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Abstract 

In this study, we considered with the time fractional WKI equation, Lie group analysis method are 

applied to frational WKI equation with the Riemann-Liouville derivative.  The invariance properties of 

this equation were found. Besides we present  corresponding infinitesimal generators for the WKI 

equation.  And then the symmetry reductions are constructed with the Erdelyi-Kober fractional operator. 

Furthermore, we calculate Lie point symmetries associated the nonlocal conserved vectors utilizing the 

new conservation theorem method for two different cases of time fractional. 

 
Keywords—Fractional Conservation laws, Lie group analysis, Time fractional WKI  equation, New 

conservation theorem method.

 

1 Introduction 

    Motion of inextebsible plane curves in Euclidean 

space are given by the modified Korteweg de Vries 

(mKdV) equation 

𝑘𝑡 + 𝑘𝑠𝑠𝑠 + (
3

2
) 𝑘2𝑘𝑠

= 0                                                            

where k  is the curvature and s is the arclength of 

the curve. The plane curve motion flow is governed 

by [1]. 

21

2
t sk k   n t  

here   denotes the curve, n and t are the normal 

and tangent vector fields, respectively. Assume that 

this flow can be shown as the graph (x, u (x,t)) of 

some function u on the x-axis. Using the fact that 

the normal speed of the curve  , 2 1/ 2/ (1 u )t xu   is 

given by sk , one finds that u  satisfies the famous 

Wadati-Konno-Ichikawa (WKI) equation [2]. 

2 3/2(1 u )

xx

t

x x

u
u

 
  

 
 

Wadati et al. found that WKI equation is solvable in 

the WKI scheme of the inverse scattering method 

[3,4]. This WKI-scheme for u  is connected to the 

AKNS-scheme for k by a gauge transformation 

explicitly displayed in [5]. Furthermore Qu et al. 

have studied the group-invariant solutions of the 

two-component WKI equation and its similarity 

reductions to systems of ordinary differential equa-

tions were also given [6]. Besides they have con-

structed conservation laws in another work [7]. 

   In recent years, fractional differential equations 

(FDEs) has attracted due to an exact description in 

complex phonemena in various applications such 

as control theory, signal processing, fluid flow, 

population dynamics, fractional dynamics. Many 

powerful and efficient methods have been devel-

oped to obtain exact solutions of FDEs [8-13]. One 

of them is Lie gorup analysis method and it is well 
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known that this method plays an important role to 

analyze, finding exact solutions and constructing 

conservation laws. Lie symmetries of integer order 

differential equations have been studied by many 

scientists [14-18]. But studies about the invariance 

properties of FDEs are quite new. 

For example J. Hu et al. [19] considered the frac-

tional KdV type equation and obtained a group of 

dilation. Utilizing the dilation symmetry they have 

reduced to an fractional ordinary differential equa-

tion with Erdelyi Kober operator. In Ref. [20], the 

authors have made an attempt to extend the Lie 

group analysis and constructing conservation laws 

to FDEs. 

In this paper, we perform the Lie gorup analysis 

method and construct the conservation laws for 

nonlinear time fractional WKI equation, 

2 3/2
,        0 2,                                   (1)

(1 u )

xx

t

x x

u
u  

 
   

 

 

Where t tu D u   denotes the modified Riemann-

Liouville fractional derivative of order α with re-

spect to the variable t and defined by, 

0

( ) ( n)

1 ( ) u(0)
,        0 1

(1 ) (t )

[ (t)] ,            1,    1 n

t

t

n

d u

D u dt

u n n

 






 



 
 

   


   

  

 and Euler Gamma function ( ) is given by the 

integral, 

1

0

( ) te t dt


     

The outline of this paper is organized as follows: In 

Section 2, a brief description of invariant group 

analysis method is given for FPDEs. In Section 3 we 

employ symmetry analysis and similarity reduction 

for fractional WKI equation. In Section 4, conserva-

tion laws of Eq.(1) were constructed by Ibragimov 

method. Consequently, main results are summa-

rized. 

2 Lie Symmetry Theory 

In this section, we give the general procedure to 

find Lie point symmetries for time FPDEs which 

include two independent variables and one 

dependent variable [21]. 

Let us consider that a nonlinear FPDE including 

two independent variables x and t is given by, 

(x, t,u,u ,u ,u ,...)                                          (2)x xx xxxF
t










 

    We suppose that equation (2) is invariant under 

the continuous transformations, 

* 2

* 2

* 2

* * 2

* *m 2

(x, t, u) O( )

(x, t, u) O( )

                  (3)(x, t, u) O( )

(x, t, u) O( )

(x, t, u) O( )

t

j m m mx

t t

x x

u u

u t u t

u x u x

    

 

 

 

 

 

  

  

  

      

      

 

 where  is the group parameter and , ,    

are infinitesimals and the extended infinitesimals of 

order three are given by the prolongation formula 

(see [22]) 

( ) ( ) ( ),x

x x x t xD u D u D       

( ) ( ) ( ),                                 (4)xx x

x xt x xx xD u D u D     

 

( ) ( ) ( ),xxx xx

x xxt x xxx xD u D u D       

Here xD  denotes the total derivative operator and 

is defined by 

...x x xx

x

D u u
x u u

  
   
  

 

with the associated vector field of the form 

( , , ) ( , , ) ( , , ) ,                    (5)X x t u x t u x t u
x t u

  
  

  
  

 

Now for the invariance of Eq.(2) under Eq.(3), we 

must have 

 ( ,3)

0| 0,Pr X

    

where 

( , , , , , ,...)u
x xx xxxt

F x t u u u u







     

The α th extended infinitesimal related to Riemann-



 
 
CBÜ Fen Bil. Dergi., Cilt 13, Sayı 1, 2017, 55-61 s                                                                  CBU J. of Sci., Volume 13, Issue 1, 2017, p 55-61 

57 
 

Liouville fractional time derivative, which reads 

(see [22] ): 

0

1 1

( ) (u ) ( u ) (D ( ) u)

( u) (u).

t t x t x t t

t t

D D D D

D D

   



 

    

  

   

 
 

where the symbol tD  shows the total fractional 

derivative operator. 

    By utulizing the generalized Leibnitz rule in the 

fractional sense 

0

[u(t) v(t)] u(t) v(t),     >0,                    (6)n

t t

n

D D
n

 









 
  

 


 

in which 

1( 1) (n )

(1 ) (n 1)

n

n

  



    
 
    

 

Thus from Eq.(6), we expressed 0

  as follows:

 
0

1

1

1

( ) ( ) ( ) ( )

( ) ( )                                               (7)
1

n n

t t t t x

n

n n

t t

n

u
D D D D u

nt

D D u
n


 

 




    










 



 
    

  

 
  

 





 

Generalization of the chain rule for a composite 

function of the form 

0 0

( ( )) 1 ( )
[ g(t)] [g(t)]    (8)

!

m m km k
r k r

m m k
k r

kd f g t d d f g

r kdt dt dg



 

 
  

 


 

Further, employing the chain rule(8) and the 

generalized Leibnitz rule (6) with (t) 1f  , α-th 

prolongation formula becomes 

1

( ) (u)
n

nu u

t u tn
n

u
D u D

nt t t t

 
 

  

 
  






    
      
     



where 

 

1

2 2 2 0

1

! ( 1 )

.

nn m k

n m k r

m n m k
r k r

m n m k

n k t

n m r k n

u u
t t u








 

   

 




   
    

     

 
     


 

  

Therefore we obtain the explicit form of 
0

  from 

the Eq.(7), 

 0 ( ) u
u t

u
D u

t t t

  

   

 
    

  
    
  

 

1

1 1

( ) ( ) ( ) ( )
1

n n n nu
t t t t x

n n

D D u D D u
n n nt


 



  
 

 
  

 

      
        

      
 

 

Definition: In Ref.[13], (x, t)u   is an invariant 

solution of Eq.(2) related to the infinitesimal 

operator (5) if and only if 

    1) (x, t)u   satisfies Eq.(2). 

    2) (x, t)u   is an invariant surface of (2), in other 

words, 

(x, t, u) (x, t, u) (x, t, u) (x, t) 0.X
x t u

    
   

    
   

 

3 Lie Symmetry Analysis and Reduction of 

The Time Fractional WKI Equation 

In the previous section, we have given some 

preliminaries about the Lie symmetry method on 

the FPDEs. In this subsection, using the above 

discussion and the Lie theory, we employee the 

time fractional WKI equation 

3 4

2

2 2

31
0                                      (9)

2 (1 ) (1 )

xxx xx x

t

x x

u u u
u

u u

   
 

 

 According to the Lie point theory, applying the 

prolongation ( ,3)Pr X  to Eq.(9), we can arrive at the 

following invariance criterion, 

2 2

4 5 4

2

2 2 2

3 24 3

(1 ) (1 ) (1 )

t xx xxx xx x xx

x x x

u u u u u

u u u

 
 

   
   

 

2 24 3

6
0.                               (10)

(1 ) 2(1 )

1xx xxxx xx

x x

u u

u u
  

 

 

Substituting (4) and (7) into (10) and we get a 

polynomial in terms of some derivatives 

, , ,...x t xxu u u and dependent variable u. Then let the 

coe¢ cients of , , ,...x t xxu u u  equal to zero. So we get 

some of determining equations: 

0,uu u x u t xx            
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2 0,u x    

1 3
0,

2 2
t x     

2 5 0,u t      

1 0,        for  n=1,2,...
1

n

nu

tn
D

n nt

 


   
    

   
 

The special solution of determining system helps 

us to obtain the coefficient functions. Solving these 

equations consistently with the help of package 

program, we obtain the following forms of the 

coefficient functions, 

  =c₁+c₃αx,    τ=3c₃t,     η=c₂f(t)+c₃αu. 

where c₁ and c₂ are arbitrary constants. Hence the 

infinitesimal operator becomes 

3 1 3 2 3( ) 3 ( ( ) ) .X xc c tc c f t uc
x t u

 
  

    
  

 

Thus, infinitesimal generators of every one 

parameter Lie group of point symmetries of the 

Eq.(1) are,

1 2 3, ( ) ,       3 .X X f t X t x u
x t t x u

 
    

    
    

  

For the symmetry generator X₃ 

corresponding characteristic equation is given by 

,
3

dx dt du

x t u 
   

which solving them yields the corresponding 

invariants 

3 3, ( ).                                                (11)xt u t
 




   

Using the above invariants we yield a special a 

nonlinear ODE of fractional order. We will prove 

the following theorem corresponding this case. 

Theorem: The similarity transformation 

3 ( )u t


  along with the similarity variable 

3xt


  reduces the time fractional WKI equation 

to the nonlinear ODE of fractional order,: 

 
21
3

3

''' '' 2 '
,

' 2 3 ' 2 4

1 3( )
( ) 0.               (12)

2 (1 ( ) ) (1 ( ) )
P





   


 



   
 

 

with the Erdelyi-Kober fractional differential 

operator [22]. 

   
1

, ,

0

1
: ( ) ,

n
n

j

d
P j K

d

    

   



 



 
     

 
  

[ ] 1, ,

, ,

N
n

N

 

 

 
 


 

where 

 
1

1 ( )1

, ( )

1

( 1) ( ) , 0,
( ) :

( ), 0,

u u u du
K

  

  



 


 



  




  

  


 



is the Erdelyi-Kober fractional integral operator. 

Proof: In ordet to obtain more general applicability, 

we get n-1<α<n; n=1,2,3,... Then the Riemann-

Liouville fractional derivative for the similarity 

transformation 3xt


  , 3 ( )u t


   one can get 

3 31

0

1
( ) ( ) .               (14)

( )

tn
n

n

u
t s s xs ds

nt t

 










 

  
  

    


 

Let v t s one can have 2( )ds t v dv  . Then the 

Eq.(14) can be expressed as 

2 2
3 3 3

( 1 )1

1

1
( 1) ( ) . (15)

( )

n
n nn

n

u
t v v v dv

nt t

  










    

  
   

    


 

If one uses the definition of Erdelyi-Kober 

fractional integral operator (13), then Eq.(15) 

becomes, 

 
2 1
3 3

3

,
( ) .                                     (16)

n
nn

n

u
t K

t t

 









     
   

In order to simplify the above equation we consider 

the relation, 

3xt


  , 1(0, )C   

3
1

( ) ( ) ( ).             (17)
3 3

t tx t
t

 
  

   
        

  

 

So, we obtain 

    
2 21 1
3 3 3 3

3 3

1
, ,

1
( ) ( )

n n
n nn n

n n
t K t K

tt t

   

 

 
 

 


  



             
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 
2 1
3 3

3

1
,1

1

2
( ) .

3 3

n
nn

n
t n K

t

 



 





 



    
      

   
 

Repeating the similar procedure for n-1 times, we 

have 

    
2 21 1
3 3 3 3

3 3

1
, ,

1
( ) ( )

n n
n nn n

n n
t K t K

tt t

   

 

 
 

 


  



             

 

 
2 1
3 3

3

1
,1

1

2
( )

3 3

n
nn

n
t n K

t

 



 





 



    
      

   
 

 
2 1
3 3

3

1
,

0

2
... 1 ( ).

3 3

n
n

j

d
t j K

d

 



 









 
       

 
  

Now using the definition of the Erdélyi-Kober 

fractional differential operator given in (12), the 

above equation can be written as 

   
2 2 21 1
3 3 3 3

3 3

, ,
( ) ( ).

n
nn

n
t K t P
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Substituting the expression (18) into (16), we obtain 

an expression for the time fractional derivative 
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Thus we find that time fractional WKI equation 

reduces into an fractional order ODE 
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The proof is completed. 

4 Conservation Laws 

    Now we construct a conservation law for Eq.(1) 

in the same way as it defines for the integer order 

differential equations. Namely a vector ( , )x tT T T

satisfying 

( ) ( ) 0x t

x tD T D T   

for all solutions of Eq.(1) is known as the conserved 

vector of Eq.(1). Note that Eq.(<ref>1.1</ref>) with 

the Riemann-Liouville fractional derivative can be 

rewritten in the conserved form with, 

1

0 2 3 2
( ),      .

(1 )

t n n x xx

t t

x

u
T D I u T

u

  


 

Eq.(1) does not have a Lagrangian in classical sense 

so it means that Eq.(1) can not be constructed 

variational principle of least action with a 

Lagrangian depending on the variables x,t,u. To 

exceed this restriction Ibragimov introduced formal 

Lagrangian structure and gave the new 

conservation theorem. In accordance to this method 

[23], the formal Lagrangian of the fractional WKI 

equation is given by 

3

2

2 2 4
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L w x u
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  
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Here, w(x,t) is a adjoint variable. Considering this 

formal Lagrangian, an action integral is 

0

( , , , , , ,...) .t x

T

L t x u w D u dxdt



   

Agrawal developed the fractional variational 

approach and one can find the Euler--Lagrange 

operator with respect to u has the form [24],

* 2 3( ) ,x t x x

x xx xxxxt

D D D D
u u u u uD u
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where *( )tD  is the adjoint operator of ( )tD  . For 

the Riemann-Liouville fractional differential 

operators, 

*( ) ( 1) ( )n n C

T t

n

t t TD I D D     

where 

1
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
 

 



 
  
    

is the right sided time-fractional integral of order 

n   and C

t TD is the right sided Caputo operator 

of fractional differentiation of order α. 

    As in stated [24], the adjoint equation is similarly 

to the case of integer order nonlinear differential 

equations, so we have the adjoint equation to the 

time fractional WKI equation as Euler--Lagrange 

equation 

2

* *

2 4
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Fractional WKI equation involves only fractional 

derivative with respect to t, thus x-component 

conserved vector can be detemined by the formula 

for the integer order PDEs. The operator x

iT is given 
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by 

2( ) ( )                    (20)x
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x xx xxx
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and W, Lie characteristic function is 

x tW u u      

Riemann--Liouville time-fractional derivative is 

used in Eq.(1) so the operator tT  takes the form 
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where  J is the integral 
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
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    As in determined previous section fractional 

WKI equation admits three infinitesimal generators 
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and the corresponding Lie characteristic functions 

are found as follows: 

1 2 3,    ( ),       3 .x x tW u W f t W u xu tu        

    When (0,1)  effecting these values into the 

vector components (20,21) we can get the 

components of conserved vectors of Eq.(1) 
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    When (1,2)   effecting these values into the 

vector components (20,21) we can get the 

components of conserved vectors of Eq.(1). 

1 2
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5 Conclusion 

         In the present study, we illustrate the applica-

tion of Lie group approach to investigate the time 

fractional WKI equation. It is obtained that Eq.(1) is 

spanned by three vector fields and we obtained 

symmetry properties, similarity reduction forms. 

Based on the symmetry generators, we have shown 

that this equation can be reduce to a nonlinear or-

dinary differential equation of fractional order with 

the Erdelyi-Kober fractional operator. 

         Besides we considered nonlocal conservation 

theorem method for constructing conserved vec-

tors. This method ensures that conservation laws 

are obtained if the generators of the equation are 

known. In this way we obtained six conserved vec-

tors for values of α; using each symmetry genera-

tors .  
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