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Abstract. Let G be an abelian group and S a given multiplicatively closed

subset of a commutative G-graded ring A consisting of homogeneous ele-

ments. In this paper, we introduce and study G-graded S-Noetherian mod-

ules which are a generalization of S-Noetherian modules. We characterize

G-graded S-Noetherian modules in terms of S-Noetherian modules. For in-

stance, a G-graded A-module M is G-graded S-Noetherian if and only if M

is S-Noetherian, provided G is finitely generated and S is countable. Also,

we generalize some results on G-graded Noetherian rings and modules to G-

graded S-Noetherian rings and modules.
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1. Introduction

In the context of ring theory, the introduction of Noetherian rings and modules

[20] gave a new motivation for studying the structure theory of commutative rings.

Recall that a module over a ring is called Noetherian if it satisfies ascending chain

condition on submodules, and a commutative ring is called Noetherian if it is a

Noetherian module over itself. Due to its significance, Noetherian rings and their

generalizations have been extensively studied by many authors (see [1], [4], [5], [6]

and [18], for example). As one of its crucial generalizations, Anderson and Du-

mitrescu [1] introduced S-Noetherian rings and modules. Let A be a commutative

ring with identity, S a multiplicatively closed subset (briefly, m.c.s.) of A, and M

an A-module. Then M is called S-finite if there exist an s ∈ S and a finitely gener-

ated submodule F of M such that sM ⊆ F . Also, M is called S-Noetherian if each

submodule of M is S-finite. A ring A is called S-Noetherian if it is S-Noetherian

as an A-module, [1]. They have extended many results on Noetherian rings and

modules to S-Noetherian rings and modules. Noncommutative S-Noetherian rings
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and S-Noetherian modules were first introduced by Baeck, Lee and Lim in [3].

Thereafter S-Noetherian rings and modules were continuously studied by many au-

thors (see [4], [6], [10], [11], [12], [13], [14], [15] and [16], for example). This notion

has motivated many researchers to study S-version of known structures in ring and

module theory (see [4], [6], [21] and [22], for example).

Theory of graded rings and modules extends the theory of rings and modules.

Let G be an abelian group with identity element e and A be a commutative ring

with identity. Then A is called G-graded if A =
⊕

g∈G Ag for additive subgroups

Ag and AgAh ⊆ Agh for every g, h ∈ G. An A-module M is called G-graded if

M =
⊕

g∈G Mg for additive subgroups Mg and AgMh ⊆ Mgh for every g, h ∈ G. A

submodule N of M is called graded if N =
⊕

g∈G(N ∩Mg). Similarly, an ideal I of

A is called graded if I =
⊕

g∈G(I∩Ag). A G-graded A-moduleM is called G-graded

Noetherian if each graded submodule of M is finitely generated. A G-graded ring A

is called G-graded Noetherian if it is G-graded Noetherian module over itself. Goto

and Yamagishi [5] characterized G-graded Noetherian rings in terms of Noetherian

rings. More precisely, they proved that a G-graded ring A is G-graded Noetherian

if and only if A is Noethrian, provided G is finitely generated. Inspired by it, Kim

and Lim [10] introduced the notion of G-graded S-Noetherian ring and extended

previous result to this class. A G-graded ring A =
⊕

g∈G Ag is called G-graded

S-Noetherian, where S is a given m.c.s. of Ae, if each graded ideal of A is S-finite.

They showed that a G-graded ring A is S-Noetherian if and only if A is G-graded

S-Noetherian, if and only if Ae is S-Noetherian and A is an S-finite Ae-algebra,

provided G is finitely generated and S is an anti-Archimedean subset of Ae (see [10,

Theorem 1]). In [18], among other results, Nǎstǎsescu and Van Oystaeyen obtained

a characterization of G-graded Noetherian modules in terms of Noetherian modules.

For instance, a G-graded A-module M is G-graded Noetherian if and only if M is

Noetherian, provided G is finitely generated (see [18, Theorem 2.1]).

In this paper, we introduce and study the notion of G-graded S-Noetherian

module as a generalization of both the S-Noetherian and the G-graded Noether-

ian modules. In view of the results in the previous paragraph, a natural question

arises, under what conditions both the notions of G-graded S-Noetherian modules

and S-Noetherian modules coincide. As an answer to this question, we prove two

characterizations for a G-graded S-Noetherian module to be an S-Noetherian mod-

ule. First, we prove that if G is a finitely generated abelian group and S a countable

m.c.s. of Ae, then M is a G-graded S-Noetherian module if and only if M is an

S-Noetherian module (Theorem 3.28). This result is the S-version of [18, Theorem
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2.1]. Second, we prove that if G is an abelian group, A a strongly G-graded ring and

S a m.c.s. of Ae, then M is a G-graded S-Noetherian module if and only if Me is an

S-Noetherian Ae-module (Theorem 3.32). Moreover, in Theorem 3.35 we obtain

S-variant of [9, Theorem 2.38]. Finally, we characterize G-graded S-Noetherian

rings as a generalization of [9, Theorem 2.41].

2. Preliminaries

Throughout this paper, G is an abelian group with identity e and all the rings

are assumed to be commutative rings with identity unless otherwise stated.

Let G be a multiplicative abelian group, A =
⊕

g∈G Ag a G-graded ring, and

M =
⊕

g∈G Mg a G-graded A-module. Then Ae is a subring of A containing 1A

and each Mg is an Ae-module. The elements of h(M) =
⋃

g∈G Mg are said to

be homogeneous element of M , a nonzero x ∈ Mg is said to be homogeneous of

degree g, and we write deg(x)= g. Similarly, the elements of h(A) =
⋃

g∈G Ag are

said to be homogeneous element of A. For any subset X ⊆ M , we denote h(X)

by the set of all homogeneous elements of X. A nonzero element a of A has a

unique decomposition as a = ag1 +ag2 + · · ·+agn with agi ∈ Agi . For a ∈ h(A) and

x ∈ h(M), observe that deg(ax) = deg(a)deg(x). M is said to be strongly G-graded

if AgMh = Mgh for all g, h ∈ G. A graded ideal P of A is said to be G-prime if

P ̸= A; and whenever ab ∈ P , we have a ∈ P or b ∈ P , where a, b ∈ h(A). A

proper graded ideal I of A is said to be G-maximal if there is no proper graded

ideal J of A such that I ⊂ J . A is called G-graded local if it has unique G-maximal

ideal. A is called a G-graded field if each nonzero homogeneous element has a

multiplicative inverse. The graded radical of a graded ideal I is a graded ideal

Gr(I) := {a = Σg∈Gag ∈ A : for every g ∈ G, there exists an integer ng ≥ 1 such

that a
ng
g ∈ I}.

Let H be a subgroup of G. Then AH :=
⊕

h∈H Ah is an H-graded ring. In

fact AH is a G-graded ring. Also, let g ∈ G and gH be coset of H in G, then

MgH :=
⊕

h∈H Mgh is a G-graded AH -submodule of M . In particular, MH is a

G-graded AH -module. Write M :=
⊕

g∈T MgH , where T is a transversal of H in G.

This defines a G/H-grading on M , and under this grading M is also a G/H-graded

A-module.

For more details of the graded rings and modules, [17] and [19] are referred.
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Proposition 2.1. [19, Lemma 5.4.1] Let M be a G-graded A-module, H a subgroup

of G and g ∈ G. Consider AH as a G-graded ring, and let N be a graded AH-

submodule of MgH . If AN is the graded A-submodule of M generated by N , then

AN ∩MgH = N .

3. Characterizations of graded S-Noetherian rings and modules

In this section, we introduce the notions of G-graded S-Noetherian module and

G-graded strong S-Noetherian module as a generalization of S-Noetherian module

and obtain their characterizations. To do so, we begin this section by introducing

their definitions.

Definition 3.1. Let M be a G-graded A-module and S be a m.c.s. of h(A).

Then M is called S-finite if there exist an s ∈ S and a finitely generated graded

submodule F of M such that sM ⊆ F . Also, M is called G-graded S-Noetherian

if each graded submodule of M is S-finite.

Let M be an A-module and S a m.c.s. of A. Recall [6, Definition 2.1] that an

ascending chain {Nn}n∈N of submodules of M is called S-stationary if there exist

a positive integer j ≥ 1 and an s ∈ S such that sNi ⊆ Nj for every i ≥ j. We say

that M is a strong S-Noetherian module if every ascending chain of submodules of

M is S-stationary.

Let M be a G-graded A-module and S be a m.c.s. of h(A). We say that M

is a G-graded strong S-Noetherian A-module if for every ascending chain {Nn}n∈N

of graded submodules of M is S-stationary. Also, a G-graded ring A is called a

G-graded strong S-Noetherian ring if it is a G-graded strong S-Noetherian module

over itself.

Example 3.2. Let M be a G-graded A-module and S be a m.c.s. of h(A). If M

is an S-Noetherian A-module, then M is a G-graded S-Noetherian module.

The converse of Example 3.2 is not true in general. For this, consider the fol-

lowing example.

Example 3.3. Let A = K[x±1
1 , x±1

2 , . . . , x±1
n , . . .] be a Laurent polynomial ring in

infinitely many indeterminates over a field K. Consider the group G =
⊕∞

i=1 Z
and m.c.s. S = K \ {0} of A. Then A is a G-graded field with canonical G-grading

(see [8, Example 1.1.22]). Consequently, A is a G-graded S-Noetherian A-module

since it has only two graded submodules, namely 0 and A. However, A is not an

S-Noetherian A-module.
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Thus Example 3.3 shows that the notion of G-graded S-Noetherian module is a

proper generalization of the notion of S-Noetherian modules. Now, the following

example shows that the notion of G-graded S-Noetherian modules also generalizes

the notion of G-graded Noetherian modules.

Example 3.4. Every G-graded Noetherian A-module is a G-graded S-Noetherian

A-module for every m.c.s. S ⊆ h(A). The converse is also true if S ⊆ U(h(A)),

where U(h(A)) denotes the set of all units of h(A).

The converse of Example 3.4 is not true in general since any G-graded A-module

M with Gr(Ann(M))∩S ̸= ∅ is trivially a G-graded S-Noetherian A-module. Thus,

from now, we assume thatGr(Ann(M))∩S = ∅ in this work. The following example

presents a G-graded S-Noetherian module which is not a G-graded Noetherian

module satisfying the condition Gr(Ann(M)) ∩ S = ∅.

Example 3.5. Let G = Z2, A = Z = A0̄, and M = Zk[x] ⊕ L be a G-graded

A-module with M0̄ = Zk[x] ⊕ 0, M1̄ = 0 ⊕ L, where k ≥ 1 and L is a torsion-free

Noetherian A-module. Notice that the graded submodules ofM are the submodules

of the form N ⊕N ′, where N is a submodule of Zk[x] and N ′ is a submodule of L.

Consider the m.c.s. S = {kn : n ≥ 0} of A. Here we note that S∩Gr(Ann(M)) = ∅
since knM ̸= 0 for every integer n ≥ 0. Put s = k. Then s(N⊕N ′) ⊆ N ′ ⊆ N⊕N ′.

Since N ′ is finitely generated submodule of L, so N ⊕ N ′ is S-finite. Thus, M is

a G-graded S-Noetherian A-module. However, M is not a G-graded Noetherian

A-module since Zk[x] is not a Noetherian A-module.

Remark 3.6. (1) Let M be a G-graded A-module and S be a m.c.s. of h(A).

If M is a G-graded S-Noetherian module, then M is a G-graded strong

S-Noetherian module. Indeed, let M be a G-graded S-Noetherian mod-

ule and let {Nn}n∈N be an ascending chain of graded submodules of M .

Put N =
⋃

i≥1 Ni. Then N is S-finite, and so there exist an s ∈ S and

x1, x2, . . . , xn ∈ h(M) such that sN ⊆ Ax1+Ax2+· · ·+Axn ⊆ N . Suppose

xi ∈ Nji for i = 1, 2, . . . , n. Take j = max{j1, j2, . . . , jn}. Then xi ∈ Nj

for all i = 1, 2, . . . , n. This implies that sN ⊆ Ax1+Ax2+ · · ·+Axn ⊆ Nj .

Consequently, sNi ⊆ Nj for all i ≥ 1, and so {Nn}n∈N is S-stationary.

Hence M is a G-graded strong S-Noetherian module.

(2) Let M be a G-graded A-module and S be a m.c.s. of h(A). Suppose each

submodule of M is countably generated. If M is a G-graded strong S-

Noetherian module, then M is a G-graded S-Noetherian module. Indeed,

let N be a graded submodule of M . Since N is countably generated, there
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exist a countable set of homogeneous generators {xn}n∈N for N . Consider

an ascending chain Ax1 ⊆ Ax1+Ax2 ⊆ · · · ⊆ Ax1+Ax2+· · ·+Axn ⊆ · · · of
graded submodules of M . Since M is G-graded strong S-Noetherian, there

exist an s ∈ S and k ≥ 1 such that s(Ax1+Ax2+ · · ·+Axi) ⊆ Ax1+Ax2+

· · · + Axk for all i ≥ k. Consequently, sN ⊆ Ax1 + Ax2 + · · · + Axk ⊆ N

which implies that N is S-finite. Hence M is a G-graded S-Noetherian

module.

(3) Let M be a G-graded A-module and S be a countable m.c.s. of h(A).

If M is a G-graded strong S-Noetherian module, then M is a G-graded

S-Noetherian module. The proof is on the same line by replacing ring to

module and ideals to submodules in [7, Remark 2.2] and needs only minor

modifications to work in the graded case.

Let A be a G-graded ring and a ∈ h(A). Then Sa := {an : n ≥ 0} is a m.c.s.

of h(A). Also, U(A) denotes the set of all units of A. In the following result, we

obtain a characterization of G-graded Noetherian modules in terms of G-graded

S-Noetherian modules.

Proposition 3.7. Let A be a G-graded ring which is not a G-graded local ring and

M be a G-graded A-module. Then M is a G-graded Noetherian A-module if and

only if M is a G-graded Sa-Noetherian A-module for every a ∈ h(A) \ U(A).

Proof. The proof is on the same line by replacing descending chains to ascending

chains of graded submodules in [2, Theorem 3.21]. □

The following proposition is a graded analogous to result of S-Noetherian mod-

ules discussed in [1], and the proof needs only minor modifications to work in the

graded case.

Proposition 3.8. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence

of G-graded A-modules and S be a m.c.s. of h(A). Then M is a G-graded S-

Noetherian A-module if and only if M ′ and M ′′ are G-graded S-Noetherian A-

modules. In particular, if A is G-graded S-Noetherian, then so is every finitely

generated A-module

Corollary 3.9. Let M1 and M2 be G-graded S-Noetherian A-modules, where S is

a m.c.s. of h(A). Then M1 ⊕M2 is a G-graded S-Noetherian A-module.

Proposition 3.10. Let M be a G-graded A-module, N a graded submodule of M

and S a m.c.s. of h(A). Then M is a G-graded strong S-Noetherian A-module
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if and only if N and M/N are G-graded strong S-Noetherian A-modules. In par-

ticular, direct sum of two G-graded strong S-Noetherian A-modules is a G-graded

strong S-Noetherian A-modules.

Proof. The proof is on the same line by replacing descending chains to ascending

chains of graded submodules in [2, Theorem 3.13]. □

The following theorem provides a characterization of G-graded S-Noetherian

modules.

Theorem 3.11. Let A be a G-graded ring, H be a subgroup of G and S be a m.c.s.

of h(AH). If M is a G-graded S-Noetherian A-module, then MgH is a G-graded

S-Noetherian AH-module for every g ∈ G. Conversely, if [G : H] < ∞ and MgH

is a G-graded S-Noetherian AH-module for every g ∈ G, then M is a G-graded

S-Noetherian A-module.

Proof. Suppose M is a G-graded S-Noetherian A-module. Let N be a graded AH -

submodule of MgH for some g ∈ G. Then AN is an S-finite graded A-submodule

of M . This implies that there exist an s ∈ S and a finitely generated graded

A-submodule F of M such that sAN ⊆ F ⊆ AN . By Proposition 2.1, sN =

sAN ∩ MgH ⊆ F ∩ MgH ⊆ AN ∩ MgH = N , i.e., sN ⊆ F ∩ MgH ⊆ N . Write

F = Ax1 + Ax2 + · · · + Axn, for some x1, x2, . . . , xn ∈ h(M). Since F ⊆ AN , we

may assume that each xi is a homogeneous element of N . Suppose deg(xi) = ghi

for some hi ∈ H. Let y ∈ F ∩ MgH be a G-homogeneous element of degree gh

for some h ∈ H. Write y =
∑n

i=1 aixi for some ai ∈ A. Since deg(y) = gh, we

can assume that each ai is homogeneous of degree hh−1
i for i = 1, 2, . . . , n. Thus

each ai ∈ AH , and so y ∈ AHx1 +AHx2 + · · ·+AHxn. Consequently, F ∩MgH ⊆
AHx1+AHx2+ · · ·+AHxn. Thus we have sN ⊆ AHx1+AHx2+ · · ·+AHxn ⊆ N .

Hence N is S-finite, and so MgH is a G-graded S-Noetherian AH -module. For the

converse, write M =
⊕

g∈G MgH . This direct sum is finite as [G : H] < ∞. Now

since each MgH is a G-graded S-Noetherian AH -module, so by Corollary 3.9, M

is a G-graded S-Noetherian AH -module. Hence M is a G-graded S-Noetherian

A-module. □

Corollary 3.12. Let G be a finite abelian group, A be a G-graded ring, S ⊆ Ae

be a m.c.s. and M =
⊕

g∈G Mg be a G-graded A-module. Then the following are

equivalent:

(1) M is a G-graded S-Noetherian A-module.

(2) Mg is an S-Noetherian Ae-module for every g ∈ G.
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(3) M is an S-Noetherian Ae-module.

(4) M is an S-Noetherian A-module.

Proof. (1) =⇒ (2): Follows from Theorem 3.11 for H = {e}.
(2) =⇒ (3): Follows from Corollary 3.9 since G is finite.

(3) =⇒ (4): Obvious.

(4) =⇒ (1): Follows from Example 3.2. □

Corollary 3.13. Let A be a G-graded ring, H be a subgroup of G and S be a

m.c.s. of h(AH). If A is a G-graded S-Noetherian ring, then AH is an H-graded

S-Noetherian ring.

Proof. Follows from Theorem 3.11 for M = A. □

Theorem 3.14. Let A be a G-graded ring, H be a subgroup of G and S be a

m.c.s. of h(AH). If M is a G-graded strong S-Noetherian A-module, then MgH

is a G-graded strong S-Noetherian AH-module for every g ∈ G. Conversely, if

[G : H] < ∞ and MgH is a G-graded strong S-Noetherian AH-module for every

g ∈ G, then M is a G-graded strong S-Noetherian A-module.

Proof. The proof is on the same line by replacing descending chains to ascending

chains of graded submodules in [2, Theorem 3.17]. □

Corollary 3.15. Let G be a finite abelian group, A be a G-graded ring, S ⊆ Ae

be a m.c.s. and M =
⊕

g∈G Mg be a G-graded A-module. Then the following are

equivalent:

(1) M is a G-graded strong S-Noetherian A-module.

(2) Mg is a strong S-Noetherian Ae-module for every g ∈ G.

(3) M is a strong S-Noetherian Ae-module.

(4) M is a strong S-Noetherian A-module.

Proof. (1) =⇒ (2): Follows from Theorem 3.14 for H = {e}.
(2) =⇒ (3): Follows from Proposition 3.10 since G is finite.

(3) =⇒ (4): Obvious.

(4) =⇒ (1): Follows from the fact that a strong S-Noetherian module is a G-

graded strong S-Noetherian module. □

Let M be a Z-graded A-module. Following [19], M≥0 =
⊕

n≥0 Mn and M≤0 =⊕
n≤0 Mn. Clearly, A≥0 and A≤0 are graded subrings of A. ThenM≥0 (resp., M≤0)

is a Z-graded A≥0-module (resp., A≤0-module). Let N ⊆ M be an A-submodule

of M and x ∈ N . Write x = xn1 + xn2 + · · · + xnr with n1 < n2 < . . . < nr and
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xni
∈ h(M). Denote N∼ (resp., N∼) by the submodule of M generated by xnr

(resp., xn1
) for all x ∈ N , i.e. N∼ (resp., N∼) is generated by the homogeneous

components of largest (resp., smallest) degree present in the elements of N . Clearly,

both N∼ and N∼ are graded submodules of M .

Now our aim is to characterize G-graded S-Noetherian modules in terms of S-

Noetherian modules. For this, we need the following lemmas which are S-version

of the similar results given in [17].

Lemma 3.16. Let M be a Z-graded A-module and S be a m.c.s. of A0. Consider

A-submodules N ⊆ K ⊆ M . Then the following are equivalent:

(1) s′K ⊆ N for some s′ ∈ S.

(2) sK∼ ⊆ N∼ and s(K ∩M≤0) ⊆ N ∩M≤0 for some s ∈ S.

(3) sK∼ ⊆ N∼ and s(K ∩M≥0) ⊆ N ∩M≥0 for some s ∈ S.

Proof. (1) ⇐⇒ (2): If s′K ⊆ N for some s′ ∈ S, then s′K∼ ⊆ N∼ and

s′(K ∩ M≤0) ⊆ N ∩ M≤0 hold trivially. For the converse, let y ∈ K. Write

y = yn1
+ yn2

+ · · · + ynr
with n1 < n2 < . . . < nr and yni

∈ h(M). If nr > 0,

then sK∼ ⊆ N∼ yields that there exists x1 ∈ N such that x1 = um1
+ um2

+ · · ·+
ump−1 + synr with m1 < m2 < . . . < mp−1 < nr and umi ∈ h(M). This implies

that sy − x1 ∈ K has a homogeneous decomposition containing highest degree less

than nr. Write sy − x1 = zk1
+ zk2

+ · · · + zkt
with k1 < k2 < . . . < kt < nr

and zki
∈ h(M). But sK∼ ⊆ N∼ implies that there exists x2 ∈ N such that

x2 = wl1 + wl2 + · · · + wlq−1 + szkt with l1 < l2 < . . . < lq−1 < kt and wli ∈
h(M). This implies that s2y − sx1 − x2 ∈ K has a homogeneous decomposition

containing highest degree less than kt. Similarly, we can find x3, x4, . . . , xk ∈ N

such that sky − sk−1x1 − sk−2x2 − · · · − sxk−1 − xk ∈ K ∩ M≤0. Consequently,

sk+1y − skx1 − sk−1x2 − · · · − s2xk−1 − sxk ∈ s(K ∩ M≤0) ⊆ N ∩ M≤0; hence

sk+1y ∈ N . Also, if nr ≤ 0, then obviously y ∈ K ∩ M≤0 which implies that

sk+1y ∈ s(K ∩M≤0) ⊆ N ∩M≤0 ⊆ N . Thus s′K ⊆ N , where s′ = sk+1, as desired.

Similarly (1) ⇐⇒ (3) can be proved. □

As a consequence of the Lemma 3.16, we have the following result.

Corollary 3.17. Let M be a Z-graded A-module and S be a m.c.s. of A0. Then

(1) M≥0 is a Z-graded strong S-Noetherian A≥0-module if and only if M≥0 is

a strong S-Noetherian A≥0-module.

(2) M≤0 is a Z-graded strong S-Noetherian A≤0-module if and only if M≤0 is

a strong S-Noetherian A≤0-module.
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Proof. (1) Suppose M≥0 is a Z-graded strong S-Noetherian A≥0-module. Let

N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of A≥0-submodule of

M≥0. Then N∼
1 ⊆ N∼

2 ⊆ · · · ⊆ N∼
n ⊆ · · · is an ascending chain of graded

A≥0-submodule of M≥0. Then there exist an s1 ∈ S and k1 ≥ 0 such that

s1N
∼
i ⊆ N∼

k1
for all i ≥ k1. Also consider the chain N1∩M≤0 ⊆ N2∩M≤0 ⊆

· · · ⊆ Nn ∩M≤0 ⊆ · · · of A0-submodule of M0 as Ni ∩M≤0 ⊆ M0 for each

i. Since M≥0 is a Z-graded S-Noetherian A≥0-module, so by Theorem

3.14, M0 is a strong S-Noetherian A0-module. This implies that there

exist an s2 ∈ S and k2 ≥ 1 such that s2(Ni ∩ M≤0) ⊆ Nk2
∩ M≤0 for

all i ≥ k2. Put s = s1s2 and k = max{k1, k2}. Then sN∼
i ⊆ N∼

k and

s(Ni ∩ M≤0) ⊆ Nk ∩ M≤0 for all i ≥ k. So by Lemma 3.16, there exists

an s′ ∈ S such that s′Ni ⊆ Nk for all i ≥ k. Hence M≥0 is a strong

S-Noetherian A≥0-module.

(2) Similar to (1). □

Lemma 3.18. Let M be a Z-graded S-Noetherian A-module, where S is a m.c.s.

of A0. Then

(1) M≥0 is a strong S-Noetherian A≥0-module.

(2) M≤0 is a strong S-Noetherian A≤0-module.

Proof. (1) Let N =
⊕

i≥0 Ni be a graded A≥0-submodule of M≥0. Since M is

a Z-graded S-Noetherian A-module, so AN is an S-finite graded submodule

of M . This implies that there exist x1, x2, . . . , xr ∈ h(N) and s1 ∈ S such

that s1AN ⊆ Ax1 + Ax2 + · · · + Axr ⊆ AN . Suppose deg(xi) = ni ≥ 0.

Put n = max(n1, n2, . . . , nr). Let y ∈ h(N) with deg(y) = m ≥ n. Then

there exist a1, a2, . . . , ar ∈ h(A) such that s1y = a1x1 + a2x2 + · · ·+ arxr.

Consequently, deg(ai) = m − ni ≥ 0 as m ≥ n, and so ai ∈ A≥0 for

all i = 1, 2, . . . , r. Then we have s1(
⊕

i≥n Ni) ⊆ F1 ⊆
⊕

i≥n Ni, where

F1 is a finitely generated A≥0-submodule of M≥0 generated by the set

{x1, x2, . . . , xr}. On the other hand by Theorem 3.11, each Mi is an S-

Noetherian A0-module which implies that each Ni is an S-Noetherian A0-

module. Consequently, by Corollary 3.9, L =
⊕n

i=1 Ni is an S-finite A0-

module. This implies that there exist an s2 ∈ S and a finitely generated

A0-submodule F2 ofN generated by the set {y1, y2, . . . , yk} such that s2L ⊆
F2 ⊆ L. Put s = s1s2. Consider the A≥0-submodule F of N generated

by the set {x1, x2, . . . , xr, y1, y2, . . . , yk}. Then sN ⊆ F1 + F2 ⊆ F ⊆ N

since N = L ⊕ (⊕i≥nNi) and F2 ⊆ F . Thus N is S-finite, and so M≥0
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is a Z-graded S-Noetherian A≥0-module. By Remark 3.6(1), M≥0 is a Z-
graded strong S-Noetherian A≥0-module. Hence by Corollary 3.17, M≥0 is

a strong S-Noetherian A≥0-module.

(2) Similar to (1). □

Corollary 3.19. Let M be a Z-graded S-Noetherian A-module, where S is a count-

able m.c.s. of A0. Then

(1) M≥0 is an S-Noetherian A≥0-module.

(2) M≤0 is an S-Noetherian A≤0-module.

Proof. Follows from Lemma 3.18 and Remark 3.6(3). □

Lemma 3.20. Let M be an S-finite Z-graded A-module, where S is a m.c.s. of

A0. If M is a Z-graded strong S-Noetherian A-module. Then

(1) M≥0 is a strong S-Noetherian A≥0-module.

(2) M≤0 is a strong S-Noetherian A≤0-module.

Proof. (1) Since M is S-finite, there exist an s ∈ S and x1, x2, . . . , xr ∈ h(M)

such that sM ⊆ Ax1 + Ax2 + · · · + Axr. Suppose deg(xi) = ki for i =

1, 2, . . . , r. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of graded

A≥0-submodules of M≥0. Then AN1 ⊆ AN2 ⊆ · · · ⊆ ANn ⊆ · · · is an

ascending chain of graded A-submodules of M . Since M is a Z-graded
strong S-Noetherian A-module, there exist an s′ ∈ S and m ≥ 0 such that

s′ANi ⊆ ANm for all i ≥ m. Let x ∈ h(Ni) with deg(x) = j ≥ 0. Then

s′x ∈ ANm is a homogeneous element. Write ss′x = a1x1+a2x2+· · ·+arxr

for some ai ∈ h(A). Since ss′x is homogeneous, we may assume that each

aixi is a homogeneous element of ANm. Then we have j = deg(ai) + ki,

i.e., deg(ai) = j − ki. Put k = max{k1, k2, . . . , kr}. So if j ≥ k, then

ai ∈ A≥0 for i = 1, 2, . . . , r. This implies that ss′x ∈ Nm. Suppose j < k,

then j ∈ {0, 1, 2, . . . , k − 1}. Since M is Z-graded strong S-Noetherian, so

by Theorem 3.14, each Mi is a Z-graded strong S-Noetherian A0-module

for i = 0, 1, 2, . . . , k − 1. Also, since Ni is a Z-graded A≥0-submodule

of M≥0 and A0 ⊆ A≥0, so each Ni is a Z-graded A0-submodule of Z-
graded A0-moduleM≥0. Consider finitely many ascending chainsN1∩Mt ⊆
N2 ∩ Mt ⊆ · · · ⊆ Nn ∩ Mt ⊆ · · · of Z-graded A0-submodules of Mt for

t = 0, 1, 2, . . . , k − 1. This implies that there exist st ∈ S and jt ≥ 1 such

that st(Ni ∩Mt) ⊆ Njt ∩Mt, for all i ≥ jt, for t = 0, 1, 2, . . . , k − 1. Put



98 AJIM UDDIN ANSARI AND B. K. SHARMA

s′′ = s0s1s2 . . . sk−1 and j′ = max{j0, j1, j2, . . . , jk−1}. Then s′′(Ni∩Mt) ⊆
Nj′ ∩Mt for all i ≥ j′, for t = 0, 1, 2, . . . , k − 1. Thus if x ∈ Mt for t < k,

then s′′x ∈ s′′(Ni ∩ Mt) ⊆ Nj′ ∩ Mt. This implies that s′′x ∈ Nj′ . Put

s′′′ = ss′s′′ and p = max{m, j′}, then s′′′x ∈ Np for all x ∈ h(Ni), and

so s′′′Ni ⊆ Np for all i ≥ p. Thus M≥0 is a Z-graded strong S-Noetherian

A≥0-module. Hence by Corollary 3.17, M≥0 is a strong S-Noetherian A≥0-

module.

(2) Similar to (1). □

Lemma 3.21. Let M be a Z-graded A-module and S be a m.c.s. of A0. If M is a

Z-graded S-Noetherian A-module, then M is a strong S-Noetherian A-module.

Proof. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of A-submodules

of M . Then N1 ∩ M≤0 ⊆ N2 ∩ M≤0 ⊆ · · · ⊆ Nn ∩ M≤0 ⊆ · · · is an ascending

chain of A≤0-submodules of M≤0. By Lemma 3.18, M≤0 is a strong S-Noetherian

A≤0-module, so there exist an s1 ∈ S and j ≥ 1 such that s1(Ni∩M≤0) ⊆ Nj∩M≤0

for all i ≥ j. Also, N∼
1 ⊆ N∼

2 ⊆ · · · ⊆ N∼
n ⊆ · · · is an ascending chain of graded

A-submodules of M . Since M is Z-graded S-Noetherian, by Remark 3.6(1), M

is a Z-graded strong S-Noetherian module. So there exist an s2 ∈ S and k ≥ 1

such that s2N
∼
i ⊆ N∼

k for all i ≥ k. Put s = s1s2 and r = max(j, k). Then

s(Ni ∩ M≤0) ⊆ M≤0 ∩ Nr and sN∼
i ⊆ N∼

r for all i ≥ r. So by Lemma 3.16,

s′Ni ⊆ Nr for some s′ ∈ S and for all i ≥ r. Hence M is a strong S-Noetherian

A-module. □

Corollary 3.22. Let M be a Z-graded A-module and S be a countable m.c.s. of

A0. Then the following are equivalent:

(1) M is a Z-graded S-Noetherian A-module.

(2) M is an S-Noetherian A-module.

Proof. Follows from Lemma 3.21 and Remark 3.6(3). □

Lemma 3.23. Let M be a Z-graded A-module and S be a m.c.s. of A0. If M

is a Z-graded strong S-Noetherian A-module, then M is a strong S-Noetherian

A-module.

Proof. Similar to the proof of Lemma 3.21 by using Lemma 3.20. □

Let G be a finitely generated abelian group. Then G ∼= Zr ⊕ T , where T is

torsion part of G. Consider the subgroup H = Zr−1 ⊕ T of G. Then G/H ∼= Z,
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and so there exists ξ ∈ G such that G/H =< ξH >= {ξnH : n ∈ Z}. Suppose M

is a G-graded A-module. Following [17], define

M+ =
⊕

m∈Z+
(
⊕

h∈H Mξmh) =
⊕

m≥0 MξmH

M− =
⊕

m∈Z−
(
⊕

h∈H Mξmh) =
⊕

m≤0 MξmH .

Then M+ (resp., M−) is a G-graded A+-module (resp., A−-module). Let h ∈ H.

Write M(h) =
⊕

n∈Z Mξnh. Then A(e) =
⊕

n∈Z Aξn is a Z-graded ring and each

M(h) is a Z-graded A(e)-module. Also, A =
⊕

h∈H A(h) is an H-graded ring and

M =
⊕

h∈H M(h) is an H-graded A-module. Hence M is G-graded as well as H-

graded A-module. It is clear that each G-graded submodule of M is also H-graded

but the converse may not true. Let N =
⊕

h∈H N(h) be an H-graded A-submodule

of M , where N(h) = M(h) ∩N . Define

N∼ =
⊕
h∈H

N∼
(h) (resp., N∼ =

⊕
h∈H

N(h)∼),

where N∼
(h) (resp., N(h)∼) is a Z-graded A(e)-submodule of M(h) generated by the

homogeneous components of largest (resp., smallest) degree present in the elements

of N(h) as defined before. If M = M+ (resp., M−), then N∼ (resp., N∼) is a

G-graded A-submodule of M , [18, Lemma 1.4].

With these notations, we have the following lemmas which are S-version of sim-

ilar results given in [18].

Lemma 3.24. If M is a G-graded S-Noetherian A-module, where S is a m.c.s. of

Ae. Then M+ is a G-graded S-Noetherian A+-module.

Proof. Let N be a graded A+-submodule of M+. Then the graded A-submodule

AN ofM is S-finite, i.e. there exist an s ∈ S and homogeneous elements x1, x2, . . . , xr

in AN such that sAN ⊆ Ax1 +Ax2 + · · ·+Axr ⊆ AN . We may assume that each

xi is a homogeneous element of N , say xi ∈ Nξkihi
= N ∩Mξkihi

for some hi ∈ H

and some ki ≥ 0. Put k = max(k1, k2, . . . , kr) and L =
⊕k

i=1(
⊕

h∈H Nξih) =⊕k
i=1 NξiH . Since M is a G-graded S-Noetherian A-module, so by Theorem 3.11,

each MξiH is a G-graded S-Noetherian AH -module. But then each NξiH is a

G-graded S-Noetherian AH -module, and so by Corollary 3.9, L is a G-graded

S-Noetherian AH -module which implies that there exists an s′ ∈ S such that

s′L ⊆ F ⊆ L for some finitely generated graded AH -submodule F of L generated by

a set of homogeneous elements {y1, y2, . . . , yp}. Let x ∈ h(N). Then x ∈ Nξjh for

some j ≥ 0 and some h ∈ H. Write sx = a1x1+a2x2+ · · ·+arxr, where ai ∈ h(A).

Then we have ξjh = deg(ai)ξ
kihi which implies that deg(ai) = ξj−kihh−1

i for

all i = 1, 2, . . . , r. So if j ≥ k, then ai ∈ A+ for i = 1, 2, . . . , r. This implies that
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sx ∈ A+x1+A+x2+· · ·+A+xr. Also if j < k, then s′x ∈ F . Therefore we conclude

that ss′x ∈ A+x1+A+x2+ · · ·+A+xr+A+y1+A+y2+ · · ·+A+yp since AH ⊆ A+.

Consequently, ss′N ⊆ A+x1+A+x2+ · · ·+A+xr+A+y1+A+y2+ · · ·+A+yp ⊆ N ,

and so N is S-finite. Hence M+ is a G-graded S-Noetherian A+-module. □

Lemma 3.25. Let M be an S-finite G-graded A-module, where S is a m.c.s. of

Ae. If M is a G-graded strong S-Noetherian A-module, then M+ is a G-graded

strong S-Noetherian A+-module.

Proof. Since M is S-finite, there exist s ∈ S and x1, x2, . . . , xr ∈ h(M) such that

sM ⊆ Ax1 +Ax2 + · · ·+Axr. Suppose deg(xi) = ξkihi, i.e., xi ∈ Mξkihi
for some

hi ∈ H and some ki ≥ 0. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain

of G-graded A+-submodules of M+. Then AN1 ⊆ AN2 ⊆ · · · ⊆ ANn ⊆ · · · is an

ascending chain of G-graded A-submodules of M . Since M is a G-graded strong

S-Noetherian A-module, there exist an s′ ∈ S and m ≥ 1 such that s′ANi ⊆ ANm

for all i ≥ m. Now let x ∈ Ni be a homogeneous element. Then s′x ∈ s′ANi ⊆
ANm. Write ss′x = a1x1 + a2x2 + · · · + arxr, for some ai ∈ h(A). Since ss′x is

homogeneous, we can assume that each aixi is a homogeneous element of ANm.

Also since x ∈ Ni is a homogeneous element of M+, then x ∈ Ni ∩Mξjh for some

j ≥ 0 and some h ∈ H. Consequently, ξjh = deg(ai)ξ
kihi which implies that

deg(ai) = ξj−kihh−1
i for i = 1, 2, . . . , r. Put k = max{k1, k2, . . . , kr}. So if j ≥ k,

then ai ∈ A+ for i = 1, 2, . . . , r. This implies that ss′x ∈ Nm. Suppose j < k, then

j ∈ {0, 1, 2, . . . , k − 1}. Since M is G-graded strong S-Noetherian, so by Theorem

3.14, MξiH is a G-graded strong S-Noetherian AH -module for i = 0, 1, 2, . . . , k− 1.

Also, since Ni is a G-graded A+-submodule of M+ and AH ⊆ A+, so each Ni is

a G-graded AH -submodule of G-graded AH -module M+. Consider finitely many

ascending chains N1 ∩MξtH ⊆ N2 ∩MξtH ⊆ · · · ⊆ Nn ∩MξtH ⊆ · · · of G-graded

AH -submodules of MξtH for i = 0, 1, 2, . . . , k − 1. This implies that there exist

st ∈ S and jt ≥ 1 such that st(Ni ∩ MξtH) ⊆ Njt ∩ MξtH , for all i ≥ jt, for

t = 0, 1, 2, . . . , k − 1. Put s′′ = s0s1s2 . . . sk−1 and j′ = max{j0, j1, . . . , jk−1}.
Then s′′(Ni ∩MξtH) ⊆ Nj′ ∩MξtH , for all t = 0, 1, 2, . . . , k− 1, for all i ≥ j′. Thus

if x ∈ Mξjh for j < k, then s′′x ∈ s′′(Ni ∩ MξjH) ⊆ Nj′ ∩ MξjH . This implies

that s′′x ∈ Nj′ . Put s′′′ = ss′s′′ and p = max{m, j′}, then s′′′x ∈ Np for all

x ∈ h(Ni) and so s′′′Ni ⊆ Np for all i ≥ p. This implies that M+ is a G-graded

strong S-Noetherian A+-module. □
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Lemma 3.26. Let M = M+ be a G-graded A-module and S be a m.c.s. of Ae.

If N ⊆ K ⊆ M are H-graded A-submodules of M such that sK∼ ⊆ N∼ for some

s ∈ S, then s′K ⊆ N for some s′ ∈ S.

Proof. Since N and K are H-graded submodules of M =
⊕

h∈H M(h), so we

can write N =
⊕

h∈H N(h) and K =
⊕

h∈H K(h), where N(h) = M(h) ∩ N and

K(h) = M(h) ∩ K with N(h) ⊆ K(h) for all h ∈ H. Now sK∼ ⊆ N∼ yields that

sK∼
(h) ⊆ N∼

(h) for all h ∈ H. Also, since M = M+ and N(h),K(h) are submodules

of Z-graded A(e)-module M(h) =
⊕

i≥0 Mξih, so by Lemma 3.16, s′K(h) ⊆ N(h) for

some s′ ∈ S and for all h ∈ H. Consequently, s′K ⊆ N , as desired. □

Lemma 3.27. Let M be a G-graded A-module and S be a m.c.s. of Ae. If N ⊆
K ⊆ M are H-graded A-submodules of M such that s(K ∩ M+) ⊆ N ∩ M+ and

s′K∼ ⊆ N∼ for some s, s′ ∈ S, then s′′K ⊆ N for some s′′ ∈ S.

Proof. Since M =
⊕

h∈H M(h) is an H-graded A-module, so we can write M+ =⊕
h∈H M+

(h), where M+
(h) is a Z-graded A+

(e)-module. Consequently, N ∩ M+ =⊕
h∈H(N(h)∩M+

(h)) andK∩M+ =
⊕

h∈H(K(h)∩M+
(h)). Now s(K∩M+) ⊆ N∩M+

yields that s(K(h) ∩ M+
(h)) ⊆ N(h) ∩ M+

(h) for every h ∈ H. Also, s′K∼ ⊆ N∼

yields that s′K(h)∼ ⊆ N(h)∼ for every h ∈ H. Now since N(h) and K(h) are A(e)-

submodule of the Z-graded A(e)-module M(h) such that ss′K(h)∼ ⊆ N(h)∼ and

ss′(K(h) ∩M+
(h)) ⊆ N(h) ∩M+

(h) for all h ∈ H, so by Lemma 3.16, s′′K(h) ⊆ N(h)

for some s′′ ∈ S and for all h ∈ H. Consequently, s′′K ⊆ N , as desired. □

Now we are in a position to characterize G-graded S-Noetherian modules in

terms of S-Noetherian modules. This result is a generalization of [18, Theorem2.1].

Theorem 3.28. Let G be a finitely generated abelian group, M a G-graded A-

module and S a countable m.c.s. of Ae. Then M is a G-graded S-Noetherian

A-module if and only if M is an S-Noetherian A-module.

Proof. If M is an S-Noetherian A-module, then by Example 3.2, M is a G-

graded S-Noetherian A-module. For the converse, assume that M is a G-graded

S-Noetherian A-module. Write G = Zr⊕T , where T denotes the torsion part of G.

We use induction on r to prove this theorem. If r = 0 or 1, then theorem follows

from Corollary 3.12 and Corollary 3.22. Assume theorem is true for groups of the

type Zr ⊕ T , where r > 1. Consider the group G = Zr+1 ⊕ T ′ and its subgroup

H = Zr ⊕T ′, where T ′ denotes the torsion part of G. Then M =
⊕

h∈H M(h) is an

H-graded A-module. We claim that M is an H-graded S-Noetherian A-module.
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For this, let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of H-graded A-

submodules of M . Then we obtain an ascending chain N1 ∩ M+ ⊆ N2 ∩ M+ ⊆
· · · ⊆ Nn ∩M+ ⊆ · · · of H-graded A+-submodules of M+. Here we note that M+

is both G-graded and H-graded A+-module. Consequently, we have an ascend-

ing chain (N1 ∩ M+)∼ ⊆ (N2 ∩ M+)∼ ⊆ · · · ⊆ (Nn ∩ M+)∼ ⊆ · · · of G-graded

A+-submodules of M+. Now since M is a G-graded S-Noetherian A-module, by

Lemma 3.24, M+ is a G-graded S-Noetherian A+-module. So by Remark 3.6(1),

M+ is a G-graded strong S-Noetherian A+-module. This implies that there exist

an s1 ∈ S and an index j ≥ 1 such that s1(Ni ∩M+)∼ ⊆ (Nj ∩M+)∼ for all i ≥ j.

But then by Lemma 3.26, there exists an s2 ∈ S such that s2(Ni∩M+) ⊆ Nj ∩M+

for all i ≥ j. Also, we have another ascending chain N1∼ ⊆ N2∼ ⊆ · · · ⊆ Nn∼ ⊆ · · ·
of G-graded A-submodules of M . Since M is G-graded S-Noetherian, there exist an

s3 ∈ S and an index k ≥ 1 such that s3Ni∼ ⊆ Nk∼ for all i ≥ k. Put t = max(j, k).

Then we have s2(Ni ∩M+) ⊆ Nt ∩M+ and s3Ni∼ ⊆ Nt∼ for all i ≥ t. Therefore

by Lemma 3.27, there exists an s ∈ S such that sNi ⊆ Nt for all i ≥ t. Thus

M is an H-graded strong S-Noetherian A-module, and so by Remark 3.6(3), M

is an H-graded S-Noetherian A-module. Hence by induction hypothesis, M is an

S-Noetherian A-module, as desired. □

For the case S = {1} of the result above, we obtain the following result.

Corollary 3.29. (cf. [18, Theorem 2.1]) Let G be a finitely generated abelian group.

Then M is a G-graded Noetherian A-module if and only if M is a Noetherian A-

module.

The next theorem provides a characterization of G-graded strong S-Noetherian

modules in terms of strong S-Noetherian modules.

Theorem 3.30. Let G be a finitely generated abelian group, M an S-finite G-graded

A-module, where S is a m.c.s. of Ae. Then M is a G-graded strong S-Noetherian

A-module if and only if M is a strong S-Noetherian A-module.

Proof. The proof is on the same line by changing the use of Corollary 3.12, Lemma

3.24 and Corollary 3.22 by Corollary 3.15, Lemma 3.25 and Lemma 3.23, respec-

tively in Theorem 3.28. □

As an immediate consequence, we have the following corollary.

Corollary 3.31. Let G be a finitely generated abelian group, M a G-graded A-

module, where S is a m.c.s. of Ae. If M is a G-graded S-Noetherian A-module,

then M is a strong S-Noetherian A-module.
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For arbitrary abelian group G, the next theorem provides another characteriza-

tion of G-graded S-Noetherian modules in terms of S-Noetherian modules.

Theorem 3.32. Let A be a strongly G-graded ring, S a m.c.s. of Ae and M a

G-graded A-module. Then M =
⊕

g∈G Mg is a G-graded S-Noetherian A-module

if and only if Me is an S-Noetherian Ae-module.

Proof. Suppose Me is an S-Noetherian Ae-module. Consider the tensor product

A ⊗
Ae

Me which is a G-graded A-module with grading A ⊗
Ae

Me =
⊕

g∈G(A ⊗
Ae

Me)g,

where (A ⊗
Ae

Me)g = Ag ⊗
Ae

Me for all g ∈ G. Then we have a short exact sequence

0 −→ Ae ⊗
Ae

Me −→ A ⊗
Ae

Me −→ Ae ⊗
Ae

Me −→ 0 of G-graded Ae-modules. Now

since Ae ⊗
Ae

Me
∼= Me as an Ae-module which is S-Noetherian, so by Proposition

3.8, A⊗
Ae

Me is a G-graded S-Noetherian Ae-module, and so G-graded S-Noetherian

A-module. Also since A is strongly G-graded, so A ⊗
Ae

Me
∼= M as a G-graded A-

module by [17, Theorem 1.3.4]. Hence M is a G-graded S-Noetherian A-module.

The converse part follows from Theorem 3.11. □

Corollary 3.33. If G is finitely generated, A is a strongly G-graded ring, S is

a countable m.c.s. of Ae and M is a G-graded A-module, then the following are

equivalent:

(1) M is a G-graded S-Noetherian A-module.

(2) M is an S-Noetherian A-module.

(3) Me is an S-Noetherian Ae-module.

We next present an example which shows that the condition strongly graded in

Theorem 3.32 is not superfluous.

Example 3.34. Let G = Z, A = Z = A0 and M = Z(N)
4 (Direct sum of countable

copies of Z4) be a naturally G-graded A-module. Take the m.c.s. S = {3n : n ≥ 0}.
Then M0 = Z4 is a G-graded S-Noetherian A0-module but M is not a G-graded

S-Noetherian A-module.

Let A be a ring, S a m.c.s. of A, and B an A-algebra. Following [10], B is said

to be an S-finite A-algebra if there exist s ∈ S and b1, b2, . . . , bn ∈ B such that

sB ⊆ A[b1, b2, . . . , bn]. Also, recall from [1] that a m.c.s. S of a ring A is called

anti-Archimedean if ∩∞
k=1s

kA ∩ S ̸= ∅ for all s ∈ S. The following theorem is a

generalization of [9, Theorem 2.38].
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Theorem 3.35. Let A be a G-graded ring, H a subgroup of G such that G/H is

finitely generated, and S an anti-Archimedean m.c.s. of h(AH). If A is G-graded

S-Noetherian, then A is an S-finite AH-algebra.

Proof. Assume G/H is generated by n elements. We prove this theorem by in-

duction on n. If n = 1, then G/H =< gH >= {gkH : k ∈ Z} for some g ∈ G;

hence we can write A =
⊕

k∈Z AgkH , where AgkH =
⊕

h∈H Agkh. By Theorem

3.11, each AgkH is a G-graded S-Noetherian AH -module, so if order of gH is

finite then by Corollary 3.9, A is a G-graded S-Noetherian AH -module. Conse-

quently, A is an S-finite AH -module, and therefore A is an S-finite AH -algebra.

Now suppose order of gH is infinite. Consider the ideal I =< {
⋃

k>0 AgkH} >

of A. Then I is a G-graded ideal of A, and therefore I is S-finite. This implies

that there exist s ∈ S and homogeneous elements x1, x2, . . . , xj ∈ I such that

sI ⊆ Ax1 + Ax2 + · · · + Axj ⊆ I. Suppose deg(xi) = gkihi for some hi ∈ H and

some ki > 0 for all i = 1, 2, . . . , j. Put K := max{k1, k2, . . . , kj}. By Theorem

3.11, each AgkH is a G-graded S-Noetherian AH -module, and so by Corollary 3.9,

L =
⊕K

i=1 AgiH is an S-finite AH -module; hence there exist s′ ∈ S and homoge-

neous elements y1, y2, . . . , ym ∈ L such that s′L ⊆ AHy1+AHy2+ · · ·+AHym ⊆ L.

Consider the G-graded subring B = AH [x1, x2, . . . , xj , y1, y2, . . . , ym] of A. Now

we induct on k to show (ss′)kAgkH ⊆ B for every k ≥ 0. Obviously this holds

for every k ≤ K. Suppose k > K and (ss′)iAgiH ⊆ B for all i < k. Let

x ∈ h(AgkH), then x ∈ I, in fact x ∈ Agkh for some h ∈ H. This implies that

sx ∈ Ax1+Ax2+· · ·+Axj , and so we can write sx = a1x1+a2x2+· · ·+ajxj for some

a1, a2, . . . , aj ∈ A. Suppose deg(s) = h′ for some h′ ∈ H. Since sx is a homogeneous

element of degree gkhh′, we may assume that each ai is a homogeneous element

of A. Then we have deg(ai) = deg(xi)
−1deg(sx) = g−kih−1

i gkhh′ = gk−kihh′h−1
i ;

hence ai ∈ Agk−kiH . By induction hypothesis, (ss′)k−kiai ∈ (ss′)k−kiAgk−kiH ⊆ B

for i = 1, 2, . . . , j. Consequently, (ss′)kx = s′(ss′)k−1a1x1 + ss′2(ss′)k−2a2x2 +

· · · + skj−1s′kj (ss′)k−kjajxj ∈ B since s, s′ ∈ S ⊆ h(AH) ⊆ B. Hence by induc-

tion, (ss′)kAgkH ⊆ B for all k ≥ 0. Also since S is an anti-Archimedean subset of

AH , there exists an element t ∈
⋂∞

k=1(ss
′)kAH ∩ S such that tAgkH ⊆ B for all

k ≥ 0. Similarly if we take I =< {
⋃

k<0 AgkH} >, then using similar argument,

there exits t′ ∈ S such that t′AgkH ⊆ B for all k < 0. Thus we conclude that

tt′A ⊆ B = AH [x1, x2, . . . , xl, y1, y2, . . . , ym]; hence A is an S-finite AH -algebra

which implies that statement of the theorem is true for n = 1. Now assume theo-

rem is true for n−1, where n > 1. Since G is abelian, we can obtain a subgroup H ′

ofG containingH such thatG/H ′ is cyclic andH ′/H is generated by n−1 elements.
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Then by Corollary 3.13, AH′ is H ′-graded S-Noetherian as S ⊆ h(AH) ⊆ h(AH′).

By induction hypothesis, AH′ is an S-finite AH -algebra. So by the case n = 1, A is

an S-finite AH′ -algebra. Hence by [10, Lemma 5], A is an S-finite AH -algebra. □

In the next result, we prove Hilbert’s basis theorem for G-graded S-Noetherian

rings. This result is a generalization of [1, Proposition 9].

Proposition 3.36. Let A be a G-graded ring and S ⊆ h(A) an anti-Archimedean

multiplicatively closed subset. If A is G-graded S-Noetherian, then so is the poly-

nomial ring A[x].

Proof. Since A = ⊕g∈GAg is G-graded, A[x] is also a G-graded ring with grading

(A[x])g = Agh[x] for every g ∈ G, where h = deg(x). Let I be a graded ideal

of A[x]. Let J be the ideal of A consisting of zero and leading coefficients of

polynomials in I. First we show J is a graded ideal of A. For this, let α ∈ J . Then

there exists an element f(x) ∈ I such that f(x) = αxn+ (lower terms). Write

α =
∑

g∈G αg, where αg ∈ h(A). Then αgx
n+ (lower terms) ∈ I since I is a graded

ideal of A[x]. Consequently, αg ∈ J for each g ∈ G and so J is a graded ideal of

A. Since A is G-graded S-Noetherian, sJ ⊆ (a1, a2, . . . , an) for some s ∈ S and

homogeneous elements a1, a2, . . . , an ∈ J . For each ai, let fi be an element of the

form aix
di+ (lower terms) ∈ I. Since ai is homogeneous, we can assume each fi is

homogeneous. Then the ideal I ′ generated by the set {f1, f2, . . . , fn} is a graded

ideal of A[x]. Let d = max(di). Let T be the A-submodule of A[x] generated by

the set {1, x, x2, . . . , xd−1}. Clearly, T is a finitely generated graded A-module and

so by Proposition 3.8, T is a G-graded S-Noetherian A-module. In particular T

is S-finite; whence there exist t ∈ S and homogeneous elements g1, g2, . . . , gm ∈ T

such that tT ⊆ Ag1 +Ag2 + · · ·+Agm.

Let h(x) = axk+ (lower terms) be any homogeneous elements of I. Then a ∈ J ,

and so we can write sa =
∑n

i=1 uiai, where ui ∈ A. If k ≥ d, then sh(x) −∑
uifix

k−di ∈ I and has degree less than k. Proceeding in this way, we can go

on subtracting elements of I ′ from sih(x) until we get a polynomial g(x) of degree

less than d, that is, we get r ≥ 1 such that srh(x) = g(x) + p(x) where p(x) ∈ I ′.

Consequently, srh(x) ∈ I ′ + T . Now since S is anti-Archimedean, there exists

w ∈ ∩is
iA. This implies that twh(x) ∈ I ′ + L, where L is the graded ideal of A[x]

generated by the set {g1, g2, . . . , gm}. Thus twI ⊆ F ⊆ I, where F = I ′ + L is

a finitely generated graded ideal of A[x]. Hence A[x] is a G-graded S-Noetherian

ring. □
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Now we end this section by giving a characterization of G-graded S-Noetherian

rings which is a generalization of [9, Theorem 2.41].

Theorem 3.37. Let A be a G-graded ring, S an anti-Archimedean m.c.s. of A0

and H a finitely generated subgroup of G. Then A is a G-graded S-Noetherian ring

if and only if A is a G/H-graded S-Noetherian ring.

Proof. Suppose A is G-graded S-Noetherian. Notice that A =
⊕

g∈T AgH is also

a G/H-graded ring, where T is a transversal of H in G. Let I be a G/H-graded

ideal of A. Suppose H is generated by n elements. We use the induction on n.

If n = 1, then H =< h >= {hi : i ∈ Z} for some h ∈ H. Let b ∈ I be a G/H-

homogeneous element of degree gH for some g ∈ G. Write b = bk1
+ bk2

+ · · ·+ bkm

where 0 ̸= bki ∈ Aghki and k1 < k2 < . . . < km. Suppose order of h is infinite, then

ghki ̸= ghkj for i ̸= j. Consider the G-grading on the polynomial ring A[x] with

deg(x) = h. Consider the polynomial fb(x) = bk1
xkm−k1 + bk2

xkm−k2 + · · · + bkm
.

Since deg(bki
xkm−ki) = ghkihkm−ki = ghkm , so each bki

xkm−ki is a G-homogeneous

element of same degree which implies that fb(x) is a G-homogeneous element of

A[x] of degree ghkm . Consider the G-graded ideal Ī of A[x] generated by the

set {fb(x) : b is G/H-homogeneous element of I }. Now since A is G-graded S-

Noetherian, so by Proposition 3.36, A[x] is a G-graded S-Noetherian ring which

yields that Ī is S-finite. Then there exist s ∈ S and G-homogeneous elements

fa1(x), fa2(x), . . . , far (x) ∈ Ī such that sĪ ⊆ A[x]fa1(x) + A[x]fa2(x) + · · · +
A[x]far

(x) ⊆ Ī; hence there exists βi(x) ∈ A[x] such that sfb(x) = β1(x)fa1
(x) +

β2(x)fa2
(x) + · · · + βr(x)far

(x). Put x = 1, then fb(1) = b, βi(1) ∈ A, and

ai := fai(1) ∈ h(A). Then we have sb = β1(1)a1 + β2(1)a2 + · · ·+ βr(1)ar. Conse-

quently, sI ⊆ Aa1 + Aa2 + · · · + Aar ⊆ I, and therefore I is S-finite in this case.

Now suppose order of h is finite, say p. Then there exist unique qi, ri ∈ Z such

that ki = qip+ ri where 0 ≤ ri < p; hence we get i1, i2, . . . , ik ∈ {1, 2, . . . ,m} such

that ri1 < ri2 < . . . < rik < p. We can write b = bri1 + bri2 + · · ·+ brik and we can

proceed as above to show I is S-finite in this case also. Thus A is a G/H-graded

S-Noetherian ring. □
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