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Abstract

In the present paper, we study pseudo-Riemannian submanifolds which have 3-planar
geodesic normal sections. Further, we consider W-curves (helices) on pseudo-Riemannian
submanifolds. Finally, we give necessary and sufficient condition for a normal section to be a
W-curve on pseudo-Riemannian submanifolds.
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geodesic.

3-Diuzlemsel Geodezikli Yari-Riemann Altmanifoldlar
0z

Bu ¢alismada, 3-diizlemsel geodezik normal kesitlere sahip yari-Riemann almanifoldlar
ele alinmistir. Daha sonra, yari-Riemann altmanifoldlar1 tizerindeki W-egrileri (helisler)
incelenmistir. Son olarak, yari-Riemann altmanifoldlar: {izerindeki normal kesitlerin W-egrisi
olmasi i¢in gerek ve yeter sartlar elde edilmistir.

Anahtar Kelimeler : Yari-Riemann altmanifold, geodezik normal kesit, W-egrisi, diizlemsel
geodezik

Introduction the Riemannian case. The helices are
characterized in Lorentzian submanifold
Let M"™ be an n-dimensional MM = NI [2].
Riemannian manifold. A regular curve y in
M" is called a helix if its first and second A submanifold M; < N{" is said to
curvatures are constant and the third have planar geodesics if the image of each

curvature is zero. It has been shown that

B n - m
every helix in a Riemannian submanifold geodesic of M, lies in a 2-plane of N

n . . . [3]. In the Riemannian case such
M" isalso a heInf in the émblent_space [1n]. submanifolds were studied in [4], [5], [6].
For the pseudo-Riemannian manifold M, and [7]. Recently, Kim studied minimal
helices are defined almost the same way as surfaces of pseudo-Euclidean spaces with
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geodesic normal sections [8].

In the present study, we give some
results toward a characterization of 3-planar

geodesic immersions f: M — N from
an n-dimensional, connected pseudo-

Riemannian manifold M into an m-
dimensional pseudo-Riemannian manifold

N . Further, we consider W-curves

(helices) on pseudo-Riemannian
submanifolds. Finally, we give necessary
and sufficient condition for a normal section
to be a W-curve on pseudo-Riemannian

submanifold M.

Basic Concepts

Let M = N{" be a submanifold in
an m-dimensional pseudo-Riemannian
manifold NI of index s. Let V and V

denote the covariant derivatives of M;' and
N respectively. Then,
X,Y eT,(M[) the second fundamental

form h of M| is defined by

for

h(X,Y)=VyY -VY. (1)

For a normal vector field £ e N(M;") we
put
Vyé=-AX+Dyé, 2)

where A: is the shape operator and D is the

normal connection of M.
The covariant derivatives of h is given by

(Vxh)(Y,Z) = Dxh(Y,2)

3)
~h(VyY,Z)=h(Y,Vy2),

where X,Y,ZeT,(My) and V is the
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Vander Waerden-Bortolotti connection [9].
Then the Codazzi equation

(Vxh)(Y, 2) = (Vyh)(X, Z) = (Vh)(X, Y).

(4)

holds. If Vh =0, then hiis said to be parallel
[10].

The mean curvature vector field H
of M/ is defined by

1

H:HZ“(ei,ei)h(ei,ei), i=1..,n, (5)

where {g;,€,.,...,€,} isan orthonormal frame

field of M[ . Consequently, H is called
parallel when DH =0 holds.

If the second fundamental form h
satisfies

g(X,Y)H =h(X,Y), (6)

forany X,Y eT,(M/), then M/ is called

a totally umbilical. A totally umbilical
submanifold with parallel mean curvature
vector fields is said to be an extrinsic sphere
[11].

Helices in a Pseudo-Riemannian

Manifold
Let » be a regular curve in a

pseudo-Riemannian manifold M . We
denote »'(s) = X , when (X, X)=¢e=1+1
y is called a unit speed curve. The curve y

is called a Frenet curve of rank
dO<d<n) , if its derivatives
7(5),7"(S),ns 79 () are linearly

independent and  #(s), 7(S),..., 79 (s)
are no longer linearly independent for all
sel [7]. To each Frenet curve of order d
we can associate an orthonormal d frame
M.Vs,...Vy } along y, called the Frenet
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frame, and kq,k»,...,kq_; are curvature
functions of ».

We have the following result.

Proposition 1: Let y:1 — M, be a non-
null smooth curve of osculating order d in
of M, and ) =X,V,,...V4} its Frenet

frame. Then the following Frenet equations
are hold;

V]_' = VX X = 82k1V2, (7)
V2' = VXVZ = —Slklvl + 6'3k2V3, (8)
Via =V Vs =84 ,Ky Vg, +84Ke 4 Vg, (9)
Vi =VxVy =—¢&41Kg1Vg1, (10)

where & =(V;,V;) =+ 1<i<d -1 and k;
are curvature functions of y .

Definition 2: A smooth curve y of rank d
on M/ is called a W-curve of rank d if its
curvatures kg, K»,....kq_; are all constant
and ky =0[7].

Proposition 3: Let » be a non-null W-

curve of rank 2 in M. Then the third
derivative »" of y is a scalar multiple of
y . In this case necessarily

7"(5) = —e162k 7 (5). (11)

Proof: By the use of (7) we have
7"(S) = &,k V5 (S) Furthermore,
differentiating this equation with respect to
s and using (8) we obtain

Y"(s) = _8182k12X +8,K1V,(5) + £,65K K, V4(5)  (12)

Since y is a W-curve of rank 2 then by
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definition k, is constant and k, =0 we get
the result.

Proposition 4: Let y be a non-null W-

curve of M. If y is of osculating order 3
then

Y(s) = &5 (erky” + £3ko7) 7" (5)

holds.

(13)

Proof: Differentiating (12) and using the
fact that kj,k, are constant and k3 =0 we
get the result.

Planar Geodesic Immersions

Let M = N{" be a submanifold in
m-dimensional  pseudo-Riemannian

manifold N{" of index s. For peM] and

X eTp(M{') the vector X and the normal

an

space Np(MP) determine a (m-n+1)-
dimensional totally geodesic submanifold
[ of NJ'. The intersection of M| with T
gives rise a curve y (in a neighborhood of

p) called the normal section of M| at p in
the direction of X [12]. The submanifold
M is said to have d-planar normal
sections if for each normal section y the
higher order derivatives
7(8),7" () YD (5), 7™ (s), 1<d <m-n+1
are linearly dependent as vectors in T" [12].
The submanifold M is said to have d-
planar geodesic normal sections if each
normal section of M is a geodesic of M/

.The immersion in pseudo-Euclidean space
with 2-planar geodesic normal section have
been studied in [3]. See also [4].

Example 5: [3] Pseudo-Riemannian sphere
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SE(C)z{peEf“:<p—a,p—a>:%},c>o, (14)
and pseudo-Riemannian hyperbolic space
Hp(c)z{peE'r‘jll:<p—a,p—a>=%},c<o, (15)

both have 2-planar
sections.

geodesic  normal

We have the following result.

Proposition 6: Let » be a non-null

geodesic normal section of M = N[". If
¥'(s) = X (s), then we have

y"(s) =h(X, X), (16)

7"(8) =—Ayx )X +(Vxh)(X, X),  (17)

7™ (s) :_VX(Ah(X,X)x)_rEABX,X)XIX) (18)
- A@h)(xyx)x + (V4 V)X, X),

Definition 7: The submanifold M, (or the

isometric immersion f) is said to be pseudo-
isotropic at p if

L =(h(X, X),h(X, X)),

is independent of the choice of unit vector X
tangent to M; at p. In particular if L is

independent of the points then M/ is said
to be constant pseudo-isotropic.

The submanifold M is pseudo-
isotropic if and only if

(h(X,X),h(X,Y))=0,
for any orthonormal vectors X and Y [3].

The following results are well-
known.
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Theorem 8: [3] If a submanifold M c E{"

has 2-planar geodesic normal sections, then
it is a submanifold with zero mean

curvature in a hypersphere S"7* or H"*
if and only if L is a non-zero constant.

Theorem 9: [8] The surface Mch;“

with 2-planar geodesic normal sections is
constant pseudo-isotropic.

Theorem 10: [13] Let M, be a pseudo-
Riemannian submanifold of index r of a

pseudo-Euclidean space EJ' of index s
with geodesic normal sections. Then

((Vxh)(X, X),(Vxh)(X, X)) (19)

is constant on the their tangent bundle UM
of M/

Theorem 11: [13] Let Mr2 be a minimal

surface of E2 with geodesics normal
sections. Then we have

i) Mr2 has parallel second fundamental
form and 0-pseudo isotropic (i.e. L=0),

i) Mr2 has 2-planar geodesic normal
sections,

iii) M2 is flat.
Main Results

Submanifolds M" in E"9 with 3-
planar normal sections have been studied by

S.J. Li for the case M" is isotropic [14] and
sphered [15]. See also [16] for the case M "

is a product manifold in E™ In [17] the
authors consider submanifolds in a real

space form N"*d(c) with  3-planar
geodesic normal sections.
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We proved the following results.

Proposition 12: Let M!c N be a
submanifold with 3-planar geodesic normal

sections then M/ is constant pseudo-
isotropic.

Proof: Similar to the proof of Lemma 4.1 in
[18].

Proposition 13: Let M!c N be a

submanifold with 3-planar geodesic normal
sections then we have

(Vxh)(X, X) = &5(Xky )V, + &263kiKoV3, (20)
and

Anx )X = £182k° X, (21)

hold.

Proof: Let y be a normal section of M/ at
point p=y(s) in the direction of X.
Further, we suppose that kq(S) is positive.
Then k; is also smooth and there exists a

unit vector field V, along y normal to M/
such that

h(X, X) = <V2,V2>k1V2. (22)

Since VyV, is also tangent to M;', there

exists a vector field V3 normal to M} and
mutually orthogonal to X and V, such that

Vo = (X, X kg X +(V5,V5)kVa.  (23)

Differentiating (22) covariantly and using
(23) we get

(Vxh)(X, X) = —¢,¢,k,*X

(24)
+&,(Xk)V, +¢,e,k Kk, Vs,

111

ISSN: 2536-4383

where (V;,V;)=g =%1. Comparing (24)
with (17) we get the result.

Proposition 14: Let y be a normal section
of M/ at point p = y(s) in the direction of

X. y isanon-null W-curve of rank 2in M/
if and only if

V, V X +g(V X,V X)g(X, X)X =0 (25)
holds.

Proof: Since 7'(s) = X(s) :
7"(8)=VyxVxX and

9(X, X) = &1, §(Vx X, Vx X) = gk”

So, by the wuse of the equality

7"(S) = &k, (s) we get the result.

Theorem 15: Let M| be a totally umbilical

submanifold of N with parallel mean
curvature vector field . If the normal section
y isa W- curve of osculating order 2. Then
y is also a W-curve of N" with the same
order.

Proof: Suppose » isaW-curve of rank 2 in

M[ then it satisfies the equality (25).
Further, by the use of (1) we get

7" =Vy X =Vy X +h(X,X). (26)
Since M/ is totally umbilical then
g(X,X)H =h(X, X). So, the equation (26)
reduces to

7 =VyX =Vy X +g(X,X)H. (27)

Differentiating the equation (27)
with respect to X, we obtain
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Yw=€X§XX=VXVXX+Q(X’VXX)H (28)
90X X)(—AyX + Dy H).

Further, taking use of DH =0 and (26)-
(28) get

VyVy X +g(Vy X,Vy X)g(X, X)X
=VyVyxX-g(H,H)g(X, X)X
+Hg(Vx X, Vx X)g(X, X)}g(X, X)X
:vXVXX +g(VXX,VX X)g(X,X)X

So, by previous proposition y is a W-curve
of rank 2 in N{".
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