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The study of combustion associated phenomena in internal combustion engines is important
for reasons that include pollutant formation control, and the heat transfer between the hot
gases, the piston and combustion chamber walls. The main objective of the present paper
is presenting a reliable and precise algorithm based on mollification and marching methods
to determine the energy absorption coefficient. The stability and convergence of numerical
solutions are investigated and the efficiency of the proposed algorithm is tested with two
numerical examples.
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1. Introduction

Heat transfer to the combustion chamber walls of internal combustion engines is
recognized as one of the most important factors having a great influence both in
engine design and operation ([1],[2],[3],[4]), which has attracted many scientists and
engineers from different field of studies. Some of the most important applications of
this phenomenon can be applied to industries in which designing and developing of
internal combustion (IC) engines are assets, as cases in point, automotive industry,
missile industries and those industries related to thermal furnaces.

Nowadays, technology changes in the field of the internal combustion engines
(mainly the diesel ones) are happening extremely fast. New demands are added
towards the areas of controlled ignition of new and alternative fuels ([5]), reduction
of tailpipe emissions ([6]) and improved engine construction that would ensure
operation under extreme combustion chamber pressures (well above 200 bar) [7].

Furthermore, In recent years, highly laboratory costs of the designing and manu-
facturing of combustion engines and furnaces ,especially when conditions are vari-
able, demand for mathematical models in analyzing issues and accurate simulation
of mathematical models in the field of combustion.

Based on the physical conditions of the phenomena, generating a suitable math-
ematical model is also a difficult task to do. For instance, combustion gases such
as CH4 need to check 53 components and 325 chemical interaction [8].

Many studies in the field of numerical simulation of the combustion chamber
have been done. For instance, in 2005, Merkle et al. ([9]) studied cold flow into and
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around the combustion chamber’s channel. In 2002, Su in an article, titled Numer-
ical Modeling of Gas Turbine Combustor Integrated With Diffuser, investigated
the gases inside combustion chamber numerically [10]. In another article in 2002,
Zhang et al. focused on numerical investigation of thermodynamic conditions in
the combustion chamber [11].

The accurate solution of combustion processes in terms of mathematical models
requires a fully understanding of all the basic phenomena involved and their de-
tailed description, in general, in terms of ordinary or partial differential equations.
Such models are formulated in terms of physical properties or constants that, in
general, contain some level of uncertainties.

Mathematical models proposed in the field of partial differential equations are
often the most important of which can be mass conservation equations and the
momentum and energy conservation equations pointed out [12–14]. One of the
most highly regarded models that energy equation is applied in order to simplify
assumptions can be expressed as follows [12–14],

ρ(x, t)ut(x, t)− uxx(x, t) = f(x, t), (x, t) ∈ Z ≡ Ω× [0, T ], (1)

u(x, 0) = γ(x), x ∈ Ω, (2)

u(x, t) = s(t), x ∈ ∂Ω, t ∈ [0, T ], (3)

u(x, T ) = r(x), x ∈ ∂Ω. (4)

The conditions (2), (3) and (3) are respectively called the initial condition, the
boundary condition and the overdetermination condition. Furthermore, γ repre-
sents the gravitational force, and f represents the energy semester. This term can
be written as follows

f(x, t) = η(x)g(x, t) + h(x, t). (5)

In equation (5), η(x)g(x, t) is the energy absorbed by the fluid in the combustion
chamber and h(x, t) describes that the energy generated from chemical reactions.
This study aimed to estimate the unknown function η(x) as energy absorption
coefficient is fluid and it is assumed that the function g(x, t) in the following con-
ditions applies. Under these assumptions, the problem (1) - (4) can be considered
as a parabolic inverse problem of estimating the heat source.

In this article, we consider the problem in the case that its domain is limited to
Z ≡ {(x, t)|(x, t) ∈ [0, 1]× [0, T ]}. Therefore, relations (2) and (3) to be rewritten
as follows.

u(x, 0) = γ(x), x ∈ [0, 1], (6)

u(0, t) = ψ(t), t ∈ [0, T ]. (7)

Temperature and heat flux at x = 0 and also the initial value of the f as addi-
tional conditions for determining the solutions to be considered are as follows.

ux(0, t) = ϕ(t), t ∈ [0, T ], (8)

f(0, t) = f0(t), t ∈ [0, T ], (9)
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In sequence we will introduce a numerical marching scheme based on the mol-
lification method (see [17]) to find the solution of the problem (1)-(9) under the
assumption that γ, ϕ, ψ and f0 are only known approximately as γε(x), ϕε(t),
ψε(t) and f ε0 (t) such that

‖γ(x)− γε(x)‖∞ ≤ ε, (10)

‖ϕ(t)− ϕε(t)‖∞ ≤ ε, (11)

‖ψ(t)− ψε(t)‖∞ ≤ ε, (12)

‖f0(t)− f ε0 (t)‖∞ ≤ ε. (13)

Because of the presence of the noise in the problem’s data, we first stabilize the
problem using the mollification method.

2. Regularized problem and the marching scheme

The regularized form of the problem (1)-(9) may be written as follows

ρ(x, t)vt(x, t)− vxx(x, t) = f(x, t), (x, t) ∈ [0, 1]× [0, T ], (14)

v(x, 0) = Jδ1γ(x), x ∈ [0, 1], (15)

v(0, t) = Jδ2ψ(t), t ∈ [0, T ], (16)

vx(0, t) = Jδ3ϕ(t), t ∈ [0, T ], (17)

f(0, t) = Jδ4f0(t), x ∈ [0, 1], (18)

Determining v(x, t), f(x, t) ∈ [0, 1] and r(x) ∈ [0, 1] from the problem (14)-(18)
is our initial object and η(x) will be obtained from f(x, t) = η(x)g(x, t) + h(x, t)
automatically. Notice that the radii of mollification, δ1, δ2, δ3 and δ4, are chosen
automatically using general cross validation (GCV) methods [15]. Here without
loss of generality, we set T = 1.

Establishing a numerical algorithm, assume M and N are positive integers and
then the finite differences parameters discretization of I = [0, 1] and J = [0, 1]
will be h = ∆x = 1/M and k = ∆t = 1/N . Let Ui,n, Qi,n, Wi,n, Qi,n and Fi,n
denote the discrete computed approximations of v(ih, nk), vx(ih, nk), vt(ih, nk)
and f(ih, nk) respectively, and then the space marching algorithm may be written
as follows

The algorithm of space marching scheme may be written as follows

(1) Select δ0, δ′0, δ′′i and δ∗0 .
(2) Perform mollification of ψε,ϕε, γε and f ε0 in the interval [0, 1].

U0,n = Jδ0ψ
ε(nk) (n 6= 0), Ui,0 = Jδ′γ

ε(ih), i ∈ {0, 1, . . . ,M}
Q0,n = K(0)Jδ∗0ϕ

ε(nk), F0,n = Jδ′′0 f
ε
0 (nk).

(3) Perform mollified differentiation in time (see the first chapter of [17]) of
Jδ0ψ

ε(nk). Set
W0,n = Dt(Jδ0ψ

ε(nk)) (n 6= 0), W0,0 = Dt(Jδ′0γ
ε(0)),

where D denotes the centered difference operator, i.e., Dη(x) =
η(x+∆x)−η(x−∆x)

2∆x .
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(4) Initialize i = 0. Do while i ≤M − 1,

Ui+1,n = Ui,n + hQi,n, n 6= 0, (19)

Qi+1,n = Qi,n + h [ρ(ih, nk)Wi,n − Fi,n] , (20)

Wi+1,n = Wi,n + hDt(Jδ∗iQi,n), (21)

Fi+1,n = ρ((i+ 1)h, nk)Wi+1,n −Dx(Jδ′′i Qi,n). (22)

3. Stability and Convergence Analysis

In this section, we analyze the stability and convergence of the proposed marching
scheme in (19)-(22).

Without loss of generality, from now on, we assume |δ|−∞ = mini(δi, δ
′
i, δ
′′
i , δ
∗
i )

and denote |Yi| = maxn |Y n
i |. To discuss the stability and convergence, two smooth-

ing assumptions are also considered as follows,

u(x, t) ∈ C2(I × I), (23)

f(x, t) ∈ C(I × I). (24)

Theorem 3.1 (Stability of the Algorithm) If Assumptions (23)-(24) holds ,there
exists a constant Λ, such that

max{|UM |, |QM |, |WM |, |FM |} ≤ Λ max{|U0|, |Q0|, |W0|, |F0|} (25)

Proof. For the operator Dt, one can conclude that there exist a constant such as
C where (theorem 3 in [16])

|Dt(Qi,n)| ≤ C

|δ|−∞
|Qi,n|, (26)

|Dx(Qi,n)| ≤ C

|δ|−∞
|Qi,n|. (27)

From (19) and (20), we also have

|Ui+1,n| ≤ (1 + h) max{|Ui,n|, |Qi,n|}, (28)

|Qi+1,n| ≤ |Qi,n|+ h(M |Wi,n|+ |Fi,n|)

≤ (1 +Mh) max{|Qi,n|, |Wi,n|, |Fi,n|}, (29)

where M = max(x,t)∈[0,1]×[0,1]{ρ(x, t)|}. Similarly , using (21) and (26), we have

|Wi+1,n| ≤ |Wi,n|+ h
C

|δ|−∞
|Qi,n| ≤

(
1 + h

C

|δ|−∞

)
max{|Qi,n|, |Wi,n|}. (30)

Finally, we have from (22) and (27)

|Fi,n| ≤M |Wi,n|+ ≤
C

|δ|−∞
|Qi,n| ≤

(
M +

C

|δ|−∞

)
max{|Wi,n|, |Qi,n|}. (31)
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Let Cδ = max
{

1 + h, 1 +Mh, 1 + h C
|δ|−∞ ,M + C

|δ|−∞

}
, then from (28)-(31) we

obtain

max{|Ui+1|, |Qi+1|, |Wi+1|} ≤ (1 + hCδ) max{|Ui|, |Qi|, |Wi|}. (32)

Now by applying (31), we have

max{|Ui+1|, |Qi+1|, |Wi+1|, |Fi+1|} ≤ (1 + hCδ) max{|Ui|, |Qi|, |Wi|}

≤ (1 + hCδ) max{|Ui|, |Qi|, |Wi|, |Fi|}. (33)

by iterating this last inequality M times

max{|UM |, |QM |, |WM |, |FM |} ≤ (1 + hCδ)
M max{|U0|, |Q0|, |W0|, |F0|}, (34)

which means

max{|UM |, |QM |, |WM |, |FM |} ≤ (exp Cδ) max{|U0|, |Q0|, |W0|, |F0|}. (35)

Letting Λ = exp Cδ completed the proof of this statement. �

Theorem 3.2 (The convergence of the algorithm) For fixed δ as h, k and ε
tend to zero, the discrete mollified solution converges to the mollified exact solution
restricted to the grid points.

Proof. From the definitions of discrete error functions,

∆Ui,n = Ui,n − v(ih, nk), ∆Qi,n = Qi,n − vx(ih, nk), (36)

∆Wi,n = Wi,n − vt(ih, nk), ∆Fi,n = Fi,n − f(ih, nk). (37)

Using Taylor series, we obtain some useful equations satisfied by the mollified
solution v, namely,

v((i+ 1)h, nk) = v(ih, nk) + hvx(ih, nk) +O(h2), (38)

vx((i+ 1)h, nk) = vx(ih, nk) + h(ρ(ih, nk))vt(ih, nk) + f(ih, nk)) +O(h2), (39)

vt((i+ 1)h, nk) = vt(ih, nk) + h
d

dt
vx(ih, nk) +O(h2). (40)

Furthermore

∆Ui+1,n = ∆Ui,n + (Ui+1,n − Ui,n)− (v((i+ 1)h, nk)− v(ih, nk))

= ∆Ui,n + h(Qi,n − vx(ih, nk)) +O(h2)

= ∆Ui,n + h∆Qi,n +O(h2). (41)
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∆Qi+1,n = ∆Qi,n + (Qi+1,n −Qi,n)− (vx((i+ 1)h, nk)− vx(ih, nk))

= ∆Qi,n + h(ρ(ih, nk)Wi,n − Fi,n)

− h(ρ(ih, nk)vt(ih, nk)− f(ih, nk)) +O(h2)

= ∆Qi,n + h(ρ(ih, nk)∆Wi,n −∆Fi,n) +O(h2). (42)

∆Wi+1,n = ∆Wi,n + (Wi+1,n −Wi,n)− (vt((i+ 1)h, nk)− vt(ih, nk))

= ∆Wi,n + hDt(Jδ∗iQi,n)− hvxt(ih, nk) +O(h2)

= ∆Wi,n + h(Dt(Jδ∗iQi,n)− vxt(ih, nk)) +O(h2). (43)

Since

∆Fi,n = ρ(ih, nk)∆Wi,n + (Dx(Jδ′′i Qi,n)− vxx(ih, nk)). (44)

we have

∆Qi+1,n = ∆Qi,n + h(Dx(Jδ′′i Qi,n)− vxx(ih, nk)) +O(h2). (45)

Now from equalities (41), (43) and (45), and using the error estimates of discrete
mollification (Proposition 1 in [16]), we have

|Ui+1,n| ≤ |∆Ui,n|+ h|∆Qi,n|+O(h2), (46)

|∆Qi+1,n| ≤ |∆Qi,n|+ h|Dx(Jδ′′i Qi,n)− vxx(ih, nk)|+O(h2)

≤ |∆Qi,n|+ h

(
C
|∆Qi,n|+ h

|δ|−∞
+ Cδ∗h

2

)
+O(h2), (47)

|∆Wi+1,n| ≤ |∆Wi,n|+ h|Dt(Jδ∗iQi,n)− vx(ih, nk)|+O(h2)

≤ |∆Wi,n|+ h

(
C
|∆Qi,n|+ k

|δ|−∞
+ Cδ∗k

2

)
+O(h2). (48)

Suppose

∆i = max {|∆Ui,n|, |∆Wi,n|, |∆Qi,n|} , (49)

C0 = max

{
1,

C

|δ|−∞

}
, (50)

C1 =

{
Ch

|δ|−∞
+ Cδ∗h

2,
Ck

|δ|−∞
+ Cδ∗k

2

}
. (51)

Then we obtain

∆i+1 ≤ (1 + hC0)∆i + hC1 +O(h2)

≤ (1 + hC0)(∆i + C1) +O(h2), (52)

and after L iterations

∆L ≤ exp(C0)(∆0 + C1). (53)
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Moreover from

|∆U0,n| = |U0,n − v(0, nk)| = |Jδ0ψε(nk)− v(0, nk)| ≤ C(ε+ k),

|∆Q0,n| = |Q0,n − q(0, nk)| = |K(0)Jδ∗0ϕ
ε(nk)−K(0)vx(0, nk)|

= |K(0)||Jδ∗0ϕ
ε(nk)− vx(0, nk)| ≤MC(ε+ k),

|∆W0,n| = |Dt(Jδ0ψ
ε(nk))− vt(0, nk)| ≤ C

δ0
(ε+ k) + Cδk

2,

we see that when ε, h, and k tend to 0, then ∆0 and C1 tend to 0 too. Consequently
(∆0+C1) tends to 0 and so does ∆L and this complete the proof of this theorem. �

4. Numerical experiments

In this section to show the efficiency of the proposed mollified marching scheme
we discuss the implementation of our numerical method to solve two standard test
problems. For the experiments we use MATLAB 10 under Windows 7 Professional
X64. The radii of mollification are always chosen automatically using the mollifi-
cation and GCV methods and in all cases, without loss of generality, we set p = 3
(see [15, 17]).

Discretized measured approximations of boundary data are modeled by adding
random errors to the exact data functions. For example, for the boundary data
function h(x, t), its discrete noisy version is generated by

hεj,n = h(xj , tn) + εj,n, j = 0, 1, . . . , N, n = 0, 1, . . . , T,

where the(εj,n)’s are Gaussian random variables with variance ε2.
The errors between the exact and approximate solutions are measured by the

absolute error norm and the relative weighted l2 error norm given by

Norm(v, U) =

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0|v(ih, jl)− Ui,j |2

]1/2

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0|v(ih, jl)|2

]1/2
. (54)

Solving the solution, first v(x, t), f(x, t) are determined from (14)-(18) by the
proposed marching method and then η will be determined by introducing An as
follows.

An =
f(ih, jk)− h(ih, nk)

g(ih, nk)
, (55)

Computed η = min
0≤n≤N

{An| Norm(An, Exact η)}. (56)

Example 4.1 As the first test case, in equations (14)-(18) consider

ρ(x, t) = 1, g(x, t) = et + 2, h(x, t) =
3 et − 3 et+4x + 6

e2x
,

γ(x) = e2x, ψ(t) = et, ϕ(t) = 2 et.
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The exact analytical solution of this problem can be derived as

u(x, t) = 2 et+2x, η(x) = − 3

e2x
.

Table 1 illustrates the relative l2 errors between the exact and computed v and its
derivatives in three different noise levels for M = N = 64, 128, 256, 512 and 1024.

Table 1. Relative l2 errors for example 4.1.

M = N ε v vt vx η
64 0.0001 0.051216 0.36168 0.071073 0.011139
128 0.0001 0.041337 0.24309 0.058075 0.0042032
256 0.0001 0.02281 0.21912 0.03579 0.0031048
512 0.0001 0.030549 0.32622 0.053768 0.0032755
64 0.001 0.089501 0.5167 0.14101 0.023539
128 0.001 0.036934 0.4415 0.068689 0.0025718
256 0.001 0.029729 0.46772 0.054083 0.0047194
512 0.001 0.036888 0.34968 0.058523 0.013414
64 0.01 0.049604 0.43999 0.078214 0.01066
128 0.01 0.044548 0.37992 0.073823 0.0034055
256 0.01 0.07664 0.22504 0.11738 0.0023971
512 0.01 0.011422 0.13999 0.019967 0.0026357

Figure 1 illustrates the difference between computed and exact η for M = N =
512 in three noise levels.

0 0.25 0.5 0.75 1
−3

−2.5

−2

−1.5

−1

−0.5

t

γ
(t
)

 

 

Exact η

Computed η, ε = 0.0001

Figure 1. v’s relative l2 error norm for example 4.1.

Example 4.2 As the first test case, in equations (6)-(9) consider

ρ(x, t) = 1, g(x, t) = et + 2,

h(x, t) = − sinh
(
x2 + t+ 2

)
− cosh

(
x2 + 2

) (
et + 2

)
− 4x2 cosh

(
x2 + t+ 2

)
,

γ(x) = cosh
(
x2 + 2

)
, ψ(t) = cosh(t+ 2) , ϕ(t) = 0.
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The exact analytical solution of this problem can be derived as

u(x, t) = cosh
(
x2 + t+ 2

)
, η(x) = cosh

(
x2 + 2

)
.

Table 2 illustrates the relative l2 errors between the exact and computed v and its
derivatives in three different noise levels for M = N = 64, 128, 256, 512 and 1024.

Table 2. Relative l2 errors for example 4.1.

M = N ε v vt vx η
64 0.0001 0.060974 0.38009 0.1273 0.00090249
128 0.0001 0.033043 0.24963 0.062149 0.0015438
256 0.0001 0.022398 0.28196 0.054315 0.0022206
512 0.0001 0.010824 0.15238 0.026022 0.0023519
64 0.001 0.05784 0.41032 0.12308 0.0086328
128 0.001 0.014555 0.32909 0.04598 0.0020172
256 0.001 0.026731 0.1875 0.051094 0.0019439
512 0.001 0.0068612 0.057759 0.012821 0.0023135
64 0.01 0.078307 0.55107 0.17581 0.0059154
128 0.01 0.050481 0.50063 0.11071 0.0022568
256 0.01 0.026778 0.478 0.068469 0.00024748
512 0.01 0.022906 0.49678 0.056454 0.0023661

Figure 2 illustrates the difference between computed and exact η for M = N =
512 in three noise levels.
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Figure 2. v’s relative l2 error norm for example 4.2.

5. Conclusion

The physical problem considered in this paper consists of predicting the energy
absorption coefficient of an internal combustion engine considering some noises in
the initial, boundary and overdetermination conditions. A regularization approach
based on the mollification method and the space marching scheme is developed
to solve the proposed inverse problem numerically and the missing terms. The
stability and convergence of the solution of the proposed numerical approach are
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proved and some examples are investigated to support the main results of this
work.
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