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ABSTRACT

We introduce a new type of curvature function and associated evolute curve for a given curve in the
hyperboloid model of plane hyperbolic geometry. A special attention is devoted to the examples,
particularly to a horocycle provided by the null Lorentzian rotation.
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1. Introduction

The strong relationship between the hyperbolic geometry and one of the major field of Physics, namely the
relativity, is excellent illustrated in several papers of Prof. Dr. Krishan Lal Duggal, e.g. [8]-[10]. Recall also that
the trajectory of a material point (or particle) in a given setting is a (smooth) curve in that setting and the
main tool in studying such a curve is its curvature(s). Hence, motivated by this argument, we introduce a new
curvature function for curves belonging to 2D hyperbolic geometry.

Let M2(c) be the two-dimensional space form with the constant curvature c ∈ {−1, 0, 1}:
i) M2(0) is the Euclidean plane E2 := (R2, ⟨·, ·⟩), for ⟨x̄ = (x1, x2), ȳ = (y1, y2)⟩ := x1y1 + x2y2,
ii) M2(1) is the unit sphere S2 of (R3, ⟨·, ·⟩) where in the inner product expression above we add the term x3y3,
iii) M2(−1) is the upper hyperboloid H2 of unit time-like vectors of R2,1. Specifically, R2,1 := (R3, ⟨·, ·⟩L) with
the Lorentzian product: ⟨x̄ = (x1, x2, x3), ȳ = (y1, y2, y3)⟩L := x1y1 + x2y2 − x3y3 and H2 := {x̄ ∈ R2,1 : ⟨x̄, x̄⟩L =
−1, x3 > 0}. An advantage of this model of hyperbolic geometry is that its isometries are restrictions of linear
maps of R2+1 which preserves ⟨·, ·⟩L and H2.

Fix now γ : t ∈ I ⊆ R → M2(c) ⊂ R3 be a smooth regular curve with I an open real interval. Being a curve in
a smooth 2-dimensional manifold, γ is characterized by its geodesic curvature kg : I → R, kg ∈ C∞(I) and: i) for
c = 0 we have kg = k=the usual (Frenet) curvature; ii) for c = 1 we have k =

√
k2g + 1 ≥ 1. Let us point out that

we do not suppose that γ is parametrized by its arc-length s ∈ (0, l(γ) ≤ +∞) for l(γ) the length of γ.

This geodesic curvature appears naturally in the moving equation of a frame F = F(t) adapted to the
geometry of the pair (γ,M2(c)). In the papers [5] (c = 0) and [6] (c = 1) we rotate this frame obtaining a new
one, called the flow-frame of γ and denoted Ff . Consequently, we introduce a new curvature kfg , called the flow-
geodesic curvature of γ. The present paper concerns with this approach in the remaining framework, namely
the case c = −1 and a main interest is to study curves with a vanishing kfg . The flow-curvature of spacelike
parametrized curves in the Lorentz plane is studied in the paper [4].

The contents of this note is as follows. Firstly, we present the general theory of curves in the hyperbolic
plane choosing as model the upper sheet of the hyperboloid with two sheets. Our new curvature function and
its associated evolute curve is introduced and studied in the following section; we point out that the section
two ends with a large discussion of a particular horocycle as an example of flat-hyperbolic geodesic, a notion
introduced here. The last section deals with other non-flat examples.
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2. The geometry of hyperbolic plane curves

Recall that x̄ ∈ R2,1 is called space-like, time-like or null if ⟨x̄, x̄⟩L > 0, ⟨x̄, x̄⟩L < 0 or ⟨x̄, x̄⟩L = 0 respectively. In
addition to ⟨·, ·⟩L we will also need the Lorentz version of the cross-product:

x̄×L ȳ :=

∣∣∣∣∣∣
ī j̄ −k̄
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ , ī = (1, 0, 0), j̄ = (0, 1, 0), k̄ = (0, 0, 1) ∈ H2. (2.1)

It follows immediately: {
⟨x̄, x̄×L ȳ⟩L = 0 = ⟨ȳ, x̄×L ȳ⟩L
x̄×L (ȳ ×L z̄) = ⟨x̄, ȳ⟩Lz̄ − ⟨x̄, z̄⟩Lȳ.

(2.2)

Returning to the given curve γ : I → H2 its regularity means that γ′(t) ̸= 0̄ = (0, 0, 0) and it results the space-
like character of its velocity vector field ⟨γ′(t), γ′(t)⟩L > 0. Then we define the Lorentz norm:

∥γ′(t)∥L :=
√

⟨γ′(t), γ′(t)⟩L (2.3)

yielding two unit space-like vector fields:
1) the tangent T (t) := γ′(t)

∥γ′(t)∥L
; 2) the normal n̄(t) := γ(t)×L T (t).

It results the adapted frame (with h from the word "hyperbolic"):

Fh(t) :=

 γ
T
n̄

 (t) (2.4)

with the moving equation:

d

dt
Fh(t) = ∥γ′(t)∥L

 0 1 0
1 0 kg(t)
0 −kg(t) 0

Fh(t). (2.5)

The expression of the geodesic curvature is:

kg(t) =
⟨γ′′(t), γ(t)×L γ′(t)⟩L

∥γ′(t)∥3L
=

det(γ′′(t), γ(t), γ′(t))

∥γ′(t)∥3L
(2.6)

and choosing kg > 0 there are three types of curves with constant geodesic curvature kg = K ([11]): a)
circles, for K > 1; b) horocycles, with K = 1; c) equidistant curves (i.e. curves of finite distance from a
hyperbolic geodesic), for K ∈ (0, 1). An approach to curves of constant geodesic curvature directly in the
Bolyai-Lobachevskian plane is proposed in [12].

When the plane hyperbolic geometry is treated in the Poincaré upper half-plane model (H2 := {z = X + iY ∈
C;Y > 0}, gh = 1

Y 2 (dX
2 + dY 2)) and a point p ∈ R ∪ {∞} is chosen then the horocycles with center p are: i)

Euclidean circles in H2 passing through p if p is real; ii) horizontal Euclidean lines if p = ∞; moreover the
group PSL(2,R) = Isom+(H2) preserves the set of horocycles. The relationship between the H2-model and
H2-model of plane hyperbolic geometry is provided by the celebrated Cayley map:

Cay : H2 → H2, (x, y, z) → (X,Y ) :=
1

z − y
(x, 1). (2.7)

Example 2.1 The curve γ(s) = (sinh s, cosh s,
√
2 cosh s) ∈ H2 is an unit speed geodesic having kg = 0 and the

space-like constant normal n̄ = (0,
√
2, 1). Its Cayley image is the Euclidean semi-circle centered in the origin O

of the plane E2 (hence a geodesic in the Poincaré model) and having the radius r =
√
2 + 1. 2

At the end of this section we adopt the approach of the paper [1] concerning the theory of evolutes for plane
hyperbolic curves. Fix γ = γ(s) a non-horocycle curve parametrized by arc-length and with kg ̸= −1. Then its
h-evolute is the curve:

Eγ(s) :=
kg(s)√

|k2g(s)− 1|
γ(s) +

1√
|k2g(s)− 1|

n̄(s). (2.8)
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A motivation for this choice is the existence of the Darboux vector field Ω = Ω(t) satisfying similar relations to
the Euclidean space curves theory:

Ω×L γ = γ′, Ω×L T = T ′, Ω×L n̄ = n̄′ (2.9)

and having the expression:
Ω(t) = ∥γ′(t)∥[kg(t)γ(t) + n̄(t)]. (2.10)

It is worth to mention that for the elements of Fh it holds:

n̄×L γ = T, n̄×L T = γ. (2.11)

3. The flow-geodesic curvature and the flow-evolute of hyperbolic plane curves

We recall after [2, p. 473] that the group of isometries of R2,1 has three one-parameter sub-groups that fixes
an axis, called rotations:
i) if the axis is space-like; e.g. the x1-axis:

R1(t) :=

 1 0 0
0 cosh t sinh t
0 sinh t cosh t

 ∈ Sym(3), t ∈ R,

ii) if the axis is time-like; e.g. the x3-axis:

R3(t) :=

 cos t − sin t 0
sin t cos t 0
0 0 1

 , t ∈ [0, 2π],

iii) if the axis is null; e.g. the positive (or first) bisectrix of the (x2x3)-plane:

R(+23; t) :=

 1 t −t

−t 1− t2

2
t2

2

−t − t2

2 1 + t2

2

 , t ∈ R.

Inspired by these expressions we introduce now a second frame:

Ff
h (t) =

 γ
E1

f

E2
f

 (t) :=

 1 0 0
0 cos t − sin t
0 sin t cos t

Fh(t) (3.1)

and since the involved 3× 3 matrix belongs to the group {1} × SO(2) it follows that Ef
1 , Ef

2 are also space-like
vector fields.

Definition 3.1 The flow-geodesic curvature of γ is the smooth function kfg : I → R provided by the moving
equation of Ff :

d

dt
Ff

h (t) = ∥γ′(t)∥L

 0 1 0
1 0 kfg (t)
0 −kfg (t) 0

Ff
h (t). (3.2)

If kfg is constant zero then we call γ a flat-hyperbolic geodesic. If kfg /∈ {−1, 1} for a parametrized by arc-length
curve γ then its flow-h-evolute is:

Ef
γ (s) :=

kfg (s)√
|(kfg )2(s)− 1|

γ(s) +
1√

|(kfg )2(s)− 1|
Ef

2 (s). (3.3)

We derive directly a computational formula which coincide (modulo L) with the previous cases c ∈ {0, 1}:
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Theorem 3.2 The formula expressing kfg is:

kfg (t) = kg(t)−
1

∥γ′(t)∥L
< kg(t). (3.4)

The given curve is a flat-hyperbolic geodesic if and only if the following relation holds for any t ∈ I :

⟨γ′′(t), γ(t)×L γ′(t)⟩L = ⟨γ′(t), γ′(t)⟩L. (3.5)

In particular, along a flat-hyperbolic horocycle parametrized by arc-length i.e. ∥γ′(s)∥L = 1 for all s ∈ (0, l(γ)) we have
a conservation law:

⟨γ′′(s), γ(s)×L γ′(s)⟩L = 1. (3.6)

while the moving equation (1.5) reads:

d

ds
Fh(s) =

 0 1 0
1 0 1
0 −1 0

Fh(s), Γh :=

 0 1 0
1 0 1
0 −1 0

 , Γ3
h = O3. (3.7)

Example 3.3 The matrix Γh has the eigenvalues λ1 = λ2 = λ3 = 0 with the null vector v̄ = (1, 0,−1) as
eigenvector; this vector belongs to the asymptotic cone AC : x2 + y2 − z2 = 0 of H2. This null vector is the
negative (or second) bisectrix of the (x1x3)-plane and the corresponding rotation is:

R(−13; t) :=

 1− t2

2 t − t2

2
t 1 t
t2

2 −t 1 + t2

2

 , t ∈ R, d

dt
R(−13; t)|t=0 = Γh, (3.8)

having the characteristic polynomial −PR(−13;t)(λ) = (λ− 1)3; if t ̸= 0 then R(−13; t) is not diagonalizable. The
first column of this last matrix is a space-like curve, the second column is a null curve with v̄ as constant tangent
vector field while the third column suggests the following horocycle parametrized by arc-length as example of
flat-hyperbolic geodesic:

γ(s) =

(
−s2

2
, s, 1 +

s2

2

)
∈ H2, T (s) = (−s, 1, s), n̄(s) =

(
s2

2
− 1,−s,−s2

2

)
. (3.9)

This curve is the intersection of H2 with the (Euclidean) plane π : z = 1− x, and hence is the Euclidean
parabola y2 = −2x in this plane; its Euclidean curvature as space curve is k(s) =

√
2

(1+2s2)
3
2
∈ (0,

√
2]. Applying

the Cayley map (2.7) gives the following horocycle in H2:

Cay ◦ γ(s) = 1

1 + (s− 1)2
(−s2, 2) (3.10)

which is the Euclidean circle C with the center z0 = (−1, 1) = −1 + i ∈ H2 and radius 1. Hence C is tangent to
R to the point p = (−1, 0). The hyperbolic distance between z0 and i in (H2, gh) is:

dh(z0, z1 = i) = ln
|z0 − z1|+ |z0 − z1|
|z0 − z1| − |z0 − z1|

= ln
3 +

√
5

2
= 2 lnΦ ≃ 0.96 < 1 = dEuclidean(z0, i) (3.11)

with Φ = 1+
√
5

2 the well-known golden ratio ([7]).

The flow-h-evolute of a horocycle γ parametrized by arclength is the curve:

Ef
γ (s) = Ef

2 (s) = sin sT (s) + cos sn̄(s). (3.12)

For our curve (3.9) we have the unit space-like vector field:

Ef
γ (s) =

(
(
s2

2
− 1) cos s− s sin s, sin s− s cos s, s sin s− s2

2
cos s

)
(3.13)

with (Ef
γ )

′(s) = sin s · γ(s). 2
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The horocycle γ on H2

4. Other examples

In this section we present some curves which are not flat-hyperbolic geodesics.

Example 4.1 For C > 0 let the space-like curve:

γC(t) = (C cos t, C sin t,
√

1 + C2) ∈ H2, ∥γ′
C(t)∥L = C, (R3(u) ◦ γC)(t) = γC(u+ t). (4.1)

A straightforward calculus gives that kg is the constant K =
√
1+C2

C > 1 which means that γC is a circle having
also a constant flow-geodesic curvature:

kfg =

√
1 + C2

C
− 1

C
=

√
1 + C2 − 1

C
> 0. (4.2)

The evolute of γC is the constant unit time-like vector:

EC(s) = Ω(s) =
√

1 + C2γC(s) + Cn̄C(s) =

=
√

1 + C2
(
C cos

s

C
,C sin

s

C
,
√

1 + C2
)
+ C

(
−
√

1 + C2 cos
s

C
,−

√
1 + C2 sin

s

C
,−C

)
= k̄. (4.3)

The Cayley image of the curve γC is the Euclidean circle C̃ with the center z2 = (0,
√
1 + C2) =

√
1 + C2i ∈ Oy

and radius C. Recall that for a circle Ĉ with center (0, H) ∈ Oy and radius R < H its hyperbolic length is:

Lh(Ĉ) =
2πR√

H2 −R2
. (4.4)

For our circle C̃ two lengths are equal: Lh(C̃) = LEuclidean(Ĉ) = 2πC. Also, the hyperbolic area of the disc
having Ĉ as boundary is:

Ah(Ĉ) = 2π

(
H√

H2 −R2
− 1

)
(4.5)

which for our disk becomes: Ah(Ĉ) = 2π(
√
1 + C2 − 1). 2

Example 4.2 If we modify the horocycle of the example 3.3 into the curve parametrized by arc-length:

γ−(s) =

(
s2

2
, s, 1 +

s2

2

)
∈ H2, T−(s) = (s, 1, s), n̄−(s) =

(
s2

2
− 1, s,

s2

2

)
. (4.6)
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it results the constant negative curvatures: kg = −1, kfg = −2 and the flow-h-evolute is:

Ef
γ (s) =

(
(
s2

2
− 1) cos s+ s sin s, sin s+ s cos s, s sin s+

s2

2
cos s

)
(4.7)

its Cayley image is the Euclidean circle centered in (1, 1) and having the radius r = 1. 2

Example 4.3 Let us consider the space-like curve:

γ(t) = (cos t sinh t, sin t sinh t, cosh t) ∈ H2, ∥γ′(t)∥L = cosh t. (4.8)

Then its data is: 
T (t) = (cos t− sin t tanh t, sin t+ cos t tanh t, tanh t),

n̄(t) =
(
− sin t

cosh t − cos t sinh t, cos t
cosh t − sin t sinh t,− sinh2 t

cosh t

)
,

kg(t) = 1 + 1
cosh2 t

∈ (1, 2], kfg (t) = 1 + 1
cosh2 t

− 1
cosh t ,

Ω(t) =
(
cos t sinh t

cosh t − sin t, sin t sinh t
cosh t + cos t, 2

)
.

(4.9)

The arc-length parametrization of this curve is:{
γ(s) = (s cos(sinh−1 s), s sin(sinh−1 s),

√
1 + s2),

kg(s) =
s2+2
s2+1 , kfg (s) =

s2+2
s2+1 − 1√

s2+1
.

(4.10)

with:  T (s) =
(
cos(sinh−1 s)− s√

1+s2
sin(sinh−1 s), sin(sinh−1 s) + s√

1+s2
cos(sinh−1 s), s√

1+s2

)
,

n̄(s) =
(
− sin(sinh−1 s)√

1+s2
− s cos(sinh−1 s), cos(sinh−1 s)√

1+s2
− s sin(sinh−1 s), s2√

1+s2

)
.

(4.11)

The hyperbolic plane geometry is studied sometimes through the Lobachevsky’s angle of parallelism function
Π defined by ([3, p. 141]): sinΠ(x) = 1

cosh x . Then:{
kg(t) = 1 + sin2 Π(t),

∫ 2π

0
(1 + sin2 u)du = 3π,

kfg (t) = 1 + sin2 Π(t)− sinΠ(t) =
(
1
2 − sinΠ(t)

)2
+ 3

4 ≥ 3
4

(4.12)

and therefore the minimum value 3
4 of the function kfg corresponds to cosh t0 = 2 and s0 = sinh t0 =

√
3 i.e.

t0 = ln(2 +
√
3); hence kg(t0) =

5
4 . 2
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