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ABSTRACT

In this study, the Generalized Integral Transformation Technique (GITT) is used to describe 
the effect of buoyancy force and magnetic field on the vortex breakdown process generated 
by the rotation of an electrically conductive fluid. A magnetic field is positioned vertically 
to stabilize the swirling flow caused by the rotation of the bottom disc of a  cylindrical 
recipient. Three fluids were compared in this study where the range of Richardson number 
is 0 ≤Ri ≤2.0. When the temperature difference is greater than Ri = 0.1, many layers 
become visible. These stratified flu id layers act as thermal insulators. In the  case of str 
atification, the increased magnetic field reduces the total number of layers formed in the fl 
uid. The  influence of gradient temperature on the distribution of the layers generated is 
discussed. The limitations between the multilayer structure and the monolayer structure 
for three fluids are calculated as a function of the flow parameters.
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INTRODUCTION

Flow confined between two disks in which one end 
disk is rotating and the other is stationary is the simplest 
state in which vortex breakdown bubbles occur along the 
symmetry axis. This type of flow is directly applicable to 
many industrial processes. The results of a visualization 
experiment first came out by Vogel [1], which exposed that 
this vortex undergoes breakdown, afterward, Escudier [2] 
detailed these through an experimental study to take pic-
tures of the internal structure of the flow. There are several 
studies in the literature examining vortex breakdown and 

fluid layers [3-5].  Some study is interested in the effect 
of thermal gradient which is the origin of the increase or 
decrease of stratification [6-8] and a decrease in the number 
of Nusselt [9,10].

Recently the magnetic field has been used to suppress 
vortex breakdown and stabilize the rotating flow. Good 
crystal quality is achieved in the process of crystal growth 
under magnetic field control through the melt mass [11]. 
The magnetic field is also used in the strand-casting process 
to reduce deficiencies in the finished iron with additional 
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carbon products [12]. Other research, like reference [13], 
is interested in using the magnetic field to transport the 
plasma away from the walls of the Tokamak reactor.

 The electromagnetic force or Lorentz force is the 
force to which a charged particle is subjected in an elec-
tromagnetic field. This force decreases or increases the 
axial velocity and therefore affects the rotating flow field. 
In this case, the Hartmann layer replaces the Ekman layer 
and the Ekman boundary layer forms in the vicinity of 
the rotating disc [14]. The challenges of the stability of 
mixed flow in an enclosed container are discussed in refer-
ence [15], which verified that the uniform magnetic field 
may be employed to control and stabilize fluid motion. 
Magnetohydrodynamic effects on the counter-rotating 
flow and co-rotating flow, associated with heat transfer 
were studied by Mahfoud and Bessaih[16] and  Mahfoud 
et al. [17]. With the help of a magnetic field, Bendjaghlouli 
et al.[18,19] were able to demonstrate the phenomena of 
flow stabilization in a liquid metal-filled truncated conical 
container.  As proven by Kharicha et al.[20], the electrical 
conductivity of the walls is a key element in the flow struc-
ture, and it should be given special consideration in some 
studies, such as in [20].

Some researchers have studied the behavior of vor-
tex breakdown caused by a rotating disk in a cylindrical 
container in the presence of a magnetic field. [21, 22]. 
Laouari et al. [23] recently investigated the impact of the 
axial magnetic field and the conductivities of the walls on 
the location of breakdown in two regimes (stationary and 
oscillatory).

Most of the previous studies rely on either finite differ-
ence or finite volume schemes to solve governing equations, 
where a spatial discretization of the domain is required for 
numerical schemes and an approach for velocity-pressure 
decoupling. Several researchers try to solve the governing 
equations using the stream-function, which necessitates the 
use of a particular scheme to correctly estimate the fourth 
order of derivatives [24].

In this article, a hybrid technique approach called GITT 
(Generalized Integral Transform Technique) was employed 
to solve problems of linear or nonlinear diffusion and con-
vection-diffusion [10, 25, 26, 27]. As discussed in different 
studies [26,27], this approach may be employed for MHD 
fluid flow and heat transfer problems.

The first goal is to understand the role of the tempera-
ture gradient in vortex breakdown and how it affects the 
appearance of the layered structure. The second goal is to 
discover the critical magnitude of Ha for eliminating the 
layer’s structure. As a consequence, domain borders where 
no layering occurs are established.

MATHEMATICAL MODELLING MODEL

In this study, a cylindrical container of radius R and 
height H contains an electrically conductive fluid. Three 

aspect ratios (γ=H/R=2.5, 2.0, and 1.5) are compared, as 
well as three fluids (Mercury, lead-lithium alloy, and mol-
ten lithium). The laminar swirling flow in this situation is 
characterized by the incompressibility of the three fluids.  
The temperature difference (∆T) and a magnetic field are 
imposed simultaneously in the vertical direction. The swirl-
ing motion is generated by the bottom lid, which revolves 
at a fixed speed of rotation (Ω), while the top wall remains 
fixed. Because the magnetic Reynolds is so minimal, the 
magnetic field induction may be ignored and replaced with 
electromagnetic force (EMF). For three fluids, the follow-
ing hypotheses are considered: Newtonian; constant; the 
Boussinesq approximation is valid, the impact of Joule and 
viscous dissipation are ignored, and at last, radiation is 
extremely weak.

Governing Equations
The axisymmetric mathematical equations are expressed 

in a two-dimensional cylindrical coordinate system, where 
((∂⁄∂θ=0). As they stand, the governing equations (MHD-
mixed convection) are dimensionless as: R (lengths), 
which). The governing equations (magnetohydrodynamic-
mixed convection) are dimensionless as is:  R (lengths), the 
ΩR (velocities), ρ(ΩR)2 (pressure), Θ = (T – T0)/∆T (tem-
perature) and, B0ΩR2 (electric potential). So, the dimen-
sionless equations  of the steady flow can be described as:
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Figure 1. Flow geometry and schematic of fluid layers.
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The interaction of convective flow with the magnetic 
field induces the electric current:

 J = σ(V × B + E) (6)

 The velocity vector V (vr, vθ, vz), hence the radial, axial, 
and azimuthal velocity components are denoted (vr, vz and 
vθ), respectively. E = –∇Φ is the electric charges and σ is the 
electric conductivity. The electric potential is given by the 
divergence  of electric current ∇J = 0:
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The components of  EMF( Lorentz force, FLorentz) are:
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and the dimen-
sionless electric 
currents are:
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Equation (4) is independent of the vr, vz components. 
As a result, the coupled equations (Eqs. (4) and (7)) may be 
used to simplify the computations.  The Hartmann number 
is modest in our research, thus we may use the following 
simplification: (∂Φ/∂r « vθ). As a result, we obtain FLθ ≈ –vθ 
and the electric current  Jr ≈ vθ, respectively.

Here denote that,  density (ρ), kinematic viscosity (ν), 
thermal expansion (β), thermal diffusivity (α), and electric 
conductivity (σe). The following parameters  Ha, Re, Ri, and 
Pr are defined as follows:

Ha = B0R√σe/(νρ) define the rapport between the electro-
magnetic force and viscous force, where named Hartmann 
number. 

Re=ΩR2/ν is the Reynolds number, which shows the 
relationship between inertial and viscous forces.

Ri = βg∆T/Ω2R is the Richardson number, which repre-
sents the potential kinetic energy relationship.

Pr=ν/α  is the Prandtl number, defined as the momen-
tum diffusivity to thermal diffusivity ratio.

All the boundary conditions are shown in Table 1 shows. 
The cylinder walls are presumed to have no-slip character-
istics (vr =  vθ = vz = 0) and electrically insulated.

To implement the GITT approach the stream function 
formulation is employed [10, 26, 27]. To produce a system 
of second and fourth-order partial differential equations, 
we need to follow the following steps. The first step is to 
remove the pressure field by expressing the streamfunction  
Ψ(r,z) as:

 v
r r

v
r rr z=

∂
∂

= −
∂
∂

1 1Ψ Ψ
,   (10)

The second step is to make the differentiation of Eqs. 
(2) and (3) to z and r, respectively. Step three is to sub-
tract the resulting equations, and use the streamfunction 
definition.

Table 1. The boundary conditions

Boundary Radial velocity Axial velocity Azimuthal velocity Temperature
r = 0, 0 ≤ z ≤  γ vr = 0 (∂vz)/∂r = 0 vθ = 0 ∂Θ/∂r = 0
r = 1, 0 ≤ z ≤  γ vr = 0 vz = 0 vθ = 0 ∂Θ/∂r = 0
z = 0, 0 ≤ r ≤ 1 vr = 0 vz = 0 vθ = 0 Θ = –0.5
z = γ , 0 ≤ r ≤ 1 vr = 0 vz = 0 vθ = 0 Θ = 0.5
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•	 operators ∃2, ∃4 and ∇2 are defined as:
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Solution methodology
The GITT approach requires three phases. By choos-

ing an appropriate eigenvalue situation, the initial step is 
to supply the eigenvalues and, as a result, the eigenfunc-
tions.  The second step decrypts the integral transform pair. 
Finally, Eqs. (11, and13) are transformed by integral. The 
steps methodology is more detailed in reference [10,27].

Terms Ha2
∂

∂






2

2

Ψi z
z

( )
 and Ha2v-θ,i(z) that appearing in 

the nonlinear coupled ordinary differential system(ODEs) 
represents the body forces due to the induced magnetic 
field (Lorentz force), where Ψ–i(z), v-θ,i(z) are the transformed 
potentials of streamfunction and azimuthal velocity, 
respectively. Then, the stream function and angular velocity 
can be used to be recalled the components of the radial and 
axial velocities by using the inverse formula [10]. Eq. (2) 
may also be used to calculate the pressure field by insert-
ing the relationships for the (vr, vθ, vz) and then doing an 
r-direction analytical integration.

NUMERICAL METHOD AND GRID CONSIDERED

DBVPFD is the double-precision Fortran subroutine 
of the IMSL library [28], which has been used to numeri-
cally solve the coupled system (ODEs). The finite difference 
method is used to solve ordinary differential equations. 
At present, the relative error of 10–5 is accepted. The mesh 
size (Table 2) is used to satisfy the adaptive error, several 
meshes will be used because the Hartmann layers influence 
the solution. Nψ, Nθ, and NΘ  are respectively the truncation 
orders which are shown in Table 2 for three combinations, 
case A: (γ=1.5; Re=1500); case B: (γ =2.; Re=1855,); and 
case C: (γ =2.5; Re=2400)

RESULTS AND DISCUSSION
The numerical code’s validity is verified by comparing 

the obtained findings to the numerical and experimental 
investigation reported by Kharicha et al. [20]. They studied 
flow in a cylindrical container, which is filled with a viscous 
fluid (mercury). The steady laminar flow is subject to the 
presence of a constant magnetic field. Figure 2 depicts the 
reconstruction of the hydrodynamic (Ψ) and electric (Ψ') 
for the aspect ratio γ = 2 and the magnitude Ha.  However, 
the obtained plots of streamlines in Fig. 2a are coherent 
with the observations of Kharicha et al. [20]. The electric 
current streamlines are traced using the electric stream-
function ψ' (Fig.2b) defined as: Jr = 1/r.∂Ψ'/∂z [29]. Finally, 
it should be noted that our results are presented to the left 
of each figure.

Table 2. Number of the grid points Nψ,Nθ, and NΘ in the 
final mesh

Cases 0≤Ha≤10 11<Ha≤20 21<Ha≤40

Nψ Nθ NΘ

Case A 100 110 120
Case B 150 165 180
Case C 200 220 240

θ
θ

θ θ θ

θ θ θ θ
θ

θ

θ

θ

γ γ γ
γ

θ
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Buoyancy influence on the fluid layers and  vortex 
breakdown

Three Prandtl values, Pr = 0.025, 0.032, and 0.065, as 
well as three aspect ratios and Reynolds numbers, were 
computed. The studied Richardson number falls between 
0 and 2.0. The respective combinations are case A: (γ = 1.5; 
Re = 1500); case B: (γ = 2.; Re = 1855,); and case C: (γ = 
2.5; Re = 2400).  The definition of the number of layers is 
the distinct recirculating fluid formed in the meridional 
plane.

Case of Pr=0.025
To examine how buoyancy affects the creation of fluid 

layers as well as the behavior of vortex breakdown (posi-
tion and suppression), taking the case of Mercury (satu-
rated liquid at 293°K), corresponding to Pr=0.025. The 
basic flow case (Ri = 0) corresponds to forced convection 
which results in the decoupling between the velocity and 
temperature fields.  In case (A) corresponding to Re =1500 
and H/R=1.5, one axisymmetric bubble is formed near the 
mid-axis of the cylinder when Ri =0 as shown in Fig. 3. In 
this situation, the revolving disk exerts a centrifugal force 
on the fluid, accelerating it radially to the sidewall and in 
spiraling it up. When the fluid is stopped by the side wall, 
it will turn upwards, consequently, jets will be produced. 
The upward jets and downward flow result in the creation 
of a concentrated vortex. According to Vogel [1], this vor-
tex undergoes breakdown and appears on the cylinder axis. 
Fig. 3a indicates that the breakdown location is at z = 0.969 
and on the r-axis is at |r| = 0.145 for case (A). However, 
buoyancy forces impact the pressure gradient, which tends 
to reduce non-homogeneities, thus the vortex breakdown 
can be predicted to disappear when Ri=0.1. In this case, 
the fluid moves quasi-rigid with an intermediate velocity 
between the end disks. However, the flow is under the azi-
muthal equilibrium generated by the viscous stress. When 
Ri = 1 (Fig. 3-c), the buoyancy acting on the fluid nearby 
of a hot disk is much stronger than the force of inertia. 
Two cells dominate secondary flow and fluid cannot strain 
downward. Above z >1, a corner recirculating (counter-
rotating flow) occurred near the top stationary disk, which 

has a smaller size  (plot in A of Fig. 3c). As the Richardson 
number is increased to Ri=2, this region expands and occu-
pies the upper part of the cylinder (Fig. 3e). Fluid recircula-
tion is greatest when Ri=0  (ψmax =0.0083), and when Ri>0, 
the ψmax decrease quickly with the Ri and are 0.0079, 0.0071, 
0.0069, and 0.0067 at Ri =0.1, 1.0, 1.5 and 2, respectively.

Plots in Fig. 3’s second row develop scenario B for 
Ri=0, which shows a two-bubble vortex breakdown. The 
small and the big bubble are superimposed and centered 
on the z-axis at 0.92 and 1.41, respectively. However, in 
this case, two upward jets are apparent near the walls. A 
short increase in the Richardson number to Ri =0.1 (Fig. 
3b) causes the disappearance of vortex breakdown bubbles. 
To examine the transition from a single-layer to a double-
layer flow structure, the range of Ri=0.5 to 2 was performed 
and summarized in the second line of Fig. 3. Due to the 
counter-rotating flow, two lobes centered at |r| =0.74 and 
z=1.30 become visible at Ri=1. This is seen in Fig. 3 (c) in 
scenario B (Ri=1), where the isoline reveals the formation 
of a double-layer flow pattern. If Ri continues to rise (from 
1.5 to 2),counter-rotating cells develop near the upper disc 
in the form of a double lobe.

Case C is given in the third row of Fig.3, where the 
effect of Richardson’s number is shown.  According to Omi 
and Iwatsu [8], a bubble with the shape of a “cucumber” 
is formed when two bubbles join. The fluid rotates quasi-
rigidly (Ψmin=0) when Ri=0.1 because vortex breakdown is 
suppressed in this case (Fig 3b).  When Ri is set to 1, three 
fluid layers arise. In the upper and lower cylinders, there is 
one clockwise recirculation zone and two counterclockwise 
recirculation sections, respectively. In the range of 1.5 ≤ Re 
≤2, up to three layers manifest at Ri = 1.5 and five layers 
stratify when Ri = 2 (Figs. 3d–3e).

Figure 4 depicts the evolution of fluid layer creation 
versus the Richardson number, where the fluid is a lead-
lithium alloy with the Prandtl number Pr=0.025. When 
Ri=0, the flow is characterized by a single layer with a con-
centrated vortex breakdown. In the range Ri≤0.6, the flow is 
defined by a single layer; however, beyond Ri >0.6, a second 
layer is visible. It was also discovered that as the Richardson 
number grows, so does the number of layers in situation A. 
When Ri ≥ 0.4, a second layer is visible in the case of B. Case 
C, shows an increase in the number of layers formed: three 
layers when Ri is 1, four layers between 1.9 and Ri 1.7, and 
five layers when Ri surpasses 1.9.

Case of Pr=0.032
The situation where the fluid is (PbLi 17), which cor-

responds to Pr=0.032 is shown in Fig 5. the flow structure 
in the scenario when Pr=0.032 is almost identical when 
Pr=0.025, in case (A) because the buoyancy effect is negligi-
ble. Exactly like in the example given for Pr=0.025, increas-
ing the value of Ri leads the vortex breakdown bubbles to 
cease to be visible at Ri= 0.1, as in case A. (Fig. 5b). When 
Ri = 1.0, a tiny recirculation zone develops under the top 

Figure 2. Validation with numerical and experimental 
investigation of Kharicha et al. [20]. Our results are 
presented to the left of each figure, which represents the 
hydrodynamic streamfunction (Ψ) and electric one (Ψ')
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stationary disk (Fig. 5c). However, in this scenario, fluid 
recirculation is greatest when Ri=0 (Ψmax =0.0083) and rap-
idly drops with increasing Richardson number to Ψmax 
=0.0066 when Ri=2. The scenario of Ri=0.1 in the second 
row of Fig. 5 is virtually identical to what was found in the 
previous section; furthermore, when Ri = 0.1, all two bub-
bles have vanished (Fig. 5c). The transition from a single 
layer to a double layer flow structure is observed near to Ri 
=1.0, where the Ψmax at this state is 0.0065.  When Ri is raised 
above 1.5, more transitions occur, resulting in a three-lay-
ered structure. A tiny clockwise flow area has located close 
to the fixed top disk, with a reduction in jets (Ψmax=0.0063), 
as shown in Fig.4b. When Ri =2 this new clockwise region 
of flow has grown and led to a four-layer flow structure (Fig. 
5e). As a result, increasing the Richardson number leads to 
a decrease in Ψmax.

The buoyancy effect on the migration to a multi-layered is 
the strongest in instance C. Fig.5(C) shows the results when 
the Richardson number goes from 0 to 2. When Ri = 0 the 

Figure 3. Flow pattern when  Pr=0.025 with  increasing Richardson numbers.

Figure 4. Progression of the number of layers VS Ri  in case 
of Pr = 0.025.
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stream function attains the maximum value (Ψmax=0.0071) 
and decreases as Ri is increased toward Ψmax =0.0055 at Ri 
= 2.0, as shown in Fig. 5(C). The two ‘egg’ bubbles centered 
along the cylinder axis(Ri =0.0) disappear at Ri=0.1. If the 
temperature gradient is reasonable, the Ekmàn suction in 
the core of the cylinder decreases, allowing multi-layers to 
be formed (Fig. 5c). When Ri = 1.5, five layers are devel-
oped, and at Ri = 2.0, six layers are formed, however, some 
layers do not cover the complete area of the cylinder.

Figure 6 shows the progression of fluid layer formation 
vs the Richardson number, with the Prandtl number set at 
0.032. The flow has a single layer for Ri ≤0.4, but the rises 
in Richardson number beyond 0.5 give birth to a second 
stratified layer. The effect of raising Richardson’s number 
on layer creation is larger in the case of (B) than in case A. 
When Ri=2, a four-layer flow structure is found in this situ-
ation (case B). In scenario (C), up to five stacked recirculat-
ing zones are discovered in the case of  Ri = 1.5, while six 
layers are recorded in the Ri = 2 situation.

Figure 5. Flow pattern when  Pr=0.032 with  increasing Richardson numbers.

Figure 6. Growth of the number of layers VS Ri  in the case 
for Pr=0.032.
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formed (plots in (C) of Fig. 7c), and these layers continue 
to merge, as when Ri>1. By Ri =1.5  the counterclockwise 
recirculation region disappears between two clockwise 
recirculation regions,  then merged into a single one to 
occupy the most of upper half-cylinder, which has a four-
lobe structure. The decrease in the number of layering can 
be observed in the range of 1≤Ri ≤2.

Diagrams similar to the one presented in cases 
Pr=0.025 and Pr=0.032 are then constructed to present the 
case of Pr= 0.065, in which the change in the total fluid lay-
ers is given in  Fig. 8a. It is observed in this figure that the 
effect of vertical temperature difference on the flow pattern 
is to lead the meridional flow into layered structures. The 
behavior in cases A and B is the same as in the state of Pr = 
0.032.  It is obvious that in example A, the flow has a single 
layer, which occurs at Ri ≤0.05. Around Ri 0.05, the flow 
was dominated by a single layer; however, at Ri=0.5 and 
1.5, the creation of a second layer and three layers was seen. 
When Ri=2, a five-layer structure is found in the case of B. 
This behavior is in contrast to the previous cases of A and B 
in which a drop in the number of layering can be observed 
for case C when Ri>1.2.

Figure 8b depicts the development of the number of lay-
ers versus Richardson number in Case (C), in which three 
Prandtl values are examined. According to Fig. 8b, the fluid 
qualities represented by the Prandtl number, Pr have a con-
siderable influence on the overall number of fluid layers 

Case of Pr=0.064
The buoyancy action in examples A, B, and C is shown 

in Fig.7, in this case, the fluid corresponds to molten lithium 
at 454°K with Pr=0.064. Here (case A), the breakdown dis-
appears when Ri increases to 0.05. The isolines in scenario 
(A) for Ri=0.05 and 2 demonstrate a drop in the maximum 
stream function, which is 0.0079 and 0.0061, respectively 
(Fig. 7). When Ri = 1 of case (A), a double-lobe structure 
with counter-current emerges and occupies the whole top 
portion of the cylinder, as seen by the streamlines (Fig. 7c). 
In example (A), increasing Ri to 1.5 and 2, respectively, 
induces a disintegration in the countercurrent area, result-
ing in three-layered recirculation zones (Fig. 7d-e).

Multiple fluid layers when Ri in case B goes from 1 to 
2 with an increment of 0.5 are shown in Fig. 7. A more 
increase in Ri leads to the formation of new fluid layers, and 
up to four layered recirculating zones appear for Ri = 1 and 
five such zones are noted for Ri = 1.5 and 2, respectively. 
It should be noted that the layers formed do not spread 
throughout the full meridian, but rather concentrate in the 
middle zone between z =0.73 and |r| = 0.91.

Case C demonstrates that the temperature gradient 
impact is larger when compared to the two preceding cases 
(A and B), as seen in Fig. 7. Here also the results show that 
when Ri=0.05, the vortex breakdown is suppressed. The 
ψmax decreases with increasing Ri and are 0.0065 and 0.0052 
at Ri=0.05 and Ri=2, respectively. When Ri=1, six layers are 

Figure 7. Flow pattern when  Pr=0.064 with  increasing Richardson numbers.
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In the instance of Pr=0.065, the average Nusselt number 
vs Ri is plotted, as shown in Fig. 9b, which compares three 
combinations (A, B, and C). The figures in Fig.9a demon-
strate that as Ri grows, the drops become monotone and 
correspond to the inverse of the aspect ratio. Take note 
that 1/H=0.4 for H/R=2.5, 0.5 for H/R=2.0, and 0.66 for 
H/R=1.5, which are the conduction limit values. Ri=0.86 
yields the highest average Nusselt number value in case 
(A), in which the meridian flow is characterized by a sin-
gle layer. Similarly, the average Nusselt number in cases B 
and C takes extreme values when Ri= 0 and 0.75 and 0.70, 
respectively. Only at the upper heated disk do the effects of 
natural convection remain. The lighter hot fluid rests on the 
heavier cold fluid, which leads to a physical phenomenon 
translated by the thermal isolation between the upper hot 
disk and the lower cold disk. This isolation becomes more 
important when the number of fluid layers is large.

Magnetic effect on fluid layers
To explore the impacts of electromagnétic force on 

layering position or suppression, consider the situations 

formed. As a result, the number of fluid layers grows as Ri 
increases in both the Pr=0.025 and Pr=0.032 situations, as 
seen in Fig. 8b. On the contrary, when Pr=0.065, the num-
ber of fluid sheets increases, but this increase is not mono-
tone since when it surpasses Ri > 1.2, the number of fluid 
sheets decreases.

Heat transfer
The Nusselt number and a variety of factors are used 

to examine heat transfer throughout the section that fol-
lows. The question here is whether the existence or absence 
of fluid stratification is governed by the coupling of the 
Reynolds number and the aspect ratio. Figure 9a depicts 
the development of the average Nusselt number with 
Ri for various Pr in Case A. It is demonstrated here that 
the average Nusselt number decreases with increasing 
Ri for all Prandtl numbers. It is well known that increas-
ing Pr improves advective transport. This is expressed by 
the average Nusselt number, in which at a constant value 
of Ri, a rising Nusselt number is seen if Pr also rises.  
(Fig. 9a).

Figure 8. Evolution of the number of layers versus Richardson number: (a) Pr=0.065 and (b) for all Prandtl numbers.

Figure 9. Effect of the Richardson number on the average Nusselt number.
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of Ri=1.0 for the largest Prandtl number, Pr==0.065, and 
in the three cases (i.e. A, B, and C, respectively). The case 
without magnetic field of Ri = 1 schematized by hydrody-
namic streamlines (Fig 10) shows the existence of an upper 
layer characterized by a double lobe. The electromagnetic 
force induces various interesting changes in the fluid lay-
ers, as seen by the streamlines (Fig. 10). The most impor-
tant point is that when the magnetic field magnitude (Ha) 
increases, the counter-flow layers migrate farther from the 
side walls. Another observation that may be made here 
is that at a critical value of Ha, the counter-flow cells will 
vanish altogether. When Ha = 10, the cells at the top of the 
clockwise recirculation diminish in size and move toward 
the side wall. The counterclockwise recirculation zone, on 
the other hand, expands until it occupies the whole top half 
of the cylinder.  The r-central location of the tiny toroidal 
zone increases as Ha increases, whereas the z-central posi-
tion decreases significantly. When Hacr=24, the tiny toroi-
dal vortex seen at Ha=20 decreases and finally vanishes. 

When Ri=1, the flow is represented by a single layer with a 
maximum of Ψ is 0.0055.

At Ha=10, only two layers are visible in the case of B, 
whereas four layers are visible in the case of B without a 
magnetic field (Ha=0). In this scenario, we have two small 
clockwise vortices that connect to the side wall. The top 
vortex for Ha=15 shrinks and disappears at Ha=20, whereas 
the below vortex resists up to Ha=26. At Ha=20, a small 
toroidal vortex with a maximum stream function of 0.0056 
appears and then vanishes. At Hacr=26, the flow is domi-
nated by a single layer with a maximum of 0.0053.

Case C seen at Pr = 0.065 in Fig. 10 shows at Ri = 1.0, 
the effect of raising Ha. When Ha=10, the number of lay-
ers decreases to three, whereas six layers were previously 
discovered without a magnetic field (Ha=0). The flow in 
the upper section separates into two vortices at Ha=15, 
in which the z-central of these vortices increases as Ha 
increases, but the r-central location decreases. The size of 
this vortex shrinks as Ha increases and gives a two-cell flow 

Figure 10.  Stream function plots for Ri=1 when Pr = 0.065.
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pattern at Ha = 20. The third line in Fig.10e illustrates a 
small toroidal vortex positioned downwards that still resists 
and dissipates at Ha = 25 and evaporates at Ha = 30.

Figure 11a depicts the development of the critical 
Hartmann number with Richardson number, as seen 
in the (Hcr-Ri) plot for Pr=0.065. Figure 11a shows three 
alternative curves that limit the domains with and without 
stratified fluid layers. These three cases show a monotonic 
increase between Ri land Hacr. Furthermore, rising Ha until 
critical value suppresses the fluid layers at a constant value 
of Ri, i.e. layering ceases once the amplitude of Ha exceeds a 
crucial point.  For a constant Richardson number, the mag-
nitudes of Ha in cases A and B are less than those found in 
case C. For example, when Ri = 1.0, the critical Hartmann 
number magnitudes for situations A, B, and C are Ha=23, 
25, and 30, respectively.

The diagram (Ha-Number of layers) that compares 
the three fluids (Pr = 0.025, 0.032, and 0.065, respectively) 
represents the magnetic field-reducing influence on the 
number of fluid layers created by the buoyancy effect. For 
Ha=0 and when Pr equals  0.032, six layers were generated, 
and five and four layers are developed for Pr=0.025,and 
Pr=0065, respectively. From Ha=5, the number of layers 
for these three fluids tends to decrease until there is just 
one layer for a suitable intensity of Ha. When Hacr is equal 
to 26, 28, or 35. For Pr=0.025, 0.032, and 0.065, the flow 
is described by a single flow cell. As a result, the resultant 
layer structures are impacted by the Prandtl Number, which 
impacts either growth or decrease.

CONCLUSION

The laminar vortex decomposition and the size of the 
fluid layer formed in cylindrical containers due to com-
bined magnetic field and buoyancy forces have been studied 

numerically. To solve the governing equations, the GITT 
method was utilized.  Three combinations (Re,  H/R) were 
compared and developed for three different viscous fluids. 
The main results obtained are as follows:

•	 In both cases, A and B, increasing Richardson num-
ber to 0.1 leads to a single layer that occupied the fluid 
domain but for case C the value of  Ri=0.05 is suffi-
cient to eliminate vortex breakdown. 

•	 Increases in the values of the Richardson number 
have a favorable influence on the number of fluid 
layers.

•	 In both situations A and B, the number of stratifi-
cation layers increases as Ri increases, however in 
case C, the number of fluid layers decreases as the 
Richardson number amplitude exceeds a critical 
threshold. 

•	 Because of the isolation phenomena caused by the hot 
region’s fluid layers, the Nusselt number decreases as 
Ri increases.

•	 The different curves show that the increase in the 
magnetic field diminishes the number of fluid layers.

•	 Finally, an axial magnetic field may be used to govern 
the boundaries between structures with many fluid 
layers and those with a single layer.
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