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Abstract 

This paper reports a new technique of forming improved exponential finite difference solution of the one 

dimensional Burgers' equation.  The technique is called explicit exponential finite difference method 

based on Padé approximation. The main purpose of the paper is to improve the exponential finite 

difference method and define an alternative method for the solution of the Burgers' equation. The 

advantage of the present method is reduced the computation cost to other exponential methods for 

solving the Burgers' equation. Accuracy of the present method is demonstrated by solving test problems 

and comparing numerical results with exact solution for different values of Reynolds' number.  

Keywords — Burgers' equation, Exponential finite difference method, Explicit exponential finite 

difference method, Finite difference methods, Padé approximation. 

 
 

1 Introduction 

In this paper, we consider the one-dimensional 

nonlinear Burgers' equation 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
, (𝑥, 𝑡) ∈ Ω       (1.1)

  
 

where 

Ω = (0,1) × (0, T]               

with initial condition 

  10  ),(0,  xxfxu  

and boundary conditions 

        Tttgtutgtu  0  ,,1  and  ,0 21   

where 𝑅𝑒 is the Reynolds number and f , 1g  and 

2g  are the prescribed functions of the variables. 

The Burgers' equation was initially given by 

Bateman [1] and later rediscovered by Burgers as 

a model of turbulence [2]. Burgers' equation has 

been found to describe various kind of 

phenomena such as a mathematical model of 

turbulence and the approximate theory of flow 

through a shock wave traveling in a viscous fluid 

[3].  

The Burgers' equation is an important simple 

model for the understanding of physical flows. In 

literature, many numerical methods have been 

proposed and implemented for approximating 

solution of the Burgers' equation. Ali et al. 

obtained numerical solution of the equation by a 

B-spline finite element method [6]. Bahadr used 

fully implicit finite-difference method for the 

numerical solution of equation [3]. Kutluay et al. 

applied explicit and exact-explicit finite difference 

methods for obtained numerical solution of the 

Burgers' equation [7]. Wei and Gu used conjugate 
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filter approach for solving the equation  [8]. Aksan 

and Özdeş developed variational method 

constructed on the method of discretization for 

the numerical solution of Burgers' equation [9]. 

The least-squares quadratic B-spline finite element 

method applied to the equation by Kutluay et al . 

[10]. Bahadr and Sağlam used a mixed finite 

difference and boundary element approach to for 

solution of the equation  [11]. The Galerkin finite 

element method constructed on the method of 

discretized in time was applied to solve the one-

dimensional nonlinear Burgers' equation by 

Aksan [12]. Gülsu and Öziş proposed restrictive 

Taylor approximation classical explicit finite 

difference method for the equation [13]. 

Kadalbajoo and Awasthi defined a solution based 

on Crank-Nicolson finite difference method for 

the equation [14]. Gülsu used restrictive Padé 

approximation classical implicit finite difference 

method for the Burgers' equation [15]. Liao 

applied a fourth-order compact finite difference 

method to the equation  [16]. Sari and Gürarslan 

defined a sixth-order compact finite difference 

method for numerical solution of the one-

dimensional Burgers' equation  [17]. A compact 

predictor-corrector finite difference scheme 

applied to the equation by Zhang and Wang  [18]. 

Mittal and Jain proposed modified cubic B-splines 

collocation method for the numerical solutions of 

Burgers' equation [19]. Soliman obtained 

numerical solutions of the Burgers' equation by 

the Galerkins' method using cubic B-splines finite 

elements  [20]. 

The explicit exponential finite difference method 

was defined by Bhattacharya for the solution of 

heat equation [21]. Bhattacharya [22] and 

Handschuh and Keith [23] used explicit 

exponential finite difference method for the 

solution of Burgers' equation. Bahadr obtained the 

numerical solution of KdV equation by using the 

exponential finite-difference technique [24]. 

Implicit, fully implicit and Crank-Nicolson 

exponential finite difference methods applied to 

the Burgers' equation by İnan and Bahadr [25, 27]. 

Also, İnan and Bahadr [26, 28] solved the Burgers' 

equation linearized by Hopf-Cole transformation 

with three different exponential finite difference 

methods. 

It is the purpose of this paper to advance another 

form of exponential finite difference method for 

the numerical solution of the Burgers' equation. 

This method can be defined explicit exponential 

finite difference method based on Padé 

approximation. In this paper, we use Padé 

approximation to approximate the exponential 

functions on explicit exponential finite difference 

method. So firstly, we define explicit exponential 

finite difference method and then we remind Padé 

approximation. 

To examine the ability of this method for solution 

of the equation, two problems are considered. It is 

clearly seen from solution of the problems that 

numerical method is reasonably in good 

agreement with the exact solution. 

2 Explicit Exponential Finite Difference 

Method(EEFDM) 

The solution domain is discretized into cells 

described by the nodes set ),( ni tx  in which 

),...,2,1,0( Niihxi 
 and ,...),2,1,0(  nnktn

xh   is the spatial mesh size, tk   is the time 

step, 
 

 2

1
Re

1 x

t
r






  and 
2

Re
2

xr  . Explicit exponential 

finite difference method for Eq. (1.1) takes the 

following form 

   















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 




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i

n

i

n

in

i

n

i

n

i

n

i
U

UUU
UUrrUU 11

1121

1 2
exp

(2.1)

 

which is valid for values of i  lying in the interval 

11  Ni  [22]. 

Where n
iU  denotes the exponential finite 

difference approximation to the exact solution 

),( txu . Eq. (2.1) is system of difference equations. 

 

3 Padé Approximation 

The ]/[ ML  Padé approximation to  xA  is shown 

by 
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 
 xQ

xP
MLR

M

L
ML  ]/[,                       (3.1) 

where  xPL  is a polynomial of degree at most L  

and  xQM  is a polynomial at most M . The 

formal power series 

                
 
 

 1 ML

M

L xO
xQ

xP
xA ,                   (3.2) 

                                 i
i

i

xaxA






1

                      (3.3) 

determine the coefficient of  xPL  and  .xQM  

Since we can obviously multiply the numerator 

and denominator by a constant and leave 

 txML ,]/[  unchanged, we impose the 

normalization condition                     

                           .0.10 MQ                                 (3.4) 

We write the coefficient of  xPL  and  xQM  as 

     
 

  .2
210

2
210

M
MM

L
LL

xqxqxqqxQ

xpxpxppxP








        (3.5) 

Then we can write Eq. (3.2) as  

       

0

0

0

11

2112

111













MLMLML

MMLLL

MMLLL

qaqaa

qaqaa

qaqaa









              (3.9) 

and 

        

LLLL pqaqaa

pqaqaa

pqaa

pa









 011

220112

1101

00

  





                   (3.10) 

 

Since the  q ' s are known from Eq. (3.9), Eq. (3.10) 

can be solved easily. 

1

]/[

1

1
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0
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1

1

121
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






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LMLML

j
j

j

L
j

Mj
Mj

L
j

Mj
Mj

L
MLLL

LMLML

xx

aaa

aaa

xaxaxa

aaa

aaa

ML

 (3.11) 

If Eq. (3.9) and Eq. (3.10) can be solved directly as 

Eq. (3.11) [30]. 

4 Explicit Exponential Finite Difference 

Method Based on Padè Approximation 

(EEFDM-Padé Technique) 

Eq. (2.1) can be written as 

                   RUU n
i

n
i exp1 

                             (4.1) 

and R  is defined following form 

   










 
 

 n
i

n
i

n
i

n
in

i
n
i

U

UUU
UUrrR 11

1121

2
 (4.2) 

and if Padé approximation is applied for  ,exp R

explicit exponential finite difference method 

based on Padé approximation obtained as 

following form 

              

















2

21

1

1

R

R
n
i

n
i UU                            (4.3) 

or 

   

   
.
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(4.4) 
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5 Numerical Results 

We obtain numerical solution of the Burgers' 

equation by EEFDM-Padé technique for two 

standard problems. The accuracy of the proposed 

method is measured in terms of the following 

error norms defined by 

        ,

2

1

2

0
22 

















 ii

i

N

UuhUuL             (5.1) 

      ,max
0

ii
Ni

UuUuL 
                      (5.2)        

           .

2

1

2

0

2

0






























i
i

N

ii
i

N

u

Uu

E                                 (5.3) 

From comparisons of the numerical results with 

the exact solutions it is deduced that the proposed 

method gives highly accurate solutions. The rates 

of convergence of the method, computed using   

               
 

 2log

/log 2/hh EE
rate                           (5.4) 

where hE  and 2/hE  are the errors defined in Eq. 

(5.3) with the grid size h  and 2/h  , respectively. 

Problem 1. 

We first solve the Burgers' equation Eq. (1.1) and 

the initial condition 

                   10 ,sin0,  xxxu                       (5.5) 

with the boundary conditions  

             Tttutu  0 ,0),1(,0                      (5.6) 

and the exact solution given by  

 
 

  )cos(Reexp

)sin(Reexp

Re

2
,

122

1
0

122

1

xntnAA

xnntnA

txu

n
n

n
n



































  

(5.7) 

with  

       dxxA








  


cos1
2

Re
exp

0

1

0                    (5.8) 

     ,3,2,1 ,coscos1
2

Re
exp2

0

1










  ndxxnxAn 


 (5.9) 

The results for Problem 1 are displayed in Table 1-

3 and Fig. 1. The numerical solutions obtained by 

the present method and the exact solution for 

different values of  Re   Reynolds numbers are 

shown in Table 1-3. It is observed from Table 1-2 

that the values of 2L  and L  decrease with 

decrease of h . The obtained solutions for Problem 

1 by the EEFDM-Padé technique are compared 

with other methods  [10, 13, 15, 25, 29] in Table 3. 

All comparisons show that the present method 

offers better results than the others. In order to 

show, how the numerical solutions of the Problem 

1 obtained with the present method we give the 

graphs Fig. 1. Fig. 1a and Fig. 1b display 

numerical solutions for 1Re  , 40N , 410k  

and 100Re  , 100N , 410k , respectively. 

 

 

 

 

 

 

 

 

74 



 
 
 
CBÜ Fen Bil. Dergi., Cilt 13, Sayı 1, 2017, 71-80 s                                                                  CBU J. of Sci., Volume 13, Issue 1, 2017, p 71-80  

 

Table 1. Comparison of the solutions with the exact solution at t=0.1 for Re=1 and k=10⁻⁵  using  

various mesh sizes. 
x N=20 N=40 N=80 N=100 Exact 

0.1 0.109727 0.109585 0.109550 0.109545 0.109538 

0.2 0.210164 0.209885 0.209815 0.209807 0.209792 

0.3 0.292437 0.292031 0.291930 0.291918 0.291896 

0.4 0.348604 0.348094 0.347966 0.347951 0.347924 

0.5 0.372348 0.371770 0.371626 0.371608 0.371577 

0.6 0.359836 0.359243 0.359095 0.359077 0.359046 

0.7 0.310625 0.310085 0.309950 0.309934 0.309905 

0.8 0.228370 0.227956 0.227852 0.227840 0.227817 

0.9 0.120987 0.120762 0.120706 0.120699 0.120687 

2L  0.000553 0.000138 0.000035 0.000022  

L  0.000791 0.000198 0.000050 0.000032 

 

 

Table 2. Comparison of the solutions with the exact solution at t=1 for Re=100 and k=10⁻⁵  using  

various mesh sizes. 
x N=20 N=40 N=80 N=100 Exact 

0.1 0.075420 0.075391 0.075384 0.075383 0.075382 

0.2 0.150723 0.150664 0.150649 0.150648 0.150645 

0.3 0.225787 0.225695 0.225672 0.225670 0.225666 

0.4 0.300480 0.300351 0.300318 0.300314 0.300309 

0.5 0.374651 0.374477 0.374433  0.374428   0.374420 

0.6 0.448112 0.447892 0.447834 0.447827   0.447816 

0.7 0.520123 0.520370 0.520293 0.520283   0.520268 

0.8 0.582551 0.591616 0.591510 0.591498 0.591476 

0.9 0.546459 0.661216 0.660513 0.660350 0.660019 

2L  0.180470 0.024741 0.004384  0.002715  

L  0.798098 0.152326 0.025042 0.016036 

  

 

Şekil 1a. Numerical solutions of Problem 1 at 
different times for Re=1. 

 

Şekil 1b. Numerical solutions of Problem 1 at 
different times for Re=100. 
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Table 3. Comparison of the results for Re=10, N=80 and k=10⁻⁴.

 

Problem 2. 

The initial condition for the current problem is 

               10 ,140,  xxxxu                     (5.10) 

and the boundary conditions 

           Tttutu  0 ,0),1(,0                      (5.11) 

with the exact solution also given by Eq. (5.7) but 

with following coefficients.     

      dxxxA








  23
3

Re
exp 2

0

1

0                (5.12) 

     ,3,2,1 ,cos23
3

Re
exp2 2

1

0










  ndxxnxxAn 

   

(5.13)

 
 

In Table 4-6, we compare the numerical results of 

Problem 2 obtained from new method with the 

exact solutions for ,1Re  10Re   and 100Re  . It 

is observed from Table 4-5 that the values of 2L  

and L  small enough. In Table 6, we compare the 

numerical results of our method with the methods 

proposed in  [10, 13, 15, 25, 29] for Problem 2. The 

comparisons showed that the present method 

offer better results than the others. 𝑡 is clearly seen 

from all tables that the obtained numerical results 

with the method present in this paper are in good 

agreement with the exact solution. Numerical 

solutions of Problem 2 at different times for 1Re 

, 40N  and 410k  are displayed in Figure 2a. 

The computed solutions of the Problem 2 at 

different times by the method are showed for 

100Re  , 100N and 410k  in Figure 2b.

 

 

 

 

 

 

 

 

 

 
x 

 
t 

 
RHC [13] 

 
RPA [15] 

 
 [10] 

 
 [29] 

 
I-EFDM [25] 

Present 
Method 

 
Exact 

0.25 0.4 0.317062 0.308776 0.31215 0.30415 0.308936 0.308902 0.308894 

0.6 0.248472 0.240654 0.24360 0.23629 0.240775 0.240750 0.240739 

0.8 0.202953 0.195579 0.19815 0.19150 0.195709 0.195691 0.195676 

1.0 0.169527 0.162513 0.16473 0.15861 0.162599 0.162584 0.162565 

0.5 0.4 0.583408 0.569527 0.57293 0.56711 0.569727 0.569695 0.569632 

0.6 0.461714 0.447117 0.40588 0.44360 0.447307 0.447275 0.447206 

0.8 0.373800 0.359161 0.36286 0.35486 0.359343 0.359313 0.359236 

1.0 0.306184 0.291843 0.29532 0.28710 0.292026 0.291996 0.291916 

0.75 0.4 0.638847 0.625341 0.63038 0.61874 0.625659 0.625695 0.625438 

0.6 0.506429 0.487089 0.49268 0.47855 0.487513 0.487480 0.487215 

0.8 0.393565 0.373827 0.37912 0.36467 0.374203 0.374150 0.373922 

1.0 0.305862 0.029726 0.03038 0.27860 0.287714 0.287658 0.287474 
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Table 4. Comparison of the solutions with the exact solution at t=0.1 for Re=1 and k=10⁻⁵  using  

various mesh sizes. 
x N=20 N=40 N=80 N=100 Exact 

0.1 0.113086 0.112941 0.112904 0.112900 0.112892 

0.2 0.216634 0.216347 0.216276 0.216267 0.216252 

0.3 0.301521 0.301104 0.301000 0.300988 0.300966 

0.4 0.359562 0.359038 0.358907 0.358891 0.358863 

0.5 0.384216 0.383621 0.383472 0.383454 0.383422 

0.6 0.371474 0.370862 0.370709 0.370691 0.370658 

0.7 0.320812 0.320253 0.320113 0.320096 0.320066 

0.8 0.235945 0.235515 0.235408 0.235395 0.235371 

0.9 0.125031 0.124797 0.124738 0.124731 0.124718 

2L  0.000571 0.000143 0.000036 0.000023  

L  0.000817 0.000205 0.000052 0.000033 

 

 

Table 5. Comparison of the solutions with the exact solution at t=1 for Re=100 and k=10⁻⁵  using  

various mesh sizes. 
x N=20 N=40 N=80 N=100 Exact 

0.1 0.078149 0.078104 0.078092 0.078091 0.078088 

0.2 0.156043 0.155961 0.155940 0.155937 0.155934 

0.3 0.233440 0.233334 0.233306 0.233303 0.233298 

0.4 0.310117 0.309995 0.309963 0.309959 0.309953 

0.5 0.385861 0.385722 0.385686 0.385682 0.385676 

0.6 0.460432 0.460289 0.460248 0.460243 0.460236 

0.7 0.532942 0.533444 0.533392 0.533386 0.533376 

0.8 0.594410 0.604875 0.604804 0.604795 0.604781 

0.9 0.551459 0.674162 0.673574 0.673427 0.673123 

2L  0.189173 0.026018 0.004569 0.002826  

L  0.836100 0.160805 0.026134 0.002826 

  
 
Figure 2a. Numerical solutions of Problem 2 at                
different times for Re=1. 

Figure 2b. Numerical solutions of Problem 2 at 
different times for Re=100.
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Table 6. Comparison of the results for Re=10, N=80 and k=10⁻⁴.

 

Rate of convergence at 1Re   and 5.0t  for the 

Problem 1 and Problem 2 are shown in Table 7. 

From the table, we observe that the proposed 

method is first order accurate in space. From this 

table, it can be seen that errors approach to zero as 

the mesh refines, which shows that the scheme is 

consistent. 

Table 7. Rate of convergence for Re=1 at t=0.5. 

N Problem 1 Problem 2 

2 - - 

4 2.450709506 2.385884554 

8 2.117029032 2.107812354 

16 2.006633901 2.006790233 

32 2.001942713 2.001512488 

64 2.000968722 1.999595552 

 

6 Conclusion 

An explicit exponential finite difference method 

based on Padé approximation is presented for the 

nonlinear Burgers' equation. Numerical results are 

obtained for the nonlinear Burgers' equation with 

various initial and boundary conditions, which 

manifest high accuracy and efficiency of the 

present method. The proposed method are seen to 

be good alternative to existing methods for such 

problems. 
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