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Abstract 

The main aim of this study is to apply the Gegenbauer polynomials for the solution of high-order linear 

differential difference equations with functional arguments under initial-boundary conditions.The technique we 

have used is essentially based on the truncated Gegenbauer series and its matrix representations along with 

collocation points. Also, by using the Mean-Value Theorem and residual function, an efficient error estimation 

technique is proposed and some illustrative examples are presented to demonstrate the validity and applicability 

of the method. 

Keywords — Gegenbauer polynomials; Differential-difference equations; Collocation method; 

Matrix method; Error estimation; Residual function. 

 

1 Introduction 

Differential-difference equations [1-10], which 

are a class of functional differential equations, 

have been treated as models of some physical 

phenomenon. When a mathematical model is 

developed for a physical system, it is usually 

assumed that all of the variables, such as space 

and time, are continuous. This assumption leads 

to a realistic and justified approximation of the 

real variables of the system. However, for some 

of the physical systems, these continuous 

variable assumptions can not be made. Then 

differential-difference equations have played an 

important role in modelling problems that 

appear in various branches of science; e.g. 

mechanical engineering, condensed matter, 

biophysics, mathematical statistics and control 

theory. In recent years, the studies of differential-

difference equations are developed very rapidly 

and intensively. It is well known that linear 

differential-difference equations have been 

considered by many authors, and have been used 

in the applications of difference models to 

problems in biology, physics and engineering. 

In this study, the basic ideas of the mentioned 

studies are developed to obtain the approximate 

solutions of high-order linear differential-

defference equation with functional arguments 

and variable coefficients in the form  

∑ 𝑃𝑘(𝑥)𝑦(𝑘)(𝑥) + ∑𝑄𝑗(𝑥)𝑦(𝑗)(𝛼𝑥 + 𝛽)

J

𝑗=0

𝑚

𝑘=0

= 𝑓(𝑥) , 
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                                    J ≤ 𝑚                                         (1) 

under the mixed conditions 

∑ (𝑎𝑘𝑙𝑦
(𝑘)(𝑎) + 𝑏𝑘𝑙𝑦

(𝑘)(𝑏))

𝑚−1

𝑘=0

= 𝜆𝑙 , 

                                𝑙 = 0, 1 , … ,𝑚 − 1                              (2) 

Here 𝑃𝑘(𝑥), 𝑄𝑗(𝑥)  and 𝑓(𝑥)  are known functions 

defined on the interval 𝑎 ≤ 𝑥 ≤ 𝑏 ; 

𝛼, 𝛽, 𝑎𝑙𝑘 , 𝑏𝑙𝑘  and 𝜆𝑙  are appropriate constants; 

𝑦(𝑥) is an unknown function to be determined. 

The aim of this study is to get the solution of the 

problem (1) - (2) as the truncated Gegenbauer 

series defined by  

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛G𝑛(𝑥, 𝜆)

𝑁

𝑛=0

,  

                             𝑁 ≥ 𝑚 ,−1 ≤ 𝑥 ≤ 1                    (3) 

where 𝑎𝑛 , 𝑛 = 0, 1, … , N are unknown coefficients; 

G𝑛(𝑥, 𝜆), classical polynomials orthogonal on the 

interval (−1, 1)  with respect to the weight 

function 𝑤 → (1 − 𝑥2)𝜆−
1

2 

(𝜆 >  −
1

2
) , denote the Gegenbauer polynomials 

defined by [16-20] 

       G𝑛(𝑥, 𝜆) = ∑(−1)𝑘
(𝜆)𝑛−𝑘

𝑘! (𝑛 − 2𝑘)!
(2𝑥)𝑛−2𝑘

[
𝑛
2
]

𝑘=0

         (4) 

or recursively 

𝑛G𝑛(𝑥, 𝜆) = 2𝑥(𝜆 + 𝑛 − 1)G𝑛−1(𝑥, 𝜆) 

−(𝑛 + 2𝜆 − 2)G𝑛−2(𝑥, 𝜆), 𝑛 ≥ 2 

with G0(𝑥, 𝜆) = 1 and G1(𝑥, 𝜆) = 2𝜆𝑥 . On the other 

hand, by using (4), the first four Gegenbauer 

polynomials are given by 

G0(𝑥, 𝜆) = 1 

G1(𝑥, 𝜆) = (−1)0
21(𝜆)1
0! 1!

𝑥1 

G2(𝑥, 𝜆) = (−1)1
20(𝜆)1
1! 0!

𝑥0 + (−1)0
22(𝜆)2

0! 2!
𝑥2 

G3(𝑥, 𝜆) = (−1)1
21(𝜆)2

1! 1!
𝑥1 + (−1)0

23(𝜆)3

0! 3!
𝑥3 

 

 

2 Fundamental matrix relations 

Let us consider the solution y(𝑥) of Eq. (1) 

defined by the truncated Gegenbauer series (3): 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛𝐆𝑛(𝑥, 𝜆)

𝑁

𝑛=0

, 𝑁 ≥ 𝑚  , −1 ≤ 𝑥 ≤ 1.  

Then we can convert the finite series (3) to the 

matrix form as, for  𝑛 = 0, 1,… , 𝑁 

                          𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = 𝐆(𝑥, 𝜆)𝐀                        (5) 

𝐆(𝑥, 𝜆) = [𝐺0(𝑥) 𝐺1(𝑥) . . . 𝐺𝑁(𝑥)] 

𝐀 = [𝑎0 𝑎1 . . . 𝑎𝑁]𝑻. 

On the other hand, by using the relation (4), the 

matrix 𝐆(𝑥, 𝜆) is obtained as 

                               𝐆(𝑥, 𝜆) = 𝐗(𝑥)𝐓(λ)                              (6) 

where 

𝐗(𝑥) = [1 𝑥 𝑥2 . . . 𝑥𝑁]. 

İf N is odd, 

0
1 1

1

111 1
( )( )

0 12 2 22

2
0 2

3

333
( )( )

0 3 22

0

2 ( )
1 0 ( 1) 0 0

1!0!

2 ( )
2 ( ) 2 ( )

0 ( 1) 0 ( 1) ( 1)
10!1! 1!1! ( )!1!

2

2 ( )
0 0 ( 1) 0 0

0!2!

2 ( )
2 ( )

0 0 0 ( 1) ( 1)
30!3! ( )!3!

2

2 ( )
0 0 0 0 ( 1)

0!N!

NN

NN

N

N

N

N




 



















   
 







  
 






T( )


















 
 
 



 

İf N is even,
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0

0
( )( )

1 1 22

1 1
0 12 2

2

222
( )( )

0 2 22

3
0 3

0

2 ( )
2 ( )

1 0 ( 1) 0 ( 1)
1!0! ( )!1!

2

2 ( ) 2 ( )
0 ( 1) 0 ( 1) 0

0!1! 1!1!

2 ( )
2 ( )

0 0 ( 1) 0 ( 1)
20!2! ( )!2!

2

2 ( )
0 0 0 ( 1) 0

0!3!

2 ( )
0 0 0 0 ( 1)

0!N!

NN

NN

N

N

N

N




 












 
 

 





 


  
 








 
 

T( )



















Also, it is clearly seen from (6) that the relation 

between the matrix 𝐆(𝑥, 𝜆) and its derivative 

𝐆′(𝑥, 𝜆) is 

𝐆′(𝑥, 𝜆) = 𝐗′(𝑥)𝐓(𝜆) = 𝐗(𝑥)𝐁𝐓(𝜆) 

where 

𝐗′(𝑥) = 𝐗(𝑥)𝐁 

and that repeating the process 

     𝐆(𝑘)(𝑥, 𝜆) = 𝐗(𝑥)𝐁𝒌𝐓(𝜆) , 𝑘 = 0, 1 , 2,… ,𝑚          (7) 

where 

𝐁 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮
0
0

⋮
0
0

⋮ ⋯ ⋮
0 ⋯ 𝑁
0 ⋯ 0]

 
 
 
 

 , 𝐁0 =

[
 
 
 
 
1
0
0
⋮
0

  

0
1
0
⋮
0

  

0
0
1
⋮
0

  

⋯
⋯
⋯
⋱
⋯

  

0
0
0
⋮
1]
 
 
 
 

 

From the matrix relations (5),(6) and (7), it 

follows that 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = 𝐆(𝑥, 𝜆)𝐀 = 𝐗(𝑥)𝐓(𝜆)𝐀 

and 

 𝑦(𝑘)(𝑥) ≅ 𝑦𝑁
(𝑘)(𝑥) = 𝐆(𝑘)(𝑥, 𝜆) = 𝐗(𝑘)(𝑥)𝐓(𝜆)𝐀 

                = 𝐗(𝑥)𝐁𝑘𝐓(𝜆)𝐀  , k = 0, 1 , …                          (8) 

By substituting  𝑥 → 𝛼𝑥 + 𝛽, 𝑘 → 𝑗 into the relation 

(8),  we get  𝑗 = 0, 1, … 

𝑦(𝑗)(𝛼𝑥 + 𝛽) = 𝐗(𝛼𝑥 + 𝛽)𝐁𝑗𝐓(𝜆) 

                       = 𝐗(𝑥)𝐁(𝛼, 𝛽)𝐁𝑗𝐓(𝜆)𝐀                           (9) 

so that , for 𝛼, 𝛽 ≠ 0, 

 

for 𝛼 ≠ 0, 𝛽 = 0, 

𝐁(𝛼, 0) =

[
 
 
 
 
 (

0

0
)𝛼0

0
0
⋮
0

  

0

(
1

1
)𝛼1

0
⋮
0

  

0
0

(
2

2
)𝛼2

⋮
0

  

⋯
⋯
⋯
⋱
⋯

  

0
0
0
⋮

(
𝑁

𝑁
)𝛼𝑁

]
 
 
 
 
 

 

 

3 Gegenbauer collocation method 

For constructing the fundamental matrix 

equation, we first consider the collocation points 

defined by, for 𝑖 = 0, 1, … , 𝑁, 

 

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖 , (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑)    

or 

 𝑥𝑖 =
𝑏 + 𝑎

2
−

𝑏 − 𝑎

2
 cos (

𝜋𝑖

𝑁
) , (𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣

− 𝐿𝑜𝑏𝑎𝑡𝑡𝑜)                               (10) 

Then, by using the collocation points (10) into (1), 

we have the system of the equations 

∑ 𝑃𝑘(𝑥𝑖)𝑦
(𝑘)(𝑥𝑖) + ∑𝑄𝑗(𝑥𝑖)𝑦

(𝑗)(𝛼𝑥𝑖 + 𝛽)

J

𝑗=0

𝑚

𝑘=0

= 𝑓(𝑥𝑖) 

or briefly the corresponding matrix equation 

             ∑ 𝐏𝑘𝐘(𝑘) + ∑𝑸𝑗𝐘
(𝑗)(𝛼, 𝛽)

J

𝑗=0

𝑚

𝑘=0

= 𝐅                   (11) 

where 

𝐏𝑘 = 𝑑𝑖𝑎𝑔[𝑃𝑘(𝑥0) 𝑃𝑘(𝑥1) ⋯ 𝑃𝑘(𝑥𝑁)] 

𝐐𝑗 = 𝑑𝑖𝑎𝑔[𝑄𝑗(𝑥0) 𝑄𝑗(𝑥1) ⋯ 𝑄𝑗(𝑥𝑁)] 
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𝐘(𝑘) =

[
 
 
 
𝑦(𝑘)(𝑥0)

𝑦(𝑘)(𝑥1)
⋮

𝑦(𝑘)(𝑥𝑁)]
 
 
 

 , 𝐘(𝑗)(𝛼, 𝛽) =

[
 
 
 
𝑦(𝑗)(𝛼𝑥0 + 𝛽)

𝑦(𝑗)(𝛼𝑥1 + 𝛽)
⋮

𝑦(𝑗)(𝛼𝑥𝑁 + 𝛽)]
 
 
 

 , 

 𝐅 = [

𝑓(𝑥0) 

𝑓(𝑥1) 
⋮

𝑓(𝑥𝑁) 

] . 

On the other hand, by substituting the collacation 

points (10) into (8) and (9), we obtain the matrix 

relations 

𝐘(𝑘) =

[
 
 
 
𝑦(𝑘)(𝑥0)

𝑦(𝑘)(𝑥1)
⋮

𝑦(𝑘)(𝑥𝑁)]
 
 
 

=

[
 
 
 
𝐗(𝑥0)𝐁

𝑘𝐓(𝜆)𝐀

𝐗(𝑥1)𝐁
𝑘𝐓(𝜆)𝐀
⋮

𝐗(𝑥𝑁)𝐁𝑘𝐓(𝜆)𝐀]
 
 
 

  = 𝐗𝐁𝑘𝐓(𝜆)𝐀 

and  

𝐘(𝑗)(𝛼, 𝛽) =

[
 
 
 
𝑦(𝑗)(𝛼𝑥0 + 𝛽)

𝑦(𝑗)(𝛼𝑥1 + 𝛽)
⋮

𝑦(𝑗)(𝛼𝑥𝑁 + 𝛽)]
 
 
 

 

              =

[
 
 
 
𝐗(𝑥0)𝐁(𝛼, 𝛽)𝐁𝑗𝐓(𝜆)𝐀

𝐗(𝑥1)𝐁(𝛼, 𝛽)𝐁𝑗𝐓(𝜆)𝐀
⋮

𝐗(𝑥𝑁)𝐁(𝛼, 𝛽)𝐁𝑗𝐓(𝜆)𝐀]
 
 
 

= 𝐗𝐁(𝛼, 𝛽)𝐁𝑗𝐓(𝜆)𝐀 

so that  

𝐗 = [

𝐗(𝑥0)
𝐗(𝑥1)

⋮
𝐗(𝑥𝑁)

] =

[
 
 
 
1 𝑥0 ⋯ 𝑥0

𝑁

1 𝑥1 ⋯ 𝑥1
𝑁

⋮
1

⋮
𝑥𝑁

⋱
⋯

⋮
𝑥𝑁

𝑁]
 
 
 
 . 

Therefore, the fundamental matrix equation    

(11) becomes 

{∑ 𝐏𝑘𝐗𝐁𝑘

𝑚

𝑘=0

+ ∑𝑸𝑗𝐗𝐁(𝛼, 𝛽)𝐁𝑗

J

𝑗=0

}𝐓(𝜆)𝐀 = 𝐅          (12) 

Now we can find the fundamental matrix form 

for the conditions (2), by using the relation (8), as 

follows: 

∑(𝑎𝑘𝑙𝐗(a) + 𝑏𝑘𝑙𝐗(𝑏))

𝑚−1

𝑘=0

𝐁𝑘𝐓(𝜆)𝐀 = 𝜆𝑙 ,  

                                  𝑙 = 0, 1 , … ,𝑚 − 1                           (13) 

Then, we can write the following fundamental 

matrix equations (12) and (13) corresponding to 

Eq.(1) and the conditions (2), respectively, 

                   𝐖𝐀 = 𝐅  or  [𝐖 ;  𝐅]                                  (14) 

and 

𝐔𝑙𝐀 = 𝜆𝑙  or  [𝐔𝑙 ;  𝜆𝑙] , 𝑙 = 0, 1,… ,𝑚 − 1                 (15) 

where 

𝐖 = {∑ 𝐏𝑘𝐗𝐁𝑘

𝑚

𝑘=0

+ ∑𝑸𝑗𝐗𝐁(𝛼, 𝛽)𝐁𝑗

J

𝑗=0

}𝐓(𝜆) 

𝐔𝑙 = ∑(𝑎𝑘𝑙𝐗(a) + 𝑏𝑘𝑙𝐗(𝑏))

𝑚−1

𝑘=0

𝐁𝑘𝐓(𝜆) , 

Consequently, to obtain the solution of Eq.(1) 

under the conditions (2), by replacing the row 

matrix (15) by the last (or any) m rows of the 

augmented matrix (14), we have the required 

matrix  

                [𝐖̃ ;  𝐅̃]   or   𝐖̃𝐀 = 𝐅̃ .                                      (16) 

İf  𝑟𝑎𝑛𝑘𝐖̃ = 𝑟𝑎𝑛𝑘[𝐖̃ ;  𝐅̃]  = N + 1  , then we can 

write  𝐀 = (𝐖̃)−1𝐅̃ .   Thus the matrix A  (thereby 

the coefficients 0 1, ,..., Na a a ) is uniquely 

determined. Eq.(1) under the conditions (2) has a 

unique solution. Hence,  the problem (1) – (2) has 

a unique solution in terms of Gegenbauer 

polinomials in the form (3).  

4 Accuracy of solutions and residual error 

estimation 

We can easily check the accuracy of the obtained 

solutions as follows. Since the truncated 

Gegenbauer series (3) is approximate solution of 

(1) , when the function 𝑦𝑁(𝑥)  and its derivatives 

are substituted in Eq.(1), the resulting equation 

must be satisfied approximately ;  

that is, for 𝑥 = 𝑥𝑞 ∈ [𝑎, 𝑏] , 𝑞 = 0, 1, …  

𝑅𝑁(𝑥𝑞) = ∑ 𝑃𝑘(𝑥𝑞)𝑦
(𝑘)(𝑥𝑞)

𝑚

𝑘=0

 

             +∑𝑄𝑗(𝑥𝑞)𝑦
(𝑗)(𝛼𝑥𝑞 + 𝛽)

J

𝑗=0

− 𝑓(𝑥𝑞) ≅ 0, J ≤ 𝑚 

or 
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𝑅𝑁(𝑥𝑞) ≤ 10−𝑘𝑞 , (𝑘𝑞  is any positive integer). 

İf  𝑚𝑎𝑥 10−𝑘𝑞 = 10−𝑘  is prescribed, then the 

truncation limit N is increased until the 

difference  𝑅𝑁(𝑥𝑞) at each of the points becomes 

smaller than the prescribed 10−𝑘  . Therefore, if 

𝑅𝑁(𝑥𝑞) → 0 when N is sufficiently large enough , 

then the error decreases. 

On the other hand, by means of the residual 

function defined by 𝑅𝑁(𝑥) and the mean value of 

the function  |𝑅𝑁(𝑥)|  on the interval [a, b], the 

accuracy of the solution can be controlled and the 

error can be estimated  [7 − 9, 14 − 21]. Thus, we 

can estimate the upper bound of the mean error 

𝑅𝑁
̅̅ ̅̅   as follows : 

|∫𝑅𝑁(𝑥)𝑑𝑥

𝑏

𝑎

| ≤ ∫|𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

 

and 

∫|𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

= (𝑏 − 𝑎)|𝑅𝑁(𝑐)| , 𝑎 ≤ 𝑐 ≤ 𝑏 

⟹ |∫𝑅𝑁(𝑥)𝑑𝑥

𝑏

𝑎

| = (𝑏 − 𝑎)|𝑅𝑁(𝑐)| 

⟹ (𝑏 − 𝑎)|𝑅𝑁(𝑐)| ≤ ∫|𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

 

⇓ 

|𝑅𝑁(𝑐)| ≤
∫ |𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

𝑏 − 𝑎
= 𝑅𝑁

̅̅ ̅̅  

 

 

5 Numerical Examples 

In this section, several numerical examples are 

given to illustrate the accuracy and effectiveness 

properties of the method, and all of them are 

performed on the computer using a program 

written in Matlab. The absolute errors in the 

tables are computed by the relation 

|𝑒𝑁(𝑥)| = |𝑦(𝑥) − 𝑦𝑁(𝑥)| 

at selected points. 

Example 1. Let us consider differential-

difference equation  

𝑦′(𝑥) = 𝑥𝑦(𝑥) +
1

2
𝑒−𝑥𝑦(𝑥 − 1) + 𝑓(𝑥) , −1 ≤ 𝑥 ≤ 1 

with the initial condition 𝑦(0) = 1. Here, 

𝑃0 = −𝑥,  𝑃1 = 1, 𝑄0 = −
1

2
𝑒−𝑥 , 𝛼 = 1, 𝛽 = −1,  

𝜆 = 1, 𝑓(𝑥) = 𝑒𝑥 − 𝑥𝑒𝑥 −
1

2
𝑒−1. The exact solution of 

problem is 𝑦(𝑥) = 𝑒𝑥.  

Firstly, let us compute the approximate solution 

in the form defined by  

𝑦2(𝑥) = ∑ 𝑎𝑛𝐺𝑛(𝑥, 1)

2

𝑛=0

 

The set of the collocation points for N=2 is 

calculated as  
{ 𝑥0 = −1 , 𝑥1 = 0 , 𝑥2 = 1 } 

and from Eq. (12), the fundamental matrix 

equation of the problem is written as 

{∑ 𝑃𝑘𝐗𝐁𝑘 +

1

𝑘=0

∑𝑄𝑗

0

𝑗=0

𝐗𝐁(1,−1)𝐁𝑗} 𝐓(1)𝐀 = 𝐅 

After some operations, we obtain following 

matrices : 

𝐏0 = [
−1 0 0
   0 0 0
   0 0 1

] , 𝐏1 = [
1 0 0
0 0 0
0 0 1

] , 𝐗 = [
1 −1 1
1    0 0
1    1 1

], 

𝐐0 =

[
 
 
 −

632
465⁄ 0 0

   0 −1
2⁄ 0

   0 0 −268
1457⁄ ]

 
 
 

 , 

𝐓 = [
1 0 −1
0 2  0
0 0  4

] , 𝐁(1,−1) = [
1 −1   1
0   1 −2
0   0   1

], 

𝐁 = [
0 1 0
0 0 2
0 0 0

] , 𝐁𝟎 = [
1 0 0
0 1 0
0 0 1

] , 𝐅 =

[
 
 
 
1001

1814⁄

1189
1457⁄

−268
1457⁄ ]

 
 
 

. 

The augmented matrix for the fundamental 

matrix equation can be written as 
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From Eq.(15), we obtain the matrix form for the 

initial condition: 

[𝐔0 ; 𝜆0] = [1 0 −1 ; 1] 

From Eq. (16), the desired augmented matrix 

based on the condition is calculated as 

Solving this system, the unknown coefficient 

matrix is obtained as  

𝐀 = [1953
1831⁄ 1530

3167⁄ 367
5508⁄ ]

T
 

Therefore, we obtain the approximate solution 

𝑦2 = 1 + 0.9662𝑥 + 0.2665𝑥2. 

For 𝑁 = 2, 3, 4, 5  the obtained approximate 

solutions and the upper bounds of the mean 

error 𝑅𝑁
̅̅ ̅̅    are  

𝑦3 = 1 + 1.0262𝑥 + 0.5017𝑥2 + 0.1049𝑥3, 

𝑦4 = 1 + 1.0004𝑥 + 0.5093𝑥2 + 0.1682𝑥3 + 0.0281𝑥4 

 𝑦5 = 1 + 0.9996𝑥 + 0.5000𝑥2 + 0.1690𝑥3 

         +0.0420𝑥4 + 0.0058𝑥5; 

𝑅2
̅̅ ̅ = 0.32926 , 𝑅3

̅̅ ̅ = 5.1293 × 10−2, 

𝑅4
̅̅ ̅ = 8.2124 × 10−3 , 𝑅5

̅̅ ̅ = 1.8751 × 10−3 

Taking 𝑁 = 2, 3, 4, 5,  the obtained approximate 

solutions are compared with the exact solutions 

in Fig.1. The absolute errors are demonstrated in 

Table 1.  

The residual error functions of Example 1 are 

shown in Fig. 2. 

 

 

 

Example 2. Let us consider the differential 

equation with proportional delays 

𝑦′′′(𝑥) − 𝑥𝑦′′(2𝑥) + 𝑦′ + 𝑦 (
𝑥

2
) = 𝑥𝑐𝑜𝑠(2𝑥) + cos (

𝑥

2
)  

with the initial conditions 𝑦(0) = 1,−1 ≤ 𝑥 ≤ 1 

𝑦′(0) = 0 , 𝑦′′(0) = −1. Here, 𝑃1 = 1, 𝑃3 = 1,   

𝑄0 = 1 , 𝛼0 =
1

2
 , 𝛽0 = 0 , 𝑄2 = −𝑥 , 𝛼1 = 2 , 

𝛽1 = 0 , 𝜆 = 1 , 𝑓(𝑥) = 𝑥𝑐𝑜𝑠(2𝑥) + cos (
𝑥

2
).  

The exact solution of problem is 𝑦(𝑥) = cos (𝑥). 



 

 

CBÜ Fen Bil. Dergi., Cilt 13, Sayı 1 2017, 39-49 s                                                            CBU J. of Sci., Volume 13, Issue 1, 2017 p 39-49 

45 
 

Firstly, the approximate solution 𝑦3(𝑥)  by the 

truncated Gegenbauer series for 𝑁 = 3 is given by 

𝑦3(𝑥) = ∑ 𝑎𝑛𝐺𝑛(𝑥, 1)

3

𝑛=0

 

Then, the set of the collocation points for 𝑁 = 3  is 

calculated as 

{𝑥0 = −1 ,  𝑥1 = −
1

3
 , 𝑥2 =

1

3
 , 𝑥3 = 1}  

and from Eq. (12), the fundamental matrix 

equation of the problem is written as  

{∑ 𝑃𝑘𝐗𝐁𝑘

3

𝑘=0

+ ∑𝑄𝑗

1

𝑗=0

𝐗𝐁(α, β)𝐁𝑗}𝐓(𝜆)𝐀 = 𝐅 

After some operations, we obtain following matrices: 

𝐏1 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , 𝐏3 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

], 

𝐐0 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , 𝐓(1) = [

1 0 −1 0
0 2  0 −4
0
0

0
0

4   0
0   8

], 

𝐐2 =

[
 
 
 
 
1 0     0     0

0 1
3⁄      0    0

0
0

0
0

−1
3⁄ 0

   0  −1]
 
 
 
 

, 𝐁(2, 0) = [

1 0 0 0
0 2 0 0
0
0

0
0

4 0
0 8

], 

𝐁(1 2⁄ , 0) =

[
 
 
 
 
1 0 0    0

0 1
2⁄ 0    0

0
0

0
0

1
4⁄ 0

0 1
8⁄ ]
 
 
 
 

, 𝐁 = [

0 1 0 0
0 0 2 0
0
0

0
0

0 3
0 0

] , 

𝐅 =

[
 
 
 
 
 
392

303⁄

575
794⁄

659
528⁄

347
752⁄ ]

 
 
 
 
 

, 𝐗 =

[
 
 
 
 
1  −1 1      −1

1  −1
3⁄   1 9⁄ −1

27⁄

1
1

  1 3⁄

  1

1
9⁄  1 27⁄

1       1 ]
 
 
 
 

 . 

The augmented matrix for the fundamental 

matrix equation is calculated as 

[𝐖 ; 𝐅] =

[
 
 
 
 
 1 1    0      −27      ; 392

303⁄

1 5
3⁄ −8

9⁄
989

27⁄ ; 575
794⁄

1
1

7
3⁄

3

−8
9⁄

0

955
27⁄

−29

; 659
528⁄

; 347
752⁄ ]

 
 
 
 
 

 

From Eq.(15), we obtain the matrix form for the 

initial conditions: 

[𝐔0 ; 𝜆0] = [1 0 −1 0 ; 1] 

[𝐔1 ; 𝜆1] = [0 2 0 −4 ; 0] 

[𝐔2 ; 𝜆2] = [0 0 8 0 ; −1] 

From Eq. (16), the desired augmented matrix 

based on the condition is calculated as 

[𝐖̃ ; 𝐅̃] =

[
 
 
  1 1    0  −27 ; 392

303⁄

1 0 −1        0 ;    1      
0
0

2
0

0
8

     −4
       0

;
;

  0
−1

  ]
 
 
 
 

Solving this system, the unknown coefficient 

matrix is obtained as  

𝐀 = [7 8⁄ −203
6060⁄ −1

8⁄ −203
12120⁄ ]

T
 

 

 

Therefore, we obtain the approximate solution 

𝑦3 = 1 − 0.5000𝑥2 − 0.1340𝑥3 

For 𝑁 = 4, 5 by using the same procedure, the 

following solutions are obtained : 

 𝑦4 = 1 − 0.5000𝑥2 − 0.0494𝑥3 + 0.0132𝑥4, 

 𝑦5 = 1 − 0.5000𝑥2 + 0.0029𝑥3 + 0.0477𝑥4 

       +0.0056𝑥5. 

Taking 𝑁 = 3, 4, 5  the obtained approximate 

solutions are compared with the exact solutions 

in Fig. 3; The absolute errors are demonstrated in 

Table 2. The  graphics of the residual error 

functions are shown in Fig. 4 . 
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Example 3. Let us consider differential-

difference equation  

𝑦′(𝑥) + 2𝑦(𝑥) − 𝑦(𝑥 − 1) = 𝑓(𝑥) , −1 ≤ 𝑥 ≤ 1 

with the initial condition 𝑦(0) = 1. Here, 𝑃0 =

2,  𝑃1 = 1, 𝑄0 = −1, 𝛼 = 1, 𝛽 = −1 , 𝜆 = 1, 𝑓(𝑥) =

3𝑒𝑥 − 𝑒−𝑥−1. The exact solution of problem is 

𝑦(𝑥) = 𝑒𝑥.  

Firstly, let us compute the approximate solution 

𝑦2(𝑥) by the truncated Gegenbauer series for 

𝑁 = 2 is given by 

𝑦2(𝑥) = ∑ 𝑎𝑛𝐺𝑛(𝑥, 1)

2

𝑛=0

 

The set of the collocation points for 𝑁 = 2 is 

calculated as  

{ 𝑥0 = −1, 𝑥1 = 0, 𝑥2 = 1 } 

and from Eq.(12), the fundamental matrix 

equation of the problem is written as  

{∑ 𝑃𝑘𝐗𝐁𝑘 +

1

𝑘=0

∑𝑄𝑗

0

𝑗=0

𝐗𝐁(1,−1)𝐁𝑗} 𝐓(1)𝐀 = 𝐅 

After some operations, we obtain following 

matrices: 

𝐏0 = [
 2 0 0
 0 2 0
 0 0 2

] , 𝐏1 = [
1 0 0
0 1 0
0 0 1

] , 𝐗 = [
1 −1 1
1    0 0
1    1 1

],  

𝐓 = [
1 0 −1
0 2  0
0 0  4

] , 𝐁 = [
0 1 0
0 0 2
0 0 0

] , 𝐁𝟎 = [
1 0 0
0 1 0
0 0 1

], 

𝐐0 = [
−1   0   0
   0 −1   0
   0   0 −1

] , 𝐅 =

[
 
 
 
 

94
907⁄

3835
1457⁄

1644
205⁄ ]

 
 
 
 

 , 

𝐁(1,−1) = [
1 −1   1
0   1 −2
0   0   1

]. 

The augmented matrix for the fundamental 

matrix equation can be written as 

[𝐖 ; 𝐅] =

[
 
 
 
 1 2 −17    ;       94

907⁄

1 4  −5     ;  3835
1457⁄

1 6   15   ;  1644
205⁄  ]

 
 
 
 

 

From Eq.(15), we obtain the matrix form for the 

initial condition: 

[𝐔0 ; 𝜆0] = [1 0 −1 ; 1] 

From Eq. (16), the desired augmented matrix 

based on the condition is calculated as 

[𝐖̃ ; 𝐅̃] = [

1 2 −17 ; 94
907⁄

1 4        −5   ; 3835
1457⁄

1 0 −1   ;            1

] 

Solving this system, the unknown coefficient 

matrix is obtained as  

𝐀 = [1202
1071⁄ 568

1071⁄ 450
3679⁄ ]

T
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Therefore, we obtain the approximate solution 

𝑦2 = 1 + 1.0607𝑥 + 0.4893𝑥2 

For 𝑁 = 3, 4, 5,  the obtained approximate 

solutions are 

𝑦3 = 1 + 1.1220𝑥 + 0.6114𝑥2 + 0.0475𝑥3, 

 𝑦4 = 1 + 1.0829𝑥 + 0.6477𝑥2 + 0.1602𝑥3 

      +0.0461𝑥4, 

 𝑦5 = 1 + 0.9996𝑥 + 0.5000𝑥2 + 0.1690𝑥3 

      +0.0420𝑥4 + 0.0058𝑥5. 

Taking 𝑁 = 2, 3, 4, 5,  the obtained approximate 

solutions are compared with the exact solutions 

in Fig. 5. The absolute errors are demonstrated in 

Table 3. The graphics of the residual error 

functions are shown in Fig. 6 

 

 

 

6 Conclusion 

In this study, a numerical method for solving 

high-order linear differential-difference 

equations with residual error estimation under 

mixed conditions is developed. Also, an 

approximate solution in terms of the Gegenbauer 

series is obtained by using Gegenbauer 

polynomials. An error analysis based on residual 

function is carried out to show the accuracy of 

the results. It is observed from the tables and 

figures that the error estimations are very 

effective. When the exact solution of the problem 

is not known, the error of the solution can be 

approximately computed by means of this 

residual function. In addition, we compared the 

numerical values of the approximate solutions 

obtained by the method in tables and figures. 

These comparisons and the error estimations 

show that the suggested method is quite 

effective.
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