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ABSTRACT 
 

Multi-criteria collaborative filtering schemes allow modeling user preferences in a more detailed manner by collecting ratings 

on various aspects of a product or service. Although preferences are expressed by numerical ratings within a predetermined 

scale, it is not guaranteed that users comprehend such scale identically. As a result, profiles of users with similar tastes might 

turn out to be unrelated. Besides, distinct criteria might have different rating scales creating an essential incompatibility with 

the rating schemes of users which in turn conceals proper relation between main criterion and sub-criteria. Since users rate 

items based on their personal rating habits, it is essential to determine user similarities according to their rating patterns by 

normalizing ratings to an identical scale. In this paper, two different normalization methods are studied, i.e., z-score 

normalization and decoupling normalization, in order to improve accuracy of multi-criteria collaborative filtering systems. In 

particular, two normalization methods are employed by modifying the state-of-the-art memory-based multi-criteria 

recommender schemes so that similarities among users are calculated based on preference models rather than pure numerical 

ratings. Real world data-based experimental results show that both methods, especially decoupling normalization method, 

provide significant improvements on accuracy of estimated multi-criteria predictions and outperform previous pure numerical 

ratings-based approach. 
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1. INTRODUCTION 
 

As online services become more prevalent on the Internet, tendencies of people are developed toward 

realizing daily routines over such services, e.g., following daily news, shopping, and booking a hotel 

[1]. With rapid expansion of such digital data sources, information filtering becomes vital to discover 

useful information and avoid redundant data. Collaborative filtering (CF) is a well-known recommender 

technique which avoids items of disinterest and puts interesting ones forward based on preference 

patterns of users [2]. In daily life, people intrinsically tend to rely on impressions from others having 

the experience of a product. CF systems imitate and automate such humane word-of-mouth approach 

[3]. There are various online service providers, e.g., Amazon, Spotify, TripAdvisor etc. employing CF 

methods in order to please their customers and increase sales by discovering relevant products based on 

preference histories.  

 

Traditional CF systems collect user preferences in terms of ratings based on their experiences where 

such ratings are stored in a 2-dimensional user-item matrix [4, 5]. Based on collected repository, the 

service providers estimate the likelihood of a user’s inclination towards a particular product using a two-

step process: (i) locating neighbors of the user in question as the most similar ones in the database and 

(ii) estimating a prediction based on ratings of designated neighbors. A relatively new approach called 

Multi-Criteria CF (MCCF), however; collects user preferences not only as a general liking degree, but 

over multiple sub-criteria with the purpose of better personalization [2, 5-7]. A hotel recommender 

system, for instance, might collect ratings on cleanliness, location, and staff hospitality sub-criteria in 
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addition to an overall liking criterion. The popular restaurant guide Zagat.com [8] allows users to give 

ratings based on food, service, décor, and cost criteria which leads to a more fine-grained personalization 

of user’s tendencies. MCCF systems leverage such extra preference data to discover hidden relations 

among users and produce more personalized referrals. 

 

One major problem of MCCF systems is that the whole process is based on direct similarity of rating 

histories among users. However, different users interpret predetermined rating scales diversely and users 

with similar tastes might assign different ratings for the same item. Although they have similar tastes, 

such similarity would not be detectable by direct computations on numeric preference data. While an 

easy-going user assigns relatively higher ratings, a strict user might tend to rate lower even though they 

have similar experiences of item.  Besides, such incompatibility occurs more often and in a deeper 

manner with larger rating scales. In addition, the main criterion and sub-criteria in MCCF systems might 

have different rating scales which complicates the problem even further since users’ understanding of 

the rating scales among criteria might also diverge.  Resnick et al. [9] addresses such problem in 

traditional single-criterion CF systems by normalizing user ratings to a predefined Gaussian distribution.  

In another study, Jin et al. [10] discuss modeling ratings and preference patterns in a decoupled manner 

and Jin and Si [11] further compare these two approaches within CF domain.  Based on conclusions of 

these studies, effects of such phenomenon tend to be more visible in MCCF due to inherent relation 

among ratings for sub-criteria and the main criterion. 

 

Although there is positive evidence that rating domain normalization helps discovering hidden 

similarities within traditional single-criterion CF systems, it is not investigated how such normalization 

methods perform on intrinsic/domain-specific data handling problems of MCCF systems. In this paper, 

we investigate two normalization methods, namely z-score and decoupling normalizations, in order to 

improve accuracy by regularizing multi-criteria user ratings and relieve effects of incompatible rating 

domains for distinct users and criteria. We study how to apply normalization methods on multi-criteria 

preference data and compare them with respect to their significance in improving accuracy by producing 

predictions based on normalized preferences. We perform real data-based experiments to demonstrate 

effects of normalization approaches against traditional data handling methods within neighborhood-

based prediction generation schemes. According to the experimental results obtained, both 

normalization methods improve multi-criteria ratings-based referrals statistically significantly where 

decoupling normalization approach achieves greater enhancements compared to z-score normalization. 

 

2. RELATED WORK AND PROBLEM DEFINITION 

 

The main purpose of recommender systems is to aid individual users in discovering relevant information 

among a huge collection which helps coping with the information overload problem. In order to perform 

such functionality, CF systems utilize information filtering techniques based on previous evaluations of 

users with similar tastes relying on the assumption that people who agreed in the past are tend to agree 

in the future, as well [9]. A relatively new approach for CF-based recommender systems is to collect 

additional ratings on various sub-criteria of the product/service and extend context of provided 

recommendations. There are also some successful service providers, such as TripAdvisor and 

Yahoo!Movies, collecting multi-criteria preferences [8]. 

 

Recommender systems’ performance is directly related to both quantity and quality of collected user 

preferences [4]. However, they often face with insufficient amount of noisy preference data. Therefore, 

estimating accurate and dependable predictions based on such unqualified collections becomes a 

significant challenge, especially for commercial recommender systems [4]. In practice, MCCF systems 

operate on a huge user-item matrix which consists of preferences of users on varying products and 

services [6]. However, an average user typically rates a very small fraction of all available items which 

renders an extremely sparse user-item matrix. Average sparsity level for well-known MCCF databases 

are higher than 98% [7,12]. Such phenomenon obstructs discovering correlations among users since 
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similarity calculations are solely performed on commonly rated items between users. Besides the 

sparsity of collections, variety of users’ rating patterns complicates determining like-minded profiles. 

Such rating patterns are time-varying and affected by personal interpretation of voting ranges. MCCF 

systems need to deal with consequences of inconsistent voting habits, too [10].  

 

Prediction estimation is performed not only according to individual user ratings but also users’ 

preferential habits [11]. In order to create accurate predictions, it is significant to reveal such preferential 

patterns by normalizing user ratings into a predefined range. The idea of normalization in the sense of 

utilizing possessed data effectively is a well-known method in CF domain [9, 11]. In order to discover 

hidden relations among customers independent of their understanding of rating scales, collected data are 

transformed using a normalization method. Effects of users’ rating habits are aimed to be eliminated by 

bringing user ratings into an order. Table 1 demonstrates an example of varying rating habits and their 

effects on discovering true relations among users. In the example, u1 is tend to give more accepting 

ratings compared to u2 and u3. While generating a prediction for u1 on i6, u2 will be determined as the 

nearest neighbor based on raw preference data and resulting prediction will agree with u2’s rating on i6, 

which is 2. However, if the rating profile is evaluated as a whole, it can be observed that u1 is a tolerant 

user submitting only higher ratings and u3 has a perfectly fitting preference trend to u1 except that she is 

not easily satisfied. By matching u1 and u3’s patterns, the resulting prediction for i6 would be 4. As can 

be observed from the example, using raw preference data may result inconsistent predictions. Thus, we 

examine effects of two well-known normalization methods on accuracy improvements by normalizing 

user ratings in MCCF systems. 

 

Table 1. An example user-item matrix 

 

 i1 i2 i3 i4 i5 i6 

u1 4 4 5 5 4 ? 

u2 4 4 5 4 3 2 

u3 1 1 3 3 1 1 

 

One possible normalization method for preference datasets is to subtract mean of the profile from each 

user rating; however, it is not an appropriate solution for all kinds of users, such as the ones who only 

utilize the highest and the lowest ratings possible [13-16].  Other than such straightforward approach, 

Sarwar et al. [17] propose to employ dimension reduction techniques and Traupman and Wilensky [18] 

utilize factor analysis methods for rating normalization. 

 

GroupLens [9] propose another approach of normalization by computing average deviation from the 

mean of a user’s individual past ratings, based on other user’s evaluations. This method is utilized by 

[12, 15, 19, 20] to obtain normalized data across all other user’s mean ratings. Apart from these, simple 

mean and weighted mean normalization techniques were proposed for various neighborhood-based 

methods with the aim of analyzing design choices in multi-attribute utility collaborative filtering systems 

[21,22]. In another approach, z-score normalization method is applied for adjusting each previous vote 

in the system to the rating distribution of the active user who requests a prediction [12, 13, 19]. 

Experimental results demonstrate that z-score normalized data yields relatively better prediction 

accuracy than deviation from mean approach [19, 12].  

 

In some of the previous studies on CF systems, varying user preferential patterns are normalized into 

the same scale based on the assumption that they roughly resemble Gaussian distributions [9, 11]. Such 

normalization method is applied on both memory- and model-based algorithms successfully [9]. Jin et 

al. [10] further replace Gaussian normalization by a decoupling method which extracts information 

about a distribution for the preference values instead of the Gaussian assumption. In a subsequent study, 

Jin and Si [11] compare Gaussian and decoupling normalization approaches within CF domain and their 

experimental results demonstrate that decoupling normalization is more effective than Gaussian 
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normalization method in terms of prediction accuracy. As followed by the literature review, z-score and 

decoupling normalization methods help achieving better prediction accuracy compared to other 

normalization methods. In this study, we examine effects of two well-known normalization methods, 

namely z-score and decoupling normalization methods, on improving accuracy by normalizing multi-

criteria user ratings. 

 

3. AN IMPROVED NORMALIZATION-BASED MCCF FRAMEWORK 

 

One major problem of memory-based CF systems is to understand user tendencies about how to rate an 

item and match varying types of users with different voting habits for the purpose of collaboration. 

Normalization methods are known to perform practical and helpful for classification algorithms such as 

nearest-neighbor classification and clustering [23] and are effective tools for eluding system dependency 

on varying voting habits and scales. Normalization of raw and entangled user ratings enables CF systems 

to recognize hidden matchings among rating patterns.   

 

In this study, we analyzed effects of two different normalization techniques, namely z-score and 

decoupling normalization, in order to eliminate varying voting tendencies, discovering hidden user 

profile similarities and hence improve accuracy of memory-based MCCF systems.  We provide a 

normalization-based preprocessing framework for providing high-quality multi-criteria ratings-based 

referrals. 

 

3.1. z-Score Normalization 

 

Although a clearly distinctive preference scale and their meanings are supplied to system users, some 

individuals averse to submit strongly high and/or low ratings on an item [8]. In statistics, z-score is the 

signed number of deviations from mean indicating that a datum is above the mean if positive and below 

the mean otherwise. It is mostly suitable for situations where minimum and maximum of item ratings 

are unknown. In user-based CF techniques, the original rating of user 𝑢 for item 𝑖, 𝑟𝑢𝑖, is z-score 

normalized to 𝑧𝑢𝑖 as given in Eq. 1 [19]. 

 
𝑧𝑢𝑖  =

𝑟𝑢𝑖 − 𝑟�̅�

𝜎𝑢
 (1) 

where 𝑟�̅� and 𝜎𝑢 denote mean and standard deviation of 𝑢, respectively. Considering multi-criteria 

ratings domain, z-scores of user ratings in a database can be calculated as explained in Procedure 1. 

 

Procedure 1. z-Score Normalization Procedure. 

Require: Item List (I1×m), Criteria list (C1×k), User×Item×Criteria matrix (Un×m×k) 

Estimate mean scores and standard deviations (→ �̅�, 𝜎𝑈) 

 1 : for all users in U (i ← 1 to n) do 

 2 :    for all criteria in C (c ← 1 to k) do 

 3 :        𝑢𝑖,𝑐̅̅ ̅̅  ← mean(U(i, :, c)); 

 4 :        𝜎𝑢,𝑐 ← std(U(i, :, c)); 

 5 :    end for 

 6 : end for  

Estimate mean scores and standard deviations (→ Z) 

 7 : for all users in U (i ← 1 to n) do 

 8 :    for all items in I (j ← 1 to m) do 

 9 :       for all criteria in C (c ← 1 to k) do 

10:          Zi, j, c ← (Ui, j, c – 𝑢𝑖,𝑐̅̅ ̅̅ ) / 𝜎𝑢,𝑐 

11:    end for 

12: end for 

13: return Z  
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In order to exemplify how two apparently dissimilar users’ rating patterns are strongly correlated, we 

provide multi-criteria rating profiles of three users, i.e., u1, u2, and u3, on an allowed voting range of 1-

13 in Table 2 and cross distance-based similarities in Table 3.  

 

Table 2. An example user-item matrix with raw and z-score normalized ratings 

 

 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 

u1 7 7 8 8 9 9 9 11 12 12 

z1 -1.1741 -1.1741 -0.6404 -0.6404 -0.1067 -0.1067 -0.1067 0.9606 1.4943 1.4943 

u2 1 1 2 2 3 4 3 5 6 6 

z2 -1.2179 -1.2179 -0.6884 -0.6884 -0.1589 0.3707 -0.1589 0.9002 1.4297 1.4297 

u3 7 7 9 8 10 10 10 12 12 13 

z3 -1.3348 -1.3348 -0.3814 -0.8581 0.0953 0.0953 0.0953 1.0488 1.0488 1.5255 

 

As can be followed in Table 2, within such large distribution range for votes, u1 and u3 prefers to rate all 

items with a more tolerant manner while u2 prefers to rate harsh ratings. Although 6 is an exceptionally 

high rating for u2 and reflects more appreciation, 7 is the lowest given rating for u1 and u3 which indicates 

disapproval. Although preferences based on raw evaluations seem like they are not similar, z-score 

transformed forms of preferences display high correlation which helps discovering similar rating 

patterns. Calculated similarity values based on raw and z-score transformation based data are given in 

Table 3. 

 

Table 3. Similarity values based on raw and z-score normalized ratings 

 

sim(u1, u2)  sim(z1, z2) sim(u1, u3)  sim(z1, z3) 

0.1449 0.9128 0.6250 0.8355 

 

Although inclinations of u1 and u2 are numerically far from each other, they show very similar behavioral 

patterns on their preferences. However, as can be followed in Table 3, such analogous patterns render 

irrelevant based on the raw ratings and considered close neighbors based on their z-score transformed 

profile similarities. On the other hand, u1 and u3 seem similar due to their tolerance; however, their 

patterns not as analogous as with u2. As a result, z-score normalizing raw user ratings helps discovering 

hidden close relationship between u1 and u2, even more than with u3. 

 

3.2. Decoupling Normalization 

 

Decoupling normalization is a probabilistic data normalization technique used in recommender systems 

context. Rather than labeling liking level of a user for a product or service based on a sole vote, it 

assumes a probabilistic measurement for the rated item to be favored by the user. Such likelihood of 

favoring is obtained based on the following two principles: 

 

1. As the higher the percentage a user rates items as less than or equal to rating category R, the 

more the likelihood that those items rated as R to be favored by the user. 

2. As the higher the percentage a user rates items as exactly equal to rating category R, the less the 

likelihood that those items rated as R to be favored by the user. 

 

Jin et al. [10] propose combining these two principles in order to approximate the likelihood of a user 

preferring a particular rating category R by utilizing a halfway accumulative distribution approach as 

explained in Eq. 2:  
 

Pr(R is preferred) = Pr(U ≤ R) – Pr(U = R) / 2 (2) 

where R is the particular rating category, U is the profile vector, Pr(U ≤ R)  and Pr(U = R) terms represent 

the percentage of items that are rated at most with category R and exactly rated with category R, 
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respectively. Considering multi-criteria ratings domain, decoupling normalization of user ratings in a 

database can be calculated as explained in Procedure 2. 

 

Procedure 2. Decoupling Normalization Procedure. 

Require: User×Item×Criteria matrix (Un×m×k) 

 1 : for all users in U (i ← 1 to n) do 

Estimate probabilities of users’ ratings being exactly or less than or equal to rating category R 

 2 :    for all criteria in C (c ← 1 to k) do 

 3 :       for each rating category r in R 

 4 :          Pr(Ui,c = r) ←|Ui,:,c = r| / | Ui,:,c ≠  ∅| 

 5 :          Pr(Ui,c ≤ r) ←|Ui,:,c ≤ r| / | Ui,:,c ≠  ∅| 

 6 :       end for  

Estimate probabilities of rating category R is preferred 

 7 :       for each v in Ui,:,c ≠  ∅  

 8 :          switch Ui,:,c 

 9 :             case ∀r in R 

10:                Di,v,c ← Pr(Ui,c ≤ r) – Pr(Ui,c = r) / 2 

11:          end switch 

12:       end for 

13:    end for 

14: end for 

 

In order to exemplify how decoupling normalization technique handles the problem of modeling a user’ 

preference patterns on items independently from user’s pure rating scheme, we provide the same 

example of multi-criteria rating profiles in Table 2 with decoupled ratings in Table 4. 

 

Table 4. An example user-item matrix with raw and decoupled normalized ratings 

 

 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 

u1 7 7 8 8 9 9 9 11 12 12 

d1 0.1 0.1 0.3 0.3 0.55 0.55 0.55 0.75 0.9 0.9 

u2 1 1 2 2 3 4 3 5 6 6 

d2 0.1 0.1 0.3 0.3 0.5 0.65 0.5 0.75 0.9 0.9 

u3 7 7 9 8 10 10 10 12 12 13 

d3 0.1 0.1 0.35 0.25 0.55 0.55 0.55 0.8 0.8 0.95 

 

As can be followed in Table 4, decoupled rating patterns demonstrate resemblance between d1 and d2 

while they do not with u1 and u2. Estimated cross distance-based similarities of u1 to u2 and u3 along 

with d1 to d2 and d3 are given in Table 5. 

 

Table 5. Similarity values based on raw and decoupled normalized ratings 

 

sim(u1, u2)  sim(d1, d2) sim(u1, u3)  sim(d1, d3) 

0.1449 0.9804 0.6250 0.9709 

 

As can be followed by Table 5, similar to the case with z-score normalized ratings, u1 and u2 would be 

considered as close neighbors based on their decoupled normalized ratings-based similarity, i.e., 

sim(d1,d2). Similarly, decoupling normalization helps discovering a precious hidden correlation between 

u1 and u2 which was unclear with raw ratings-based profiles. 
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3.3. Similarity Estimation 

 

In a single-criterion neighborhood-based CF system, similarities between users can be calculated using 

Pearson’s correlation coefficient and a close neighborhood is formed accordingly. For that purpose, 

similarities between the active user (a) for whom the prediction will be estimated and a system user (u) 

is calculated as in Eq. 3. 

𝑠𝑖𝑚(𝑎, 𝑢) =
(∑ 𝑅(𝑎, 𝑖)𝑅(𝑢, 𝑖)𝑖∈𝐼(𝑎,𝑢) )

(√∑ 𝑅(𝑎, 𝑖)2
𝑖∈𝐼(𝑎,𝑢) √∑ 𝑅(𝑢, 𝑖)2

𝑖∈𝐼(𝑎,𝑢) )

 
(3) 

where I corresponds to the set of commonly rated items between a and u, R(a, i) and R(u, i) corresponds 

to the ratings of a and u to item i in the list I, respectively. Similarities based on raw and decoupled 

ratings-based profiles can be calculated using Eq. 3. 

 

In order to estimate similarities between z-score normalized profiles, it is assumed that the list of 

commonly rated items corresponds to the actual list of rated items for each user. If the terms in the 

denominator of Eq. 3 are extend to cover the list of all rated items by a and u, respectively, the estimated 

similarity between these users can be calculated using Eq. 4. 

𝑠𝑖𝑚(𝑧1, 𝑧2) = 𝑧1 ∙ 𝑧2 (4) 

On the other hand, MCCF systems hold detailed user ratings over varying criteria along with an overall 

rating most of the time. Consequently, global similarity value between two users relies on the similarities 

obtained from sub-criteria and overall criterion ratings. For this purpose, such multiple similarity values 

are aggregated using two different approaches.  In order to estimate global similarity value between a 

and u, obtained individual similarity values are aggregated in such a way that global aggregation is either 

the average of individual values or the worst case of them [6]. Average similarity assumes that the global 

similarity values is dependent equally on all the individual similarity values and is calculated as given 

in Eq. 5. 

𝑠𝑖𝑚𝑎𝑣𝑔(𝑎, 𝑢) =
1

𝑘 + 1
∑ 𝑠𝑖𝑚𝑖(𝑎, 𝑢)

𝑘

𝑖=0

 (5) 

where k corresponds to the number of sub-criteria. Worst-case similarity, on the other hand, assumes 

that the global similarity is bounded to the minimum of individual similarity values as formulated in Eq. 

6. 

𝑠𝑖𝑚𝑚𝑖𝑛(𝑎, 𝑢) = min
𝑖=0,…,𝑘

𝑠𝑖𝑚𝑖(𝑎, 𝑢) (6) 

 

3.4. Prediction Estimation 

 

When a requests a prediction for a target item (q), a two-step processes is followed in order to estimate 

the prediction: (i) construct neighborhood of a based on the similarities between a and all the other users 

in the system and (ii) aggregate ratings of users in the neighborhood for q in a weighted manner. Such 

prediction can be estimated for raw ratings-based profiles as given in Eq. 7. 

𝑃𝑎,𝑞 =
∑ (𝑟𝑢,𝑞 − �̅�𝑢)𝑢∈𝑈 𝑠𝑖𝑚(𝑎, 𝑢)

∑ 𝑠𝑖𝑚(𝑎, 𝑢)𝑢∈𝑈

 (7) 

where U corresponds to the set of neighbors and sim(a, u) corresponds to the similarity value obtained 

either using Eq. 5 or Eq. 6. However, since z-score normalized ratings are transformed into another 

domain, prediction obtained using such normalized ratings needs to be de-normalized as given in Eq. 8. 
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𝑃𝑎,𝑞 = �̅�𝑎 + 𝜎𝑎

∑ 𝑧𝑢,𝑞𝑠𝑖𝑚(𝑎, 𝑢)𝑢∈𝑈

∑ 𝑠𝑖𝑚(𝑎, 𝑢)𝑢∈𝑈

 (8) 

where �̅�𝑎 and 𝜎𝑎 corresponds to the mean and standard deviation of a, respectively. Finally, a prediction 

for decoupling normalization-based profiles can be estimated using Eq. 7. In addition, such obtained 

prediction value needs to be de-normalized to the original scale since halfway accumulative distribution 

process converts raw ratings into likelihood of preference. Therefore, expected preference probability 

value is de-normalized matching it to the corresponding rating category [10]. 

 

4. EXPERIMENTS 

 

In this study, we examined effects of z-score and decoupling normalization methods on prediction 

accuracy for MCCF systems. For this purpose, we employed average and worst-case similarity 

calculation approaches on well-known memory-based MCCF recommendation schemes. We provide 

details of experimental outcomes and significance of obtained results in this section. 

 

4.1. Datasets and Evaluation Criteria 

 

We utilized varying versions of a multi-criteria ratings-based dataset crawled from Yahoo!Movies1 

(YM) which is one of the most commonly used dataset for MCCF recommender systems [6,7]. YM 

dataset consists of four individual specific criteria ratings for movies, namely Story, Acting, Directing, 

and Visuals, along with an Overall liking degree rating. All ratings belonging those five criteria are rated 

by users based on a letter grade rating systems consisting of 13 characters, i.e., [A+, A, A–, B+, B, B–, 

C+, C, C–, D+, D, D–, F], where F denotes the worst measure and A+ the best. For experimental 

purposes, we employed numerically converted ratings where 1 represents F and 13 represents A+.  

Originally, YM is an extremely sparse dataset where only 0.02% of available items are rated. Jannach 

et al. [7] constructed three subsets of the original dataset by extracting users and items having at least 5, 

10, and 20 ratings for experimental purposes, namely, YM_5_5, YM_10_10, and YM_20_20. Details 

of the datasets are given in Table 6.  

 

Table 6. Sparsity level of Yahoo!Movies dataset’s subsets. 

 YM_5_5 YM_10_10 YM_20_20 

Number of Users 4377 1293 202 

Number of Items 2565 1164 247 

Number of Records 63027 34846 8157 

Sparsity Rate %99.4386 %97.6847 %83.6513 

 

4.2. Experimentation Methodology 

 

During experimental evaluations, all available preference data is subjected to recommendation process 

using exhaustive leave-one-out cross validation method. According to this method, each user in the 

dataset is treated as active user as one user at a time and remaining users constructed the train data [7, 

9]. A prediction is generated for each submitted rating of individual users by withholding one vote at a 

time and trying to predict its value by employing remaining votes of the corresponding user via average 

and worst-case similarity calculation approaches. Therefore, total number of predictions generated for 

each dataset is equal to the number of total ratings in the corresponding database. 

 

 

 

                                                           
1 https://www.yahoo.com/movies/  
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4.3. Experimental Results and Discussion 

 

In order to examine effects of z-score and decoupling normalization methods on prediction accuracy of 

MCCF systems, we performed two different normalization approaches before estimating predictions 

over three different subsets of YM dataset. For experimental purposes, we set number of neighbors to a 

constant of 10 for all kinds of experiments which means the most similar 10 users are utilized in the 

prediction estimation process based on minimum and average similarity values calculated over all 

criteria. We present experimental outcomes of error levels over varying configurations in Figure 1.  

 

 
 

Figure 1. MAE results over raw, decoupling normalized, and z-score normalized data 

 

Experimental results indicate that both normalization methods have a positive effect on prediction 

accuracy compared to raw data for all datasets. However, improvements obtained by applying 

decoupling normalization are even higher than obtained by applying z-score normalization. Such slight 

difference in obtained improvements originate from prediction estimation step which assumes 

normalized data for z-score normalization-based configurations and actual data for decoupling 

normalization-based configurations. Also, for most of the time worst-case similarity estimation 

outperforms average similarity estimation except for raw data in big datasets. Therefore, it can be 

concluded that worst-case similarity estimation helps increasing prediction accuracy when 

normalization procedures are applied while average similarity estimation is more effective in raw data 

configurations. One interesting outcome of the experiments is that prediction accuracy is improved in a 

better way by normalization procedures for larger datasets, i.e., YM_5_5. Although error values increase 

while the dataset gets larger and sparser for raw data-based experiments, improvement levels get higher 

when normalization procedures are employed. Improvement levels are about 23.8%, 27.7%, and 33.5% 

for z-score normalization and 29.8%, 32.1%, 38.9% for decoupling normalization for YM_20_20, 

YM_10_10 and YM5_5, respectively with worst-case similarity estimation. Similarly, 24.9%, 26.8%, 

and 32.2% for z-score normalization and 30.9%, 31.1%, and 32.2% for decoupling normalization for 

YM_20_20, YM_10_10 and YM5_5, respectively with average similarity estimation. Hence, it can be 

concluded that effects of normalization get more significant as the datasets get larger which is crucial 

for recommender systems since they are prone get larger constantly. Such experimental outcomes 

support employing normalization procedures, especially decoupling normalization, for improving 

Decoupling

z-score

Raw

0,0

0,5

1,0

1,5

2,0

2,5

Worst-
case

Average Worst-
case

Average Worst-
case

Average

YM_20_20 YM_10_10 YM_5_5

Decoupling 1,3563 1,3619 1,4890 1,5101 1,3732 1,4018

z-score 1,4721 1,4813 1,5859 1,6046 1,4956 1,5182

Raw 1,9322 1,9732 2,1938 2,1911 2,2485 2,2383



Bilge and Yargıç / Anadolu Univ. J. of Sci. and Technology A – Appl. Sci. and Eng. 18 (1) – 2017 
 

234 

prediction accuracy and getting MCCF systems more robust against enlarging due to increasing number 

of users and available products.  

 

Although normalization procedures outperform raw data-based framework and provide better prediction 

accuracy results, it is necessary to check whether these improvements are statistically significant. In 

order to determine the significance of obtained experimental improvements using normalized data 

against raw data-based configurations, t-tests procedures are followed. Results of performed statistical 

significance tests are displayed in Table 7.  

 

 

Table 7. Comparison of statistical significance tests between raw data and normalized forms 

 

  YM_5_5 YM_10_10 YM_20_20 

Raw vs. decoupling Average 
t = 91.1101  

p = 0.000 * 

t = 60.5027 

p = 0.000 * 

t = 27.0644 

p = 0.000* 

 Worst-case 
t = 96.8730 

p = 0.000 * 

t = 62.1902 

p = 0.000 * 

t = 27.6756 

p = 0.000* 

Raw vs. z-score Average 
t = 84.1620 

p = 0.000 * 

t = 52.577 

p = 0.000 * 

t = 24.3979 

p = 0.000* 

 Worst-case 
t = 89.9094 

p = 0.000 * 

t = 55.2852 

p = 0.000 * 

t = 23.6292  

p = 0.000 * 

* Significance at %99  

 

In the light of the results shown in Table 7, obtained improvements by decoupling and z-score 

normalization-based data are statistically significant with a pretty high confidence level of 99% (p<0.01 

indicated with +) for all YM sub-datasets. Such results confirm that obtained improvements are solid 

and significantly outperform raw-data based configurations. We further compare error level difference 

distributions between raw configuration and two normalized forms. Variance distributions for the worst-

case similarity estimation in YM_20_20 dataset are displayed in Figure 2. 

  

 
 

Figure 2: Error level difference distributions between raw data and normalized forms 
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Finally, in order to evaluate significance of the improvements obtained by normalization methods, 

distribution of worst-case similarity estimation MAE differences between results of z-score and 

decoupling normalized data are compared. MAE results obtained with the normalized data were 

subtracted from the MAE results obtained with the raw data separately and then sorted in ascending 

order. The negative side of Figure 2. denotes the region of the least accurate prediction values and the 

positive side refers to the most accurate predictions of normalization methods. According to the results 

seen in Figure 2, it can be concluded that prediction estimations obtained by applying decoupling 

normalization method are more consistent compared to those obtained by applying z-score 

normalization method. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

Multi-criteria collaborative filtering schemes allow evaluating multiple aspects of a product and/or 

service in terms of their specific features. Collected data for such services contain either numeric or 

binary preferences of users expressing users’ liking degrees. However, available ranges for varying 

criteria might be different for each evaluation type. More importantly, each user might interpret such 

ranges differently which causes an inconsistency among true preferences of users. While a user 

distributes their preferences uniformly to the range, another user votes items with the highest and the 

lowest ratings available. Also, similar preference histories might distribute in differing sub-ranges of the 

criteria. Such inconsistencies complicate the main step of collaborative recommendation process, i.e., 

detecting similarities in preference histories of users. Normalization procedures help reducing such risk 

in traditional collaborative filtering schemes. In this study, we discuss applying two well-performing 

normalization procedures onto multi-criteria preference data in order to improve prediction accuracy. 

We explain how to apply z-score and decoupling normalization techniques onto criteria-based 

preferences and estimate predictions based on normalized data in order to overcome negative effects of 

varying voting habits of users. We perform real-world data-based experiments for assessing 

effectiveness of proposed methods. According to obtained experimental outcomes, both normalization 

procedures outperform raw data-based configurations. However, due to assumptions in prediction 

estimation step, decoupling normalization achieves a slightly better improvement compared to z-score 

normalization-based configurations. Also, worst-case similarity estimation outperforms average 

similarity estimation process for normalized data-based configurations which implies data distortion in 

normalization process. Moreover, improvements obtained in larger and more inconsistent datasets 

display a higher trend which emphasizes positive effects of normalization on multi-criteria data. There 

are also binary ratings-based multi-criteria collaborative filtering systems in the literature for which 

effects of data normalization procedures must be explored. Also, possible normalization procedures and 

effects of such normalizations are planned to be explored in implicit data-based configurations where 

users do not explicitly submit their preferences. 
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