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Abstract 

In this article we describe new predictors under multicollinearity situation in the partially linear mixed measurement error models. 
In order to achieve this aim, we refer to some preliminary information and use it in order to suggest the modified Kernel ridge 
predictors in the partially linear mixed measurement error models. In addition, we also attain some mean square error comparisons 
between our new described modified Kernel ridge predictors and predictors previously described in literature for the partially linear 
mixed measurement error model. In conclusion, the article showcases real data analysis and a simulation study to illusrate our 
theoretical findings. 
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Öz 

Bu çalışmada, ölçüm hatalı kısmi lineer karma modellerde çoklu iç ilişki durumu altında yeni öntahmin ediciler tanımlanmaktadır. Bu 
amaca ulaşmak için, bazı ön bilgiler ele alınmıştır ve bu bilgi hesaba katılarak, ölçüm hatalı kısmi lineer karma modellerde modified 
Kernel ridge öntahmin edicileri önerilmiştir. Ek olarak, ölçüm hatalı kısmi lineer karma model literatüründe daha önce tanımlanan 
öntahmin ediciler ile yeni tanımlanan modified Kernel ridge öntahmin ediciler arasında bazı hata kareler ortalama karşılaştırmaları 
da yapılmıştır. Daha sonra, teorik bulgularımızı kanıtlamak için gerçek bir veri analizi ve simülasyon çalışması ile makale 
sonlandırılmıştır. 

Anahtar Kelimeler: Lineer Karma Model, Ölçüm Hatası, Çoklu İç İlişki, Kısmi Lineer Model, Ridge Öntahmin Ediciler 

 

1. Introduction 

Linear mixed model (LMM) [1] is an expanded version of linear 
model (LM). LMM has both fixed and random effects, and are 
especially employed to study clustered data such as longitudinal 
data, repeated measures data, multilevel data and etc. Another 
commonly studied statistical model in literature is 
nonparametric model (NPM) under the measurement error 
problem [2]. This model introduces the functional form of LM 
where heterogeneity is not handled. For the purpose of taking 
advantage of the favorable ideas of these two favored models 
together, partially linear mixed measurement error model 
(PLMMeM), a combination of LMM and the NPM under the 
measurement error problem, is defined by [3]. 

The PLMMeM based on a sample of size 𝑛 with measured error in 
parametric part component 𝑋𝑖  is considered as 

𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑔(𝑇𝑖) + 𝑍𝑖

𝑇𝑏𝑖 + 𝜖𝑖 ,    

𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖 , 
(1) 

where fixed effects design matrices are 𝑋𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
𝑇

 and for 

𝑡𝑖1, … , 𝑡𝑖𝑑 defined on [0,1] 𝑇𝑖 = (𝑡𝑖1, … , 𝑡𝑖𝑑)𝑇 , random effects 

design matrix is 𝑍𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑞)
𝑇

, a parameter vector of fixed 

effects design matrix is 𝛽 = (𝛽1 , … , 𝛽𝑝)
𝑇

, an unknown function 

defined from ℝ𝑑 to ℝ1 is 𝑔(. ), independent and identically 
distributed (i.i.d.), unobservable vector of the random effects 
design matrix is 𝑏𝑖  and i.i.d. random vector of errors is 𝜖𝑖 . 
Independent 𝑏𝑖  and 𝜖𝑖  are chosen from a Gaussian process with 
mean zero and covariance matrix 𝐷𝑖 and Σ𝑖 , respectively. 

When 𝑋𝑖 ’s are observable, the conditional distribution of 𝑌𝑖  for a 

given 𝑏𝑖  is 𝑌𝑖|𝑏𝑖 ∼ 𝑁(𝑋𝑖
𝑇𝛽 + 𝑔(𝑇𝑖) + 𝑍𝑖

𝑇𝑏𝑖 , Σ𝑖). However, we 

observe 𝑊𝑖  instead of observing 𝑋𝑖  in model (1), assuming that 
the measurement error 𝑈𝑖  has a known i.i.d. with mean zero and 
covariance matrix Σ𝑢𝑢 and independent of (𝑌𝑖 , 𝑋𝑖 , 𝑇𝑖 , 𝑍𝑖). 

If we introduce the conditional expectations also known as the 
kernel regressions of 𝑌, 𝑋 and 𝑍 with bandwidth ℎ, respectively, 
as 

𝜔𝑦(𝑇𝑖) = 𝐸(𝑌𝑖|𝑇𝑖),  

𝜔𝑥(𝑇𝑖) = 𝐸(𝑋𝑖|𝑇𝑖),  

𝜔𝑧(𝑇𝑖) = 𝐸(𝑍𝑖|𝑇𝑖). 

then the matrix form of model (1) is obtained as  

mailto:ozge.kuran@dicle.edu.tr
mailto:ozge-kuran@hotmail.com
https://orcid.org/0000-0001-5632-001X
https://orcid.org/0000-0001-7283-9225


DEUFMD 26(76) (2024) 134-140  

 135 

�̃� = �̃�𝛽 + 𝑍𝑏 + 𝜖, (2) 

where �̃� = 𝑌 − 𝜔𝑦(𝑇) = (�̃�1, … , �̃�𝑛)𝑇 , �̃� = 𝑋 − 𝜔𝑥(𝑇) =

(�̃�1, … , �̃�𝑛)𝑇 , 𝑍 = 𝑍 − 𝜔𝑧(𝑇) = (𝑍1, … , 𝑍𝑛)𝑇 .  

Letting 𝑉 = 𝑍𝐷𝑍𝑇 + Σ be the covariance matrix of �̃�, [3] defined 
the Kernel estimator and the Kernel predictor under model (2) 
respectively, as 

�̂�
= (�̃�𝑇𝑉−1�̃�

− 𝑡𝑟(𝑉−1)Σ𝑢𝑢)−1(�̃�𝑇𝑉−1�̃�), 

 

(3) 

�̂� = 𝐷𝑍𝑇𝑉−1(�̃� − �̃��̂�). (4) 

By denoting 𝜔𝑛𝑖(𝑡) =
1

ℎ𝑛
∫

𝑠𝑖

𝑠𝑖−1
𝐾(

𝑡−𝑠

ℎ𝑛
)𝑑𝑠, 1 ≤ 𝑖 ≤ 𝑛, where 𝑠0 = 0, 

𝑠𝑛 = 1 and 𝑠𝑖 =
1

2
(𝑇𝑖 + 𝑇𝑖+1), 1 ≤ 𝑖 ≤ 𝑛 − 1, where 𝐾(. ) is a 

kernel function, supported to have compact support and satisfy 
supp(𝐾) = [−1,1], sup|𝐾(𝑥)| ≤ 𝐶 < ∞, ∫ 𝐾(𝑠)𝑑𝑠 = 1 and 
𝐾(𝑠) = 𝐾(−𝑠) and ℎ𝑛 is a sequence of bandwidth parameters 
which tends to zero as 𝑛 → ∞, �̃� = (�̃�1, … , �̃�𝑛) with �̃�𝑖 = 𝑊𝑖 −

𝜔𝑤(𝑇𝑖) = 𝑊𝑖 − ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑇𝑖)𝑊𝑖 , �̃� = (�̃�1, … , �̃�𝑛) with �̃�𝑖 = 𝑌𝑖 −

𝜔𝑦(𝑇𝑖) = 𝑌𝑖 − ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑇𝑖)𝑌𝑖  and 𝑍 = (�̃�1, … , 𝑍𝑛) with 𝑍𝑖 = 𝑍𝑖 −

𝜔𝑧(𝑇𝑖) = 𝑍𝑖 − ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑇𝑖)𝑍𝑖 , we can get the nonparametric 

function estimation as �̂�(𝑡) = 𝐸(𝑌𝑖 − 𝑋𝑖𝛽 − 𝑍𝑖𝑏|𝑇 = 𝑡) = 𝐸(𝑌𝑖 −

𝑊𝑖𝛽 − 𝑍𝑖𝑏|𝑇 = 𝑡) = ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑡)(𝑌𝑗 − 𝑊𝑗�̂� − 𝑍𝑗�̂�). 

In the real data world, it is quite natural that strong linear 
dependence arises between the columns of �̃� and this linear 
dependence situation is called as multicollinearity. Under 
multicollinearity case, we may encounter some undesirable 

result like a large variance of �̂� that deviates from its true value. 
To solve this undesirable result, estimators and predictors 

alternative to �̂� and �̂� can be suggested. 

The most commonly preferred approach to overcome 
multicollinearity problem is the ridge approach [4] in LMs. By 
following [5-6] in LMMs, the Kernel ridge predictors which are 
the Kernel ridge estimator and predictor in PLMMeMs for a given 
ridge biasing parameter 𝑘 > 0 are derived by [7] respectively, as  

�̂�𝑘 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)𝛴𝑢𝑢 +

𝑘𝐼𝑝)−1(�̃�𝑇𝑉−1�̃�), 

 

(5) 

�̂�𝑘 = 𝐷𝑍𝑇𝑉−1(�̃� − �̃��̂�𝑘). (6) 

Then, using the Kernel ridge predictors given by Eqs. (5) and (6), 
the estimate of the ridge nonparametric function is obtained as 

�̂�𝑘(𝑡) = ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑡)(𝑌𝑗 − 𝑊𝑗�̂�𝑘 − 𝑍𝑗�̂�𝑘). 

Another popular attempt is Liu’s approach [8] in LMs. With the 
help of [9] in LMs and [10] in LMMs, the Kernel Liu predictors 
which are the Kernel Liu estimator and predictor in PLMMeMs 
for a given Liu biasing parameter 0 < 𝑑 < 1 are given by [11], 
respectively as 

�̂�𝑑 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)Σ𝑢𝑢 +

I𝑝)−1(�̃�𝑇𝑉−1�̃� + dI𝑝), 

(7)  

�̂�𝑑 = 𝐷𝑍𝑇𝑉−1(�̃� − �̃��̂�𝑑), (8)  

Then, using the Kernel Liu predictors given by Eqs. (7) and (8), 
the estimate of the Liu nonparametric function is obtained as 

�̂�𝑑(𝑡) = ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑡)(𝑌𝑗 − 𝑊𝑗�̂�𝑑 − 𝑍𝑗�̂�𝑑). 

Both Kernel ridge and Kernel Liu predictors given by Eqs. (5-8) 
are biased prediction approaches that are suggested by using 
some prior information [9] in order to eliminate the negative 
effects of the multicollinearity problem in PLMMeMs. In addition 
to these two approaches, our goal in this article is to propose a 
new biased prediction approach in PLMMeMs by taking a convex 
combination of Kernel ridge and Kernel Liu predictors as prior 
information. This new approach called the modified Kernel ridge 
is such a convex combined approach that it results in unifying the 
advantages of the Kernel ridge prediction and Kernel Liu 
prediction. Since it is a combination of both Kernel ridge and 
Kernel Liu approaches, it is thought to be more successful than 
Kernel ridge and Kernel Liu approaches in minimizing the 
negative effects of multicollinearity. Then, the rest of this paper 
is structured as follows: Section 2, the new predictors in 
PLMMeMs are characterized. In Section 3, we make some mean 
square error comparisons and Covid-19 data analysis under 
known measurement errors and covariance matrix is done in 
Section 4. In Section 5, a simulation study is also done. Finally, 
concluding remarks are given in Section 6. 

2. The Modified Kernel Ridge Predictors 

Our aim in this section is to suggest the modified Kernel ridge 
prediction approach for PLMMeMs using the idea of the modified 
ridge estimation in linear models [9] and in LMMs [12]. We know 

that under model (2), [
𝑏
�̃�

] ~𝑁 ([
0

�̃�𝛽
] , [ 𝐷 𝐷𝑍𝑇

𝑍𝐷 𝑉
]) which means 

that 𝑏 and �̃� are jointly Gaussian distributed. For a given 𝑏 the 
conditional distribution of �̃� is given as �̃�|𝑏~𝑁(�̃�𝛽 + 𝑍𝑏, Σ). 
Then, the joint density of �̃� and 𝑏 is  

𝑓(�̃�, 𝑏) = 𝑓(�̃�|𝑏)𝑓(𝑏) = (2𝜋)−(𝑛+𝑞)/2|Σ|−1/2|𝐷|−1/2 

× 𝑒𝑥𝑝 {−
1

2
[(�̃� − �̃�𝛽 − 𝑍𝑏)

𝑇
Σ−1(�̃� − �̃�𝛽 − 𝑍𝑏) + 𝑏𝑇𝐷−1𝑏]}, 

where |. | denotes the determinant of a matrix. 𝑙𝑜𝑔𝑓(�̃�, 𝑏) is 
derived by dropping the constant term as 

= 𝑙𝑜𝑔𝑓(�̃�|𝑏) + 𝑙𝑜𝑔𝑓(𝑏) 

= −
1

2
{[(�̃� − �̃�𝛽 − 𝑍𝑏)

𝑇
Σ−1(�̃� − �̃�𝛽 − 𝑍𝑏) + 𝑏𝑇𝐷−1𝑏]}, 

and so, a penalization term with regularization parameter 𝛿 =

−
1

2
≥ 0 is added to 𝑙𝑜𝑔𝑓(�̃�, 𝑏), 

𝑙𝑜𝑔𝑓(�̃�, 𝑏) −
1

2
𝑘(1 + 𝑑)𝛽𝑇𝛽. (9) 

Here, we use the prior information from [9] and [13] to chose the 

stochastic linear restriction 0 = √𝑘(1 + 𝑑)𝛽 + 𝜀. The partial 

derivatives of Eq. (9) with respect to the elements of 𝛽 and 𝑏 are 

taken equal to zero, then, by switching �̂� and �̂� by �̂�𝑘,𝑑 and �̂�𝑘,𝑑, 

respectively. 

�̃�𝑇𝛴−1(�̃� − �̃��̂�𝑘,𝑑) − 𝑘(1 + 𝑑)�̂�𝑘,𝑑 −

�̃�𝑇𝛴−1𝑍�̂�𝑘,𝑑 = 0, 
(10) 

𝑍𝑇𝛴−1(�̃� − �̃��̂�𝑘,𝑑) − (𝑍𝑇𝛴−1𝑍 +

𝐷−1)�̂�𝑘,𝑑 = 0, 
(11) 

are obtained. Eqs. (10) and (11) are also equal the matrix form 
given by 

(
�̃�𝑇𝛴−1�̃� + 𝑘(1 + 𝑑)𝐼𝑝 �̃�𝑇𝛴−1�̃�

�̃�𝑇𝛴−1�̃� �̃�𝑇𝛴−1𝑍 + 𝐷−1
) (12) 
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× (
�̂�𝑘,𝑑

�̂�𝑘,𝑑

) = (�̃�𝑇𝛴−1�̃�
�̃�𝑇𝛴−1�̃�

). 

With [14]’s approach, Eq. (12) can be rewritten as  

𝐶�̂� = 𝜔𝑇𝛴−1�̃� + 𝜗, (13) 

where �̂� = (�̂�𝑘,𝑑
𝑇 , �̂�𝑘,𝑑

𝑇 )𝑇 , 𝜔 = (�̃�, 𝑍), 𝜗 = (𝑘(1 + 𝑑)�̂�𝑇 , 0𝑇)𝑇 and 

𝐶 = 𝜔𝑇𝛴−1𝜔 + 𝐷∗+ is full rank with 𝐷∗ = [
1

𝑘(1+𝑑)
𝐼𝑝 0

0 𝐷
] and 

𝐷∗+ = [
𝑘(1 + 𝑑)𝐼𝑝 0

0 𝐷−1
] where Moore–Penrose inverse shown 

by the superscript ‘+’. With the regularization of Eq. (13) �̂� is 
obtained as 

�̂� = 𝐶−1𝜔𝑇𝛴−1�̃� + 𝐶−1𝜗, (14) 

where 𝐶−1 is the inverse formula of the partitioned matrix [15]. 
After 𝐶−1 is found and putting into Eq. (14), the modified Kernel 
ridge estimator and predictor are obtained, respectively, as 

�̂�𝑘,𝑑 = (�̃�𝑇𝑉−1�̃� + 𝑘(1 +

𝑑)𝐼𝑝)−1(�̃�𝑇𝑉−1�̃�), 

 

�̂�𝑘,𝑑 = 𝐷𝑍𝑇𝑉−1(�̃� − �̃��̂�𝑘,𝑑).  

Since the disturbance of measurement error 𝑈 is existed, we need 
to carry out correction for attenuation. Thus, we redefine the 
modified Kernel ridge estimator and predictor, respectively, as 

�̂�𝑘,𝑑 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)𝛴𝑢𝑢 +

𝑘(1 + 𝑑)𝐼𝑝)−1(�̃�𝑇𝑉−1�̃�), 

(15) 

�̂�𝑘,𝑑 = 𝐷𝑍𝑇𝑉−1(�̃� − �̃��̂�𝑘,𝑑), (16) 

with an estimate of the modified Kernel ridge nonparametric 

component �̂�𝑘,𝑑(𝑡) = ∑𝑛
𝑗=1 𝜔𝑛𝑗(𝑡)(𝑌𝑗 − 𝑊𝑗�̂�𝑘,𝑑 − 𝑍𝑗�̂�𝑘,𝑑). 

3. Some Mean Square Error Comparisons 

Under specific matrices 𝐿 ∈ ℝ𝑝×𝑠′ and 𝑀 ∈ ℝ𝑞×𝑠′, we 
demonstrate the prediction of PLMMeM as 𝜇 = 𝐿𝑇𝛽 + 𝑀𝑇𝑏 
[16,17] for 𝑠′ = 1. By using Eqs. (3)-(8) and Eqs. (15) and (16), 
the predictors of 𝜇 under the Kernel, the Kernel ridge, the Kernel 
Liu and the modified Kernel ridge predictors are definable, 
respectively, as 

�̂� = 𝐿𝑇�̂� + 𝑀𝑇�̂� = ℚ�̂� + 𝑀𝑇𝐷𝑍𝑇𝑉−1�̃�,  

�̂�𝑘 = 𝐿𝑇�̂�𝑘 + 𝑀𝑇�̂�𝑘 = ℚ�̂�𝑘 + 𝑀𝑇𝐷𝑍𝑇𝑉−1�̃�, 

�̂�𝑑 = 𝐿𝑇�̂�𝑑 + 𝑀𝑇�̂�𝑑 = ℚ�̂�𝑑 + 𝑀𝑇𝐷𝑍𝑇𝑉−1�̃�, 

�̂�𝑘,𝑑 = 𝐿𝑇�̂�𝑘,𝑑 + 𝑀𝑇�̂�𝑘,𝑑 = ℚ�̂�𝑘,𝑑 + 𝑀𝑇𝐷𝑍𝑇𝑉−1�̃�, 

where ℚ = 𝐿𝑇 − 𝑀𝑇𝐷𝑍𝑇𝑉−1�̃�. 

The matrix mean square error (MMSE) criterion is used to 
compare the betterness of �̂�, �̂�𝑘 , �̂�𝑑  and �̂�𝑘,𝑑. By following [18], 

the MMSEs for �̂�, �̂�𝑘 , �̂�𝑑  and �̂�𝑘,𝑑  are calculated, respectively, as 

𝑀𝑀𝑆𝐸(�̂�) = ℚ𝑀𝑀𝑆𝐸(�̂�)ℚ𝑇 + 𝑀𝑇(𝐷 − 𝐷𝑍𝑇𝑉−1𝑍𝐷)𝑀, 

𝑀𝑀𝑆𝐸(�̂�𝑘) = ℚ𝑀𝑀𝑆𝐸(�̂�𝑘)ℚ𝑇 + 𝑀𝑇(𝐷 − 𝐷𝑍𝑇𝑉−1𝑍𝐷)𝑀, 

𝑀𝑀𝑆𝐸(�̂�𝑑) = ℚ𝑀𝑀𝑆𝐸(�̂�𝑑)ℚ𝑇 + 𝑀𝑇(𝐷 − 𝐷𝑍𝑇𝑉−1𝑍𝐷)𝑀, 

𝑀𝑀𝑆𝐸(�̂�𝑘,𝑑) = ℚ𝑀𝑀𝑆𝐸(�̂�𝑘,𝑑)ℚ𝑇 + 𝑀𝑇(𝐷 − 𝐷�̃�𝑇𝑉−1𝑍𝐷)𝑀, 

where  

𝑀𝑀𝑆𝐸(�̂�) = 𝑁−1, 

𝑀𝑀𝑆𝐸(�̂�𝑘) = 𝑁𝑘
−1𝑁𝑁𝑘

−1 + 𝑘2𝑁𝑘
−1𝛽𝛽𝑇𝑁𝑘

−1, 

𝑀𝑀𝑆𝐸(�̂�𝑑) = 𝑁𝑝
−1𝑁𝑑𝑁−1𝑁𝑑𝑁𝑝

−1 + (1 − 𝑑)2𝑁𝑝
−1𝛽𝛽𝑇𝑁𝑝

−1, 

𝑀𝑀𝑆𝐸(�̂�𝑘,𝑑) = 𝑁𝑁𝑘,𝑑
−2 + (𝑁𝑘,𝑑 − 𝐼𝑝)𝛽𝛽𝑇(𝑁𝑘,𝑑 − 𝐼𝑝), where 

𝑁 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)Σ𝑢𝑢),𝑁𝑝 = (𝑁 + 𝐼𝑝), 

𝑁𝑘 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)Σ𝑢𝑢 + 𝑘𝐼𝑝), 

𝑁𝑑 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)Σ𝑢𝑢 + 𝑑𝐼𝑝),  

𝑁𝑘,𝑑 = (�̃�𝑇𝑉−1�̃� − 𝑡𝑟(𝑉−1)Σ𝑢𝑢 + 𝑘(1 + 𝑑)𝐼𝑝). Then, the 

following theorems can be presented: 

Theorem 3.1. The estimator �̂�𝑘,𝑑  dominates the estimator �̂� in 

the MMSE sense iff 

𝛽𝑇(𝑁𝑘,𝑑 − 𝐼𝑝)
𝑇

(𝑁−1 − 𝑁𝑘,𝑑𝑁−1𝑁𝑘,𝑑
𝑇 )

−1
(𝑁𝑘,𝑑 − 𝐼𝑝)𝛽 < 1. 

Theorem 3.2. The estimator �̂�𝑘,𝑑  dominates the estimator �̂�𝑘 in 

the MMSE sense iff 

𝛽𝑇(𝑁𝑘,𝑑 − 𝐼𝑝)
𝑇

((𝑁𝑘
−1𝑁𝑁𝑘

−1 − 𝑁𝑘,𝑑𝑁−1𝑁𝑘,𝑑
𝑇 ) +

𝑘2𝑁𝑘
−1𝛽𝛽𝑇𝑁𝑘

−1)−1(𝑁𝑘,𝑑 − 𝐼𝑝)𝛽 < 1. 

Theorem 3.3. The estimator �̂�𝑘,𝑑  dominates the estimator �̂�𝑑 in 

the MMSE sense iff 

𝛽𝑇(𝑁𝑘,𝑑 − 𝐼𝑝)𝑇((𝑁𝑝
−1𝑁𝑑𝑁−1𝑁𝑑𝑁𝑝

−1 − 𝑁𝑘,𝑑𝑁−1𝑁𝑘,𝑑
𝑇 ) + (1 −

𝑑)2𝑁𝑝
−1𝛽𝛽𝑇𝑁𝑝

−1)−1(𝑁𝑘,𝑑 − 𝐼𝑝)𝛽 < 1. 

For the proofs of the theorems 3.1, 3.2 and 3.3 in PLMMeM, [12, 
p.37] in LMM can be examined. We modified [12, p.37]’s proofs 
which are obtained for LMM to our model PLMMeMs. 

4. Covid-19 Data Analysis 

For real data analysis the data taken from the Vaccine Tracker 
[19] submitted to ECDC through The European Surveillance 
System (TESSy) twice a week by European Union/European 
Economic Area (EU/EEA) countries. The data includes the 
number of vaccine doses distributed by manufacturers to the 
country, the number of first, second and unspecified (number of 
doses not known whether it was a first or second dose) doses. 
These vaccines are administered by age groups which are 
children (<18), adolescent and adult population (18+). 

In this data application, we use 187 age-specific 14-day 
notification rate of reported Covid-19 cases per 100000 
population (rate_14_day_per_100k) selected randomly from the 
countries Belgium, Czechia, Denmark, Estonia, Ireland, Greece, 
Austria, Hungary, Italy, Spain, Slovenia, Slovakia, Portugal, Malta, 
Norway, Luxembourg, Netherlands (17 regions) which were 
regularly obtained during the week periods 2021-W01, 2021-
W05, 2021-W09, 2021-W13, 2021-W17, 2021-W21, 2021-W25, 
2021-W29, 2021-W33, 2021-W37, 2021-W40. To determine 
rate_4_week_per_100k, we employ repeated measurements from 
denominator (25-49 years old population), first dose, second 
dose and vaccine name. Our Covid-19 data can be extracted from 
an official website of the European centre for disease prevention 
and control [20]. 

Rate_4_week_per_100k is defined as the response (𝑦), 
denominator (𝑥1), first dose (𝑥2) and second dose (𝑥3) are 
obtained as the explanatory variables (fixed effects) and vaccines 
(𝑡) are expressed as nonparametric variable. When we specify 
nonparametric part, firstly, we look at which vaccines are used in 
the determined weeks in our data set and these vaccines are COM 
= Pfizer/BioNTech, AZ = AstraZeneca, MOD = Moderna, BECNBG 
= Beijing CNBG, JANSS = Janssen, SPU = Sputnik V and UNK= 
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UNKNOWN. Secondly, we specify the vaccine efficacy rate of each 
vaccine (COM=0.95, AZ=0.7469, MOD=0.941, JANSS=0.7735, 
SPU=0.9760, BECNBG=0.7934 and UNK=0.8583 are computed as 
by taking the geometric mean of the COM, AZ, MOD, BECNBG, 
JANSS, SPU vaccines). And lastly, we create the nonparametric 
part by taking the geometric mean of the efficacy rates of the 
vaccines. Since the regions are randomly selected from 17 
countries, random effect is explained as the regions. We log-
transform the variables to make the data conform more closely to 
the normal distribution and to improve the model fit since the 
distribution of Covid-19 data is right skewed. Then, the PLMMeM 
is written as, for 𝑖 = 1, … ,17, 𝑗 = 1, … ,11, 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + 𝛽3𝑥𝑖𝑗3 + 𝑏1 + 𝑏2𝑡𝑖𝑚𝑒𝑖𝑗 + 𝑔(𝑡𝑖𝑗)

+ 𝜀𝑖𝑗 , 

where the 𝑖th observation of the 𝑗th region of the explanatory 
variable (𝑥𝑠 , 𝑠 = 1,2,3) is indicated as 𝑥𝑖𝑗𝑠 , the 𝑗th observation of 

the 𝑖th region of the response is indicated as 𝑦𝑖𝑗 and time 

corresponding to 𝑦𝑖𝑗 is demonstrated as 𝑡𝑖𝑚𝑒𝑖𝑗 . ℎ is chosen using 

optimal bandwidth selection rule given by [21]. We use the 

quartic kernel function 𝐾(𝑢) = (15/16)(1 − 𝑢𝑗
2)2𝐼(|𝑢𝑗| ≤ 1) for 

kernel smoothing regression with the measurement error which 
has normal distribution 𝑈 → 𝑁(0,0.25).  

In our real data analysis, we select the restricted maximum 
likelihood (REML) method which has the smallest AIC/BIC values 
for all models from Table 1. The UN(1) variance-covariance 
model under AIC and BIC is seen as the best model in modeling 
the variance-covariance matrix structure with respect to the 
response.  

Table 1. Variance-covariance matrix results 

Cov. 
struc. 

Est. Met. for 
Cov. Par. 

AIC BIC 

UN 
ML 568.68 594.35 

REML 552.50 578.35 

UN(1) 

ML 567.91 590.38 

REML 551.94 574.56 

VC 
ML 570.43 589.68 

REML 555.51 574.90 

CS 
ML 571.23 593.70 

REML 556.08 578.70 

The abbreviations ”Cov. Struc.” and ”Est. Met. for Cov.Par.” 
refer to ”Covariance Structures” and ”Estimation Methods 
for Covariance Parameters” 

�̂�𝑅𝐸𝑀𝐿 and Σ̂𝑅𝐸𝑀𝐿values given in Table 2. Then, via 𝑉 = 𝑍𝐷𝑍𝑇 + Σ 
formula, �̂�𝑅𝐸𝑀𝐿 values are found. 

Table 2. Covariance structures estimates 

�̂�𝑅𝐸𝑀𝐿 [
0.0742 0

0 0.4591
] 

�̂�𝑅𝐸𝑀𝐿 0.8855𝐼187 

𝜆1 = 0.0162𝑒+03, 𝜆2 = 2.1292𝑒+03,𝜆3 = 0.6513𝑒+03 and 𝜆4 =
0.1312𝑒+03 are obtained from the matrix �̃�𝑇�̂�𝑅𝐸𝑀𝐿

−1 �̃�. The 

condition number calculated as 
𝜆max

𝜆min
= 132.076 is used to 

measure the extent of multicollinearity and 
𝜆max

𝜆min
> 100 shows 

moderate multicollinearity.  

We determine the estimators of the biasing parameters 𝑘 and 𝑑 
with a computational algorithm as follows: 

1. By using for each 𝜆i value, the 𝑘 value is estimated from 

[7] for PLMMeMs as �̂� = �̂�𝐿𝑊 =
𝑝

∑ 𝜆iβ̂i
2𝑝

𝑖=1

= 12.4055 

when the covariance parameters are estimated by 
REML. 

2. After the �̂� value is found from the point 1, the Liu 

biasing parameter 𝑑 is selected as �̂�ℎ which is given by 
Theorem 4.2 [11] where ℎ is determined as multiplying 
the upper bound defined in Theorem 4.2 by 0.99 if 

∑
1

𝜆i(1+𝜆i)
>

2

𝜆p(1+𝜆p)

𝑝
𝑖=1 . 

3. If ∑
1

𝜆i(1+𝜆i)
<

2

𝜆p(1+p)

𝑝
𝑖=1 , we determined arbitrarily �̂�ℎ 

as 0.9705 . 

The estimates of the fixed parameters and nonparametric 
function, the predictions of the random parameters and the scalar 
mean square error (SMSE) values for Kernel, Kernel ridge, Kernel 
Liu and modified Kernel ridge cases under PLMeM are presented 
in Table 3. 

We see that in Table 3 the modified Kernel ridge estimator has 

better results in the sense of SMSE for �̂�𝐿𝑊 = 12.4055 and �̂�ℎ =
0.9705 than the Kernel, Kernel ridge and Kernel Liu estimators. 
Moreover, we calculate the conditions given by Theorems 3.1, 3.2 
and 3.3, respectively, as -0.3274, -0.3273 and -0.3296, which are 
smaller than 1. Thus, we also say that the modified Kernel ridge 
estimator dominates the Kernel, Kernel ridge and Kernel Liu 
estimators on the MMSE criterion. 

 

Figure 1. Comparison of the finite sample and asymptotic 
distributions of the estimators  

Additionally, comparison between the asymptotic distributions 
of Kernel (green), Kernel ridge (red), Kernel Liu (blue), modified 
Kernel ridge (magenta) estimators and the finite sample 
properties are also examined. In Figure 1 where the abscissa is 
𝑍 =  (𝑉𝑎𝑟(𝑔(𝑡, ℎ𝑛)))−1/2(𝑔(𝑡, ℎ𝑛)  −  𝐸(𝑔(𝑡, ℎ𝑛))) and the 
ordinate is probability. The empirical cumulative distribution 
functions (CDFs) of the estimators agree very well with the 
normal CDFs. 
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Table 3. Data analysis results 

 Kernel Kernel ridge Kernel Liu Modified Kernel ridge 

�̂�0 -4.0588𝑒−10 -2.3038𝑒−10 -4.0519𝑒−10 -1.6234𝑒−10 

�̂�1 0.0186 0.0168 0.0186 0.0153 

�̂�2 -0.0172 -0.0161 -0.0172 -0.0152 

�̂�3 -0.0095 -0.0094 -0.0095 -0.0093 

�̂�1 -1.3563𝑒−16 -1.6294𝑒−10 -6.4321𝑒−13 -2.2625𝑒−10 

�̂�2 -0.6394 -0.6401 -0.6394 -0.6408 

�̂� 6.3563 6.3727 6.3563 6.3860 

SMSE 0.0713 0.0281 0.0711 0.0171 

Table 4. Estimated and predicted MSE values with 𝑔1(𝑡) function 

𝑚 𝛾2 �̂� �̂��̂�𝐿𝑊
 �̂��̂� �̂��̂�𝐿𝑊,�̂� �̂� �̂��̂�𝐿𝑊

 �̂��̂� �̂��̂�𝐿𝑊,�̂� 

15 

0.90 1.309997 1.309915 1.309914 1.283515 0.008436 0.008435 0.008431 0.008316 

0.95 0.779188 0.779120 0.779119 0.761362 0.009774 0.009773 0.009769 0.009614 

0.99 0.830462 0.830393 0.830392 0.811062 0.010974 0.010973 0.010969 0.009924 

30 

0.90 0.947033 0.947019 0.947018 0.938671 0.002307 0.002306 0.002304 0.002219 

0.95 0.696424 0.696413 0.696412 0.689989 0.001687 0.001686 0.001682 0.001537 

0.99 0.633088 0.633077 0.633076 0.626945 0.003710 0.003709 0.003705 0.003582 

60 

0.90 0.976395 0.976391 0.976390 0.971870 
0.456936×

10−3 
0.456935×

10−3 
0.456931×

10−3 
0.456721×

10−3 

0.95 0.912487 0.912484 0.912483 0.908417 
0.420959×

10−3 
0.420958×

10−3 
0.420957×

10−3 
0.420860×

10−3 

0.99 0.804819 0.804815 0.804814 0.800992 
0.426339×

10−3 
0.426339×

10−3 
0.426335×

10−3 
0.426144×

10−3 

Table 5. Estimated and predicted MSE values with 𝑔2(𝑡) function 

𝑚 𝛾2 �̂� �̂��̂�𝐿𝑊
 �̂��̂� �̂��̂�𝐿𝑊,�̂� �̂� �̂��̂�𝐿𝑊

 �̂��̂� �̂��̂�𝐿𝑊,�̂� 

15 

0.90 1.063705 1.063638 1.063631 1.043362 0.008777 0.008776 0.008772 0.008604 

0.95 0.987899 0.987841 0.987840 0.969730 0.026092 0.026091 0.026090 0.025986 

0.99 1.017534 1.017466 1.017465 0.995898 0.013327 0.013326 0.013324 0.013227 

30 

0.90 0.840638 0.840625 0.840623 0.833181 0.001965 0.001964 0.001962 0.001945 

0.95 0.800622 0.800609 0.800605 0.792983 0.002950 0.002949 0.002946 0.002845 

0.99 0.626170 0.626158 0.626157 0.619923 0.003990 0.003989 0.003985 0.003872 

60 

0.90 0.985321 0.985317 0.985316 0.980775 
0.419945×

10−3 
0.419944×

10−3 
0.419941×

10−3 
0.419842.×

10−3 

0.95 0.896444 0.896441 0.896440 0.892368 
0.421394×

10−3 
0.421393×

10−3 
0.421391×

10−3 
0.421290×

10−3 

0.99 0.843971 0.843968 0.843967 0.839810 
0.475318×

10−3 
0.475317×

10−3 
0.475311×

10−3 
0.475303×

10−3 
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5. A Simulation Study 

In this section, we will investigate the performances of Kernel, 
Kernel ridge, Kernel Liu and modified Kernel ridge estimators in 
the sense of the estimated mean square error (EMSE) and the 
performances of Kernel, Kernel ridge, Kernel Liu and modified 
Kernel ridge predictors in the sense of the predicted mean square 
error (PMSE) under known covariance matrix. 

By following [22], the fixed effects are calculated as 

𝑥𝑖𝑗𝑘 = (1 − 𝛾2)1/2𝑤𝑖𝑗𝑘 + 𝛾𝑤𝑖𝑗𝑝+1, 𝑖 = 1, … , 𝑚,

𝑗 = 1, … , 𝑛𝑖 , 𝑘 = 1, … , 𝑝, 

where 𝑤𝑖𝑗𝑘  are independent standard normal pseudo-random 

numbers and 𝛾 is specified so that the correlation between any 
two fixed effects is given by 𝛾2 = 0.90,0.95,0.99. And, the fixed 
effects number size is selected as 𝑝 = 3.  

We think 𝑚 = 15,30,60 subjects and 𝑛𝑖 = 10 observation per 
subject and then, we report the simulation results with the 
sample sizes of 𝑛 = ∑ 𝑛𝑖

𝑚
𝑖=1 = 150,300,600. The parameter 

vector 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 is chosen as the normalized eigenvector 

corresponding to the largest eigenvalue of �̃�𝑇𝑉−1�̃� so that 𝛽𝑇𝛽 =
1 (see [23]). Then, the underlying model takes the following form 
with 𝑞 = 2 random effects 

𝑦𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + 𝛽3𝑥𝑖𝑗3 + 𝑏1 + 𝑏2𝑡𝑖𝑚𝑒𝑖𝑗 + 𝑔(𝑡𝑖𝑗) + 𝜀𝑖𝑗 , 

𝑏𝑖 ~⏞
𝑖𝑖𝑑

𝑁(0, 𝐷), 𝜀𝑖𝑗 ~⏞
𝑖𝑖𝑑

𝑁(0, 𝐼𝑛𝑖
) 

where 𝐷 = [
1 𝜌
𝜌 1

] is the AR(1) process with 𝜌 = 0.99 and 𝑡𝑖𝑚𝑒𝑖𝑗 

shows time which was taken as the same set of occasions, {𝑡𝑖𝑗 = 𝑗 

for 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛𝑖}. �̂� and �̂� are selected as used in the 
Covid-19 data analysis. 

We think two functions that the first is the piecewise linear 
continuous function 𝑔1(𝑡) = 𝑆(𝑡) as an example of the ordinarily 
smooth nonparametric function and the second is the error 
function 𝑔2(𝑡) = 𝑒𝑟𝑓 (𝑡) as an example of the supersmooth 
nonparametric function. Supposing that 𝑇 → 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1], 
ℎ𝑛

−1 = 1.2(In 𝑛)0.25 and using the Gaussian Kernel function 

𝐾(𝑢) =
𝑒

−
𝑢𝑗

2

2

√2𝜋
 for the models have nonparametric part, we examine 

these models with the measurement error which has normal 
distribution 𝑈 → 𝑁(0,0.5). 

For each choice of 𝑚, 𝛾 and 𝑔(𝑡), the experiment is replicated 500 
times by generating response variable and the EMSE for any 

estimator �̃� of 𝛽 and the PMSE for any predictor �̃� of 𝑏 are 
calculated, respectively, as 

𝐸𝑀𝑆𝐸(�̃�) =
1

500
∑(�̃�𝑟 − 𝛽)

𝑇
(�̃�𝑟 − 𝛽),

500

𝑟=1

 

𝑃𝑀𝑆𝐸(�̃�) =
1

500
∑(�̃�𝑟 − 𝑏)

𝑇
(�̃�𝑟 − 𝑏),

500

𝑟=1

 

where the subscript 𝑟 refers to the 𝑟th replication. 

The simulation results are summarized in Tables 4 and 5. When 
we examine the results of Tables 4 and 5, we see that EMSE values 
of the modified Kernel ridge estimator and PMSE values of the 
modified Kernel ridge predictor are smaller than the others in all 
conditions. However, this superiority situation is more clearly be 
seen in large sample (for 600) and high correlation value (for 
0.99). Additionally, we can also say that the superiority of the 

estimators/predictors over each other may vary depending on 
the selection of the biasing parameters. 

6. Concluding Remarks 

In this article, the modified Kernel ridge predictors have been 
studied with their MMSE comparisons under multicollinearity in 
PLMMeMs. To show the theoretical results, a Covid-19 analysis 
and a simulation study are given and these analyses demonstrate 
that although the modified Kernel ridge estimator is better than 
the Kernel, Kernel ridge and Kernel Liu estimators, the 
superiority of the modified Kernel ridge estimator depends on 
the chosen values of the biasing parameters. 
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