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Abstract: It is seen from the preliminary work [1] of this paper that in the literature there is a need for a power 

resolution, which can be utilized for (i) the direct provision of the optimum compensation capacitor’s power and (ii) 

obtaining meaningful information on the detection of the harmonic producing loads. This paper proposed a power 

resolution that can be used to achieve both goals under nosinusoidal and unbalanced conditions in the smart power 

grids. First goal is important for cost effective unity power factor compensation including a basic capacitor and an 

active compensator. The second goal is required for the practical detection of harmonic producing loads by using the 

demand meters, which are employed to measure the powers for the energy billing of the consumers. The proposed 

power resolution is based on the separation of load current into orthogonal components as active, reactive, scattered 

conductance, scattered susceptance, unbalanced conductance and unbalanced susceptance currents, which are all 

related to the conductance and susceptance parameters of the load. To show that the proposed resolution attains its 

goals, the simulation and experimental based analysis are presented in this paper. 

Keywords: Power resolutions, nonsinusoidal and unbalanced systems, compensation, harmonic source detection. 

 

1. Introduction 
 

By the proliferation of a.c. in the transmission and 

distribution systems, apparent power was defined as 

the product of voltage and current rms values to size 

the system equipment and to be a measure for the 

system efficiency [1, 2]. Historically, the current of the 

system was divided into two parts: These are; active 

current, which transports the net energy from source to 

the load, and reactive current that is the remaining 

current component when the active part is subtracted 

from the total current. According to this resolution, 

apparent power was expressed as the vector sum of 

active and reactive powers, which flows due to the 

active and reactive currents, respectively [3]. The ratio 

of active and apparent powers is named as the power 

factor, and be utilized to measure the efficiency of the 

power systems. In addition, conventionally, classical 

single-phase apparent power is directly extended to 

three-phase systems by treating each phase individually 

[1, 4]. Thus, arithmetic apparent power, which is 

calculated as the arithmetic sum of each phase’s 

apparent power, and vector apparent power, which is 

calculated as the vector sum of total active and total 

reactive powers of the system, were constituted for the 

three-phase systems.  

Nevertheless, due to the fact that the classical apparent 

power and its resolution are defined under sinusoidal and 

balanced conditions, they did not attain their goals in the 

case of nonsinusoidal and/or unbalanced conditions. 

Consequently, a number of apparent power definitions and 

their resolutions have been proposed for nonsinusoidal 

single-phase [3, 5-7] and nonsinusoidal & unbalanced 

three-phase systems [1, 4] to fulfil the gap left out in the 

classical apparent power concept. However, it is seen from 

the preliminary work [1] of this paper that in the literature 

there is a need for a power resolution, which can be utilized 

for (i) the direct provision of the optimum compensation 

capacitor’s power and (ii) obtaining meaningful 

information on the detection of the harmonic producing 

loads. First goal is important for cost effective unity power 

factor compensation including a basic capacitor and an 

active compensator. The second goal is useful for the 

practical detection of harmonic producing loads by using 

the demand meters, which are employed to measure the 

powers for the energy billing of the consumers. 

As a result, in this paper, for unbalanced nonsinusoidal 

three-phase and three-line systems, a power resolution is 

proposed by considering the above mentioned two goals. It 

should be reminded that the single-phase case of the 

proposed resolution is interpreted and analysed for 

compensation in [6, 7]. In addition, this study is partly 

presented in [8, 9].  
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2. Proposed Power Resolution 
 

In this section, the power resolution proposed in [6, 

7] is extended from nonsinusoidal single- phase system 

to nonsinusoidal and unbalanced three-phase system 

without neutral line (three-phase and three-line 

system). Here, it should be underlined that line currents 

of the three-phase system are nonsinusoidal and 

unbalanced. However, nonsinusoidal voltages 

measured in the system has negligible unbalance due to 

the fact that the considered system has a strong utility 

side, which means a very low short circuit impedance 

at fundamental frequency. According to these 

considerations, in the first step, by expressing line 

(l=a,b,c) voltages and currents as; 
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the balanced and unbalanced parts of the line currents 

can be separated as below: 

     B ui t i t i t                  (2) 

To find the expression of balanced current 

component (  Bi t ), the powers (Ul,n), which are 

drawn due to the nth harmonic line currents in phase 

with the nth harmonic of respective line voltages, and 

the powers (Ql,n), which are drawn due to the nth 

harmonic line currents in quadrature with the nth 

harmonic of respective line voltages, are calculated: 

 

   l ,n n l ,n l ,n l ,nU V I cos          l a,b,c            (3) 

   l ,n n l ,n l ,n l ,nQ V I sin           l a,b,c            (4) 

 

And then, these powers are shared to each phase 

equally; thus, fictitious nth harmonic balanced active 

(Pn) and reactive (Qn) powers are found to be: 

 

 
1

3
n a,n b,n c,nP U U U                                       (5) 

 
1

3
n a,n b,n c,nQ Q Q Q                                       (6) 

 

For nth harmonic, balanced active and balanced 

reactive powers, given in (5) and (6), are drawn by the 

balanced part of nth harmonic equivalent impedance 

of the three-phase load. Thus, for each phase of the 

load, nth harmonic balanced conductance (GB,n) and 

nth harmonic balanced susceptance (BB,n) can be 

calculated as;  
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By using nth harmonic balanced conductance and nth 

harmonic balanced susceptance parameters, the balanced 

current component can be expressed as;  
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To find an expression for unbalanced current 

component (  ui t ), the nth harmonic conductance (Gl,n) 

and nth harmonic susceptance (Bl,n) values seen from l=a, 

b and c phases of the load are written as: 

 

2
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V
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Thus, for each phase of the load, nth harmonic 

unbalanced conductance (
u

l ,nG ) and nth harmonic 

unbalanced susceptance (
u

l ,nB ) values can be found as;  

 
u

l ,n l ,n B,nG G G         (12) 

u

l ,n l ,n B,nB B B           (13) 

 

By using 
u

l ,nG  and 
u

l ,nB , the unbalanced current (  ui t ) can 

be divided into two parts as unbalanced in-phase (  upi t ) 

and unbalanced quadrature (  uqi t ) currents, respectively: 
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In the second step, the balanced current (  Bi t ) is 

decomposed into four orthogonal components namely; 

active, reactive, scattered conductance and scattered 

susceptance currents by treating each phase 

individually. The methodology presented in [6, 7] is 

considered for the decomposition. This is valid due to 

the fact that voltage has negligible unbalance and the 

decomposed current part is completely balanced.  

Accordingly, for each phase of the load, equivalent 

conductance (
eG ) is calculated as; 
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and active current is written in terms of eG : 
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And then, for each phase of the load, by calculating nth 

harmonic equivalent susceptance ( e,nB ) as; 
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reactive current can be expressed as:  
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Sequently, using (16) and (18), the expression of the 

balanced current is rewritten in terms of active, reactive and 

scattered (
si ( t ) ) currents: 
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By equating the right hand sides of (9) and (19), 
si ( t ) can 

be expressed as: 
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And lastly, the parts related to conductance and susceptance 

of 
si ( t )  can be named as scattered conductance current;  
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and scattered susceptance current; 
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As a result, the load current can be written as;  
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By considering the collective rms current expression of 

the Buchollz’s apparent power definition [1, 4, 10], the 

rms values of the currents placed in (23) can be 

calculated as; 
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reactive current’s rms value, 
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scattered conductance current’s rms value,  
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scattered susceptance current’s rms value, 
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unbalanced in phase current’s rms value, 
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and unbalanced quadrature current’s rms value, 

 

    

     

0

2 2 2
2

1
T

Tr

uq uq uq

u u u

a,n b,n c ,n n

n

I i t i t dt
T

    B B B V

 

   
  





           (30) 

 

In (24)-(30), the superscript “Tr” denotes transpose of the 

respected three-phase current vector. 

Since nth harmonic of conductance based current 

components are in phase with the nth harmonic of voltage 

and the nth harmonic of susceptance based current 

components are in quadrature with the nth harmonic of 

voltage, all combinations between conductance based 

currents and susceptance based currents are orthogonal. The 

orthogonality proofs of the rest combinations of the 

proposed current components are provided in [8]. 

Therefore, the collective rms value of the total current can 

be expressed as the vector sum of the collective rms values 

of the proposed current components: 
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Finally, if both sides of (31) are multiplied by the square 

of collective voltage rms value (
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resolution of Buchollz’s apparent power (S) can be obtained 

as;  
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In (32), power components are named as active (P), 

reactive (Qr), scattered conductance (Dsc), scattered 

susceptance (Dss), unbalanced in phase (Dup) and 

unbalanced quadrature (Duq) powers. Note that for the 

systems without zero sequence voltages, the apparent 

powers of Buchollz [1, 10] and IEEE standard 1459 [11] 

have the same numerical values [12, 13]. Thus, proposed 

power resolution also decomposes IEEE standard 1459 

apparent power.  

To point out the novelty of the proposed resolution, here 

it is compared with Czarnecki’s power resolution [14, 15], 

which is similar to the proposed one: 

 The reactive power component of Czarnecki’s 

resolution is divided into two power components, 

namely; reactive power and scattered susceptance 

power in the proposed resolution. The reactive 

power component of the proposed resolution is 

completely compensated when the power factor is 

maximized by the balanced three-phase capacitors 

bank. However, this is not the case for the reactive 

power component of Czarnecki’s resolution. 

 And also, the unbalanced power component of 

Czarnecki’s power resolution is decomposed into 

unbalanced in phase and unbalanced quadrature 

powers in the proposed resolution:  

 

 2 2 2 2 2 2

u up uq up uqD D D V I I                      (33) 

 

As a result, in the proposed resolution, all power 

components are expressed in terms of the 

conductance and susceptance parameters of the 

load. This should be useful for cooperative design 
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and control of different types of harmonic, 

unbalance and reactive power compensators. 

The contributions of the proposed power resolution to 

frequency-domain power theory are detailed below: 

 

2.1. Providing a Tool for Cost Effective Unity 

Power Factor Compensation 
 

As mentioned before, the reactive power (Qr) of the 

proposed resolution is completely compensated when 

the power factor is maximized by the balanced three-

phase capacitors bank. But, its other nonactive powers 

(Dsc, Dss, Dup and Duq) do not have any portions 

compensable via the balanced capacitors bank. This 

means that Qr gives the power of optimum balanced 

capacitive compensator (SpC), which maximizes the 

power factor under the nonsinusoidal voltage and 

current conditions:  

 

pC rS Q              (34) 

 

In addition to that, for the cost effective unity power 

factor compensation scheme including the balanced 

capacitors bank and an active filter, the power (SaC) of 

the active filter can practically be sized as the vector 

sum of Dsc, Dss, Dup and Duq: 

 

2 2 2 2

aC sc ss up uqS D D D D                (35) 

 

For this compensation scheme, according to unity 

power factor instantaneous compensation strategy [16], 

the active filter (or compensator) should inject the 

current (  afi t ), given in (36), into the system: 

 

         af sc ss up uqi t i t i t i t i t                (36) 

 

2.2. Providing a Tool for the Detection of the 

Harmonic Producing Loads 
 

From the outlines of the proposed power 

resolution, it can be qualitatively concluded that two 

power components could be used to detect the 

harmonic producing loads: These are; scattered 

conductance power (Dsc), which occurs by the 

difference between nth harmonic balanced 

conductance and equivalent conductance, and 

scattered susceptance power (Dss), which occurs by 

the difference between nth harmonic balanced 

susceptance and nth harmonic equivalent susceptance. 

However, Dss is quiet sensitive to the source side’s 

harmonic distortion, thus; its usage for the detection 

of the harmonic producing loads will be problematic. 

On the other hand, Dsc has the cases underlined 

below;  

 Sinusoidal Voltage (or Voltage with 

Negligible THDV): For a linear load under 

negligible voltage distortion, apparent power is 

very close to the fundamental harmonic 

apparent power due to the fact that both voltage 

and current harmonics have negligible magnitudes. 

As a result, for the same load-voltage case, Dsc has 

negligible value. On the contrary, for a nonlinear (or 

harmonic producing) load under the same voltage 

case, the load’s balanced conductances calculated 

for the harmonics a part from fundamental one have 

the considerable values due to the fact that the load 

injects current harmonics, which is extremely higher 

than the respective voltage harmonics. Therefore, 

the rms value of the scattered conductance current 

(Isc) and Dsc have considerably high values for the 

nonlinear load condition. 

 Nonsinusoidal Voltage: In IEEE standard 519 [17], 

the maximum permissible value of THDV is 

determined as 5% at the bus voltages lower than 

69kV, 2.5% at the bus voltages between 69kV and 

161kV and 1.5% at the bus voltages higher than 

161kV. Thus, according to the same standard, the 

maximum value of THDV measured at point of 

common coupling (pcc) can be assumed as 5%. For 

the maximum voltage distortion level, a linear load 

draws very small harmonic currents if there is no 

any resonance condition in the system. As a result, 

Isc and Dsc of the linear load will be small. For a 

harmonic producing load under the same voltage 

distortion level, it is feasible that its current have 

some harmonic components, which is extremely 

larger than respective harmonic components of the 

voltage, in other words it behaves as considerably 

large conductances for the respective harmonic 

numbers. Consequently, Isc and Dsc drawn by the 

harmonic producing load will have considerable 

values under the distorted supply voltage condition.  

According to the manners mentioned above, it can be 

concluded whether the load has a non-harmonic producing 

characteristic or not.  

 

3. Analysis Results on Reactive Power 

Compensation 
 

In this section, it will be demonstrated that the proposed 

resolution can be used as a tool to obtain the power of 

optimum balanced capacitive compensator, which 

maximizes power factor under nonsinusoidal conditions. In 

addition, it will also be pointed out that the unity power 

factor can be achieved cost effectively by using the 

combination of the optimum balanced capacitive and active 

compensators (hybrid compensation). In other words, it will 

be shown that the power of active compensator in the 

hybrid compensation scheme could be smaller than used in 

pure active compensation scheme. The merit of the 

proposed resolution for the direct implementation of hybrid 

compensation will be simulated in the system, given in 

Figure 1. The simulated system consists of four kinds of 

loads, which are a resistive load supplied with frequency 

converter, a six-pulse rectifier with resistive load, a six-

pulse rectifier with dc motor and an unbalanced inductive 

load. For the system without compensation (NC), the 

waveshapes of the line voltages and line currents are given 

in Figure 2 and Figure 3, respectively.  
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Figure 1. The simulated system considered for the compensation analysis 
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Figure 2. The wave shapes of the line voltages of the simulated system 

 

 

Figure 3. The wave shapes of the line currents of the simulated system without compensation (NC) 
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Figure 2 shows that line voltages have nonsinusoidal 

and balanced wave forms, which have 10% of THDV. 

The line currents, plotted in Figure 3, have 

nonsinusoidal wave forms with 42%, 70% and 39% of 

THDI, respectively. They are also significantly 

unbalanced: the ratio between fundamental harmonic 

negative and fundamental harmonic positive sequence 

magnitudes of the line currents, I1
-/I1

+, is 32.3%.  

For the system without compensation (NC), with 

optimum balanced capacitive compensation (OBC), 

active compensation (AC) and hybrid compensation 

(HC), the proposed power components (P, Qr, Dsc, Dss, 

Dup and Duq), apparent power (S), the powers of passive 

and active compensators (SpC and SaC) and power factor 

(pf=P/S) are plotted in Figure 4 and Figure 5. It should 

be noted that optimum balanced capacitive 

compensator is a star connected three identical 

capacitors, of which the capacitances can be 

determined using (17), active compensation is 

undertaken by unity power factor compensation 

strategy [16]. 

Figure 4 and 5 show that for NC case, pf, Qr and S 

are 0.756, 0.435pu and 1.00pu. In addition to that, for 

NC case, vector sum of Dsc, Dss, Dup and Duq is 

0.489pu. For OBC case, Qr is completely 

compensated and pf is improved from 0.756 to 0.840 

by using star connected three identical capacitors, of 

which the power (Spc) is 0.435pu. Obviously, all 

power components except Qr have the same values for 

NC and OBC cases. Thus, one can see that Qr gives 

the power of optimum balanced capacitive 

compensator. On the other hand, pf is still smaller 

than unity for OBC since Dsc, Dss, Dup and Duq can not 

be compensated via the balanced capacitive 

compensator. For AC case, unity power factor is 

achieved by using only active compensator, of which 

power (Sac) is equal to 0.654pu, and S is decreased to 

0.756pu. For HC case, unity power factor is achieved 

by using the optimum balanced capacitive 

compensator, of which power is 0.435pu, and an 

active compensator, of which power is equal to 

0.489pu. Therefore, it can be pointed out that the 

power of active compensator used in hybrid 

compensation is 74.7% of active compensator’s 

power calculated for the pure active compensation. In 

addition, it should also be underlined that for HC 

case, Qr and the vector sum of the Dsc, Dss, Dup and 

Duq are equal to SpC and SaC, respectively. This means 

that the proposed resolution can practically be 

employed as a tool to design the cost effective unity 

power factor compensator consisting of the basic 

capacitors and an active compensator. 

 

4. Experimental Analysis on the Detection 

of Harmonic Producing Loads 
 

In this section, the harmonic producing load 

detection method based on the proposed power 

resolution is statistically evaluated by using a real test 

system, which comprises various types of linear and 

nonlinear loads. The schematic of the system are 

depicted in Figure 6. In the schematic, PC processes voltage 

and current data, and controls the programmable power 

supply, which generates the desired voltage wave forms. A 

R-L impedance with X/R=0.5, an induction machine 

working with the constant speed and constant torque cases 

under full loading, a dimmer controlled R-L impedance 

(X/R=0.5 and the triac conduction angles: 90o-270o), a 

number of computers and a number of compact fluorescent 

lamps are the load types employed in the test system.  

Each one of the loads are supplied with one sinusoidal 

and one hundred randomly produced different distorted 

voltages with 5% value of THDV. For the sinusoidal 

excitation, voltage and current pairs of the loads are plotted 

in Figure 7. It is seen from Figure 7 (a) that the current of 

the R-L impedance load under sinusoidal supply voltage is 

sinusoidal. Figure 7 (b) and (c) shows that the induction 

machine draws a current with small amount of THDI, which 

is measured as 5%, under sinusoidal supply voltage. On the 

other hand, the currents of the dimmer controlled R-L 

impedance, computers and compact fluorescent lamps, of 

which THDI values are measured as 50, 185 and 115%, 

respectively, are seen as highly distorted from Figure 7 (d), 

(e) and (f). 

 

 

Figure 6. The schematic of the test system used for the harmonic 

source detection analysis 

 

The normalised values of the powers measured under 

sinusoidal supply voltage and the histograms of the 

normalised values of the powers measured under distorted 

test voltages are presented in Figure 8 and Figure 9, 

respectively. Figure 8 (a) shows that the R-L impedance 

draws P and Qr measured as 0.89 and 0.44 pu, respectively. 

In addition, Dsc and Dss values of the R-L impedance are 

almost zero under the sinusoidal supply voltage. Figure 8 

(a) and (d) point out that for the same load type the P, Qr 

and Dsc values measured under one hundred distorted test 

voltages are very close to their measured values under 

sinusoidal supply voltage. However, under the distorted test 

voltages, the Dss values drawn by the R-L impedance vary 

between 0.1 and 0.2 pu. This clearly means that Dss is 

strongly dependent on the source side distortion.   

Figure 8 (b) points out that the induction machine 

working with constant speed draws P, Qr, Dsc and Dss 

measured as 0.81, 0.58, 0.03 and 0.04 pu, respectively. It is 

seen from Figure 8 (b) and (e) that P, Qr and Dsc values 

measured under the distorted test voltages are around their 

measured values under sinusoidal supply voltage. However, 

for the distorted test voltages, Dss varies between 0.1 and 

0.2 pu.  
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Figure 4. Powers measured at the pcc of the simulated system for the NC, OBC, HC and AC cases 

 

 

Figure 5. The powers of compensators and power factors for the NC, OBC, HC and AC cases 
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Figure 7. For sinusoidal excitation, the voltage and current pairs of (a) the R-L impedance, (b) the induction machine working with constant 

speed, (c) the induction machine working with constant torque, (d) the R-L impedance controlled with a dimming circuit, (e) a number of 

computers and (f) a number of compact fluorescent lamps. 
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Figure 8. The normalised values of P, Qr, Dsc and Dss measured under sinusoidal supply voltage for (a) a R-L impedance, (b) the constant 

speed case of an induction machine and (c) the constant torque case of an induction machine, and the histograms of the normalised powers 

measured under distorted test voltages for (d) a R-L impedance, (e) the constant speed case of an induction machine and (f) constant torque 

case of an induction machine. 
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Figure 9. The normalised values of P, Qr, Dsc and Dss measured under sinusoidal supply voltage for (a) a dimmer controlled R-L 

impedance, (b) a number of computers and (c) a number of compact fluorescent lamps, and the histograms of the normalised 

powers measured under distorted test voltages for (d) a dimmer controlled R-L impedance, (e) a number of computers and (f) a 

number of compact fluorescent lamps. 
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On the other hand, it can be mentioned from Figure 8 

(b), (c), (e) and (f) that the constant torque and constant 

speed cases of the induction machine have almost the 

same power values for sinusoidal and the distorted test 

voltages.  
It is seen from Figure 9 (a) that P, Qr, Dsc and Dss of 

the R-L impedance controlled with a dimming circuit 

are 0.65, 0.61, 0.38 and 0.23 pu for sinusoidal supply 

voltage. Figure 9 (a) and (d) show that the P values 

drawn by the same load under sinusoidal and the 

distorted test voltages are very close. In addition to 

that, for the distorted test voltages, Qr, Dsc and Dss vary 

in the intervals from 0.5 to 0.6 pu, from 0.3 to 0.4 pu 

and from 0.2 to 0.4 pu, respectively.  

It is observed from Figure 9 (b) that P, Qr, Dsc and 

Dss of the computers are 0.45, 0.11, 0.53 and 0.70 pu 

for sinusoidal supply voltage. Figure 9 (b) and (e) 

shows that the Qr values drawn by the same load under 

sinusoidal and the distorted test voltages are very close. 

For the distorted test voltages, P, Dsc and Dss vary in 

the intervals from 0.4 to 0.6 pu, from 0.5 to 0.9 pu and 

from 0.1 to 0.7 pu, respectively 

It can be mentioned from Figure 9 (c) that the P, Qr, 

Dsc and Dss of the compact fluorescent lamps are 

measured as 0.54, 0.37, 0.63 and 0.41 pu in sinusoidal 

supply voltage case. For the distorted test voltage 

cases, the histograms plotted in Figure 9 (f) show that 

P is in the interval between 0.4 and 0.6 pu, Qr is in the 

interval between 0.3 and 0.4 pu, Dsc is in the interval 

between 0.3 and 0.7 pu, and Dss is in the interval 

between 0.3 and 0.7 pu. 

From statistical results given above, one can see that 

Dsc could be successfully used to detect harmonic 

producing loads under sinusoidal and distorted supply 

voltages due to the fact that it has two distinct cases for 

the linear and nonlinear (harmonic producing) loads: 

 The normalised values of Dsc measured for R-L 

impedance and induction machine are almost 

zero. 

 However, for the harmonic producing loads, Dsc 

has large normalised values. 

 

5. Conclusions 
 

In this paper, a power resolution is proposed for 

unbalanced and nonsinusoidal systems. The motivation 

of the proposed resolution is to provide the direct 

determination of the power of optimum balanced 

capacitive compensator and to be used for detection of 

the harmonic producing loads in the smart power grids. 

The simulation studies and analytical expressions 

show that the resolution achieves its compensation goal 

for the systems. In addition to that, the results 

demonstrated that it can practically be employed as a 

tool to design the cost effective unity power factor 

compensator consisting of the basic capacitors and an 

active compensator. 

On the other hand, the scattered conductance power 

(Dsc) of the proposed resolution is statistically 

investigated for various load types and supply voltages 

in an experimental test system. Consequently, it is 

observed from the results that the normalised value of 

this power component is very close to zero for linear 

loads and it has considerably high value for nonlinear 

(harmonic producing) loads. Thus, it is pointed out that 

in the smart power grids harmonic producing loads 

could be detected by using the proposed resolution 

implemented in the demand meters. 

Finally, due to fact that all power components of the 

proposed power resolution are related to the load 

conductance and susceptance parameters, it may 

provide a collective operation platform including not 

only the basic capacitors & active compensators, 

demonstrated as in this paper, but also other types of 

compensators. This will be studied in a future work. 
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