchhoff plate elements. For 

h/L=1/50, the relative errors decrease for kp' =54 when R-

M elements with full integration is used and increase 

slightly for the R-M solution with selective integration and 

the Kirchhoff solution as the shear parameter increases, 

Figure 10.  
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c) kw'=1   kp'=54 

Figure 10. Relative errors of the clamped square plates on 

Pasternak foundations for mesh refinement (h/L=1/50) 

 

For h/L=1/100, as the shear parameter increases, the 

relative errors decrease when using the R-M elements with 

full integration and increase when the R-M elements with 

selective integration and the Kirchhoff elements are used. 

 
a) kw'=1   kp'=1 

 
b) kw'=1   kp'=34 

 
c) kw'=1   kp'=54 

Figure 11. Relative errors of the clamped square plates on 

Pasternak foundations for mesh refinement (h/L=1/100) 

 

The convergence rates of the numerical solutions to the 

exact solutions are given in Table 4 comparatively.  

It is observed that the convergence rates for the Kirchhoff 

solution almost remain the same for decreasing h/L ratio 

and increasing shear parameter except for h/L=1/100 and 

kp'=54. When the R-M plate elements with full integration 

are used, the convergence rates are the smallest. The rates 

increase for increasing shear parameter and decrease as 

h/L ratio decreases. Using the R-M elements with selective 

integration, the convergence rates remain the same except 

for h/L=1/100 and kp'=54. 

Table 4. Convergence rates for the clamped plate-

foundation system 

h/L kw' kp' Kirchhoff 
R-M  

(full int.) 

R-M  

(sel. int.) 

1/50 

1 1 2.3 0.6 2.2 

1 34 2.2 0.7 2.2 

1 54 2.1 0.9 2.2 

1/100 

1 1 2.3 0.3 2.2 

1 34 2.1 0.5 2.2 

1 54 1.7 0.8 1.9 

Conclusions 

In this paper, the finite element analyses of thin plates 

resting on Pasternak foundations are performed for two 

thickness to length ratios, two different boundary 

conditions and three different foundation parameters. The 

presented Kirchhoff and R-M plate elements are used in 

the implementation with full and selective integrations and 

the dimensionless midpoint deflections and the 

convergence rates due to a uniform loading are obtained 

and compared with each other. 

It is demonstrated that the thin plate-foundation system 

can easily be modelled by adding the parameter matrices 

of an existing soil finite element to the respective stiffness 

matrix terms of both Kirchhoff and R-M plate finite 

elements. 

It is observed that the shear locking effect arises when full 

integration is used in the implementation of R-M PT and 

this effect is more evident as the thickness to length ratio 

of the plate decreases. By using full integration with 2x2 

Gauss points for the bending stiffness matrix and selective 

integration with a single Gauss point for the shear stiffness 

matrix of the plate element, this problem is alleviated. 

Convergence rates do not change significantly for 

increasing shear parameter of the foundation except for the 

R-M PT implementation with full integration where the 

rates increase with increasing shear parameter. Another 

exception is that the convergence rates for the largest shear 

parameter for Kirchhoff and R-M (sel.int.) solutions are 

smaller when the plate-foundation model is clamped.   

The convergence rates for R-M solutions with full 

integration are smaller than the rates for the Kirchhoff and 

R-M (sel. int.) solutions for both of the boundary 
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conditions and as the thickness of the plate decreases, the 

rates decrease considerably because of the shear locking 

effect.  

For the Kirchhoff and R-M (sel. int.) solutions, the 

convergence rates are close to each other for the simply 

supported plate-foundation system compared to the 

clamped case. 

For the simply supported case, the convergence rates do 

not change for the Kirchhoff and change slightly for          

R-M(sel. int.) solutions whereas the convergence rates do 

not change for both solutions for the clamped plate case as 

the h/L ratio decreases. 

Besides, it is observed that although the most converged 

deflection values are obtained when the finest mesh 

(64x64) is used in the analyses, it is computationally 

expensive in terms of time. Using a (32x32) mesh for the 

Kirchhoff and R-M (sel. int.) solutions would be more 

suitable since the running time is significantly short and 

very close results are obtained.  
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