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Abstract

In this paper, the regularization method of S.A. Lomov is generalized to singularly perturbed integro-
di�erential fractional order derivative equation with rapidly oscillating coe�cients. The main purpose of
the study is to reveal the in�uence of the integral term and rapidly oscillating coe�cients on the asymptotic
of the solution of the original problem. To study the in�uence of rapidly oscillating coe�cients on the leading
term of the asymptotic of solutions, we consider a simple case, i.e. the case of no resonance (when an entire
linear combination of frequencies of a rapidly oscillating cosine does not coincide with the frequency of the
spectrum of the limit operator.
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1. Introduction

As is known, the study of various issues related to dynamic stability, the properties of media with a
periodic structure, and other applied problems is reduced to the study of di�erential and integro-di�erential
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equations with rapidly oscillating coe�cients. Various methods have been developed for solving such equa-
tions, one of which is the splitting method [1, 2, 3, 4] and the regularization method [5, 6]. However, in
the splitting method, problems with an integral operator proportional to a small parameter are considered,
which signi�cantly narrow the scope of this method. In the well-known works of the regularization method,
singularly perturbed di�erential equations were considered, containing only rapidly oscillating coe�cients
for unknown functions [7]. A generalization of the idea of the regularization method for integro-di�erential
equations with rapidly oscillating coe�cients was studied in [8, 9, 10], for singularly perturbed integral and
integro-di�erential equations with rapidly oscillating inhomogeneities in [11, 12, 13, 14, 15, 16]. With the
advent of the concept of consonant fractional derivative [17], singularly perturbed di�erential equations with
fractional derivatives were studied [18]. On the basis of the above results, singularly perturbed integro-
di�erential equations with fractional derivatives began to be systematically studied [19, 20].

In this paper, we generalize this problem to a singularly perturbed integro-di�erential equation with a
fractional derivative and rapidly oscillating coe�cients. As in previous works, the main goal of the study
is to reveal the in�uence of the integral term and rapidly oscillating coe�cients on the asymptotics of the
solution of the original problem. The e�ect of rapidly oscillating coe�cients for equations with fractional
derivatives on the asymptotic behavior of solutions is an interesting and nontrivial problem. A simple case
is considered, i.e. the case of no resonance (when an entire linear combination of frequencies of a rapidly
oscillating cosine does not coincide with the frequency of the spectrum of the limit operator).

An initial problem is considered for a singularly perturbed integro-di�erential equation:

Lεz(t, ε) ≡ εz(α) −A(t)z − εg(t)cos
β(t)

ε
z −

t∫
t0

K(t, s)z(s, ε)ds = h(t),

z(t0, ε) = z0, t ∈ [t0, T ], t0 > 0 (1.1)

for a scalar unknown function z(t, ε), in which A(t), h(t), β′(t) > 0, (∀t ∈ [t0, T ]), g(t) are known functions,
0 < α < 1, z0 � constant number, ε > 0 is a small parameter. The problem is posed of constructing a
regularized [5,6] asymptotic solution to problem (1.1).

We give the de�nition of a conformable fractional derivative. Conformable derivative is an extended
classical derivative that was proposed in [17]. This derivative has overcome the barriers with other derivatives.
It is described as.

Suppose f : (0,∞)→ R, then conformable derivative of f with order α is given by [17]

Tα[f(t)] = lim
ε→0

f(t+ εt1−α − f(t))

ε
,

for t > 0, α ∈ (0, 1). If Tα[f(t)] exists forx in some interval (0, α) with α > 0, and lim
t→0

T [f(t)] also exists,

then Tα[f(0)] = lim
x→0

Tα[f(t)]. moreover, if Tα[f(t)] exists on [0,∞), then f is said to be α−di�erentiable at
t. The following properties are associated with the conformable derivative [17]:
• Tα(af + bg) = aTα(f) + bTα(g), a, b ∈ R,
• Tα(tµ) = µtµ−α, µ ∈ R,
• Tα(fg) = fTα + gTα(f),

• Tα

(
f
g

)
= gTα(f)−fTα

g2
,

• If f is di�erentiable, then Tα(f)(t) = t1−α dfdg .
According conformable derivative, we rewrite the original fractional order equation (1.1) in the following

form:

Lεz(t, ε) ≡ εt(1−α)dz

dt
−A(t)z − εg(t)cos

β(t)

ε
z −

t∫
t0

K(t, s)z(s, ε)ds = h(t),

z(t0, ε) = z0, t ∈ [t0, T ], t0 > 0. (1.2)
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In problem (1.2), the frequency of the rapidly oscillating cosine is β′(t). In what follows, the function
λ1(t) = A(t) is called the spectrum of problem (1.2), and functions λ2(t) = −iβ′(t), λ3(t) = +iβ′(t) spectrum
of a rapidly oscillating coe�cient.

Let us introduce the following notation:
λ(t) = (λ1(t), ..., λ3(t)) ,
m = (m1, ...,m3)− multi-index with non-negative components mj , j = 1, 3,

|m| =
3∑
j=1

mj− multi-index height m,

(m,λ(t)) =
3∑
j=1

mjλj(t).

Problem (1) will be considered under the following conditions:
1) A(t), β(t), g(t), h(t) ∈ C[t0, T ], Re a(t) < 0 ∀t ∈ [t0, T ], K(t, s) ∈ C∞(t0 ≤ s ≤ ≤ t ≤ T ),
2) relations

(m,λ(t)) = 0, (m,λ(t)) = λj(t), j ∈ {1, ..., 3}

for all multi-indices m with |m| ≥ 2 either are not satis�ed for any t ∈ [t0, T ], or are ful�lled identically on
the entire segment [t0, T ]. In other words, the resonance multi-indices are exhausted by the following sets:

Γ0 = {m : (m,λ(t)) ≡ 0, |m| ≥ 2,∀t ∈ [t0, T ]} ,

Γj = {m : (m,λ(t)) ≡ λj(t), |m| ≥ 2, ∀t ∈ [t0, T ]} , j = 1, 3.

Thus, we begin to develop an algorithm for constructing a regularized asymptotic solution to [5, 6]
problem (1.2).

2. Regularization of the problem (1.2)

Denote by σj = σj(ε) independent of magnitude σ1 = e−
i
ε
β(t0), σ2 = e+ i

ε
β(t0), and rewrite equation

(1.2) as

Lεz(t, σ, ε) ≡ εt(1−α)dz

dt
−A(t)z − εg(t)

2

e− i
ε

t∫
t0

β′(θ)dθ

σ1 + e
+ i
ε

t∫
t0

β′(θ)dθ

σ2

 z−

−
t∫

t0

K(t, s)z(s, σ, ε)ds = h(t), z(t0, σ, ε) = z0, t ∈ [t0, T ]. (2.1)

Introduce the regularized variables:

τ1 =
1

ε

∫ t

0
θ(α−1)λ1(θ)dθ ≡ ψ1(t)

ε
, τj =

1

ε

∫ t

0
λj(θ)dθ ≡

ψj(t)

ε
, j = 2, 3

and instead of problem (2.1), consider the problem

L̃εz̃(t, τ, σ, ε) ≡ εt(1−α)∂z̃

∂t
+ λ1(t)

∂z̃

∂τ1
+ t(1−α)

3∑
j=2

λj(t)
∂z̃

∂τj
− λ1(t)z̃−

−εg(t)

2
(eτ2σ1 + eτ3σ2) z̃ −

t∫
t0

K(t, s)z̃(s,
ψ(s)

ε
, σ, ε)ds = (2.2)

= h(t), z̃(t, τ, σ, ε)|t=t0,τ=0 = z0, t ∈ [t0, T ]
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for the function z̃ = z̃(t, τ, σ, ε), where is indicated: τ = (τ1, τ2, τ3), ψ = (ψ1, ψ2, ψ3). It is clear that if

z̃ = z̃(t, τ, σ, ε)− is a solution of the problem (2.2), then the function is z̃ = z̃
(
t, ψ(t)

ε , σ, ε
)
an exact solution

to problem (2.1), therefore, problem (2.2) is extended with respect to problem (1.2). However, it cannot be
considered fully regularized, since it does not regularize the integral

Jz̃ ≡ J
(
z̃(t, τ, σ, ε)|t=s,τ=ψ(s)/ε

)
=

t∫
t0

K(t, s)z̃(s,
ψ(s)

ε
, ε)ds.

For its regularization, we introduce the class Mε asymptotically invariant with respect to the operator
Jz̃ (see [5], p. 62]). Consider �rst the space U of vector functions z(t, τ, σ), representable by the sums

z(t, τ, σ) = z0(t, σ) +
3∑
i=1

zi(t, σ)eτi +
∗∑

2≤|m|≤Nz

zm(t, σ)e(m,τ),

zi(t, σ), zm(t, σ) ∈ C∞ ([t0, T ],C) , i = 0, 3, 2 ≤ |m| ≤ Nz (2.3)

where asterisk ∗ above the sum sign indicates that the summation for |m| ≡ m1 + m2 + m3 ≥ 2 it occurs

only on the non-resonant multi-indexes, i.e. m /∈
3⋃
j=0

Γj , σ = (σ1, σ2) .

Note that here the degree Nz of the polynomial z (t, τ, σ) relative to the exponentials eτj depends on the
element z. In addition, the elements of space U depend on bounded in ε > 0 terms of constants σ1 = σ1 (ε)
and σ2 = σ2 (ε) and which do not a�ect the development of the algorithm described below, therefore, in the
record of element (2.3) of this space U , we omit the dependence on σ = (σ1, σ2) for brevity. We show that
the class Mε = U |τ=ψ(t)/ε is asymptotically invariant with respect to the operator J .

Before describing the space U , we introduce the sets of resonant multi-indices. We introduce the notations:

λ (t) = (λ1 (t) , λ2 (t) , λ3 (t)) ,

(m,λ (t)) =

3∑
j=1

mjλj (t), |m| =
3∑
j=1

mj ,

Γ0 = {m : (m,λ (t)) ≡ 0, ∀ |m| ≥ 2} ,

Γj = {m : (m,λ (t)) ≡ λj (t) , ∀ |m| ≥ 2} , j = 1, 2, 3

(the set Γ0 corresponds to a point of the spectrum λ0 (t) ≡ 0, generated by the integral operator (see [9]).
For the space U we take the space of functions z (t, τ, σ) , represented by sums

Jz̃(t, τ, ε) ≡
t∫

t0

K(t, s)z0(s)ds+

t∫
t0

K(t, s)z1(s)e
1
ε

s∫
0

θ(α−1)λ1(θ)dθ
ds+

+
3∑
i=2

t∫
t0

K(t, s)zi(s)e
1
ε

s∫
0

λi(θ)dθ
ds+

∗∑
2≤|m|≤Nz

t∫
t0

K(t, s)zm(s)e
1
ε

s∫
0

(m,λ(θ))dθ
ds.

Integrating by parts, we write the image of the operator J on the element (2.3) of the space U as a series

Jz̃(t, τ, ε) =

t∫
t0

K(t, s)z0(s)ds+
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+
3∑
i=1

∞∑
ν=0

(−1)νεν+1 [(Iνi (K(t, s)zi(s)))s=te
τi − (Iνi (K(t, s)zi(s(s)))s=t0

]
+

+
∗∑

2≤{m}≤Nz

∞∑
ν=0

(−1)νεν+1
[
(Iνm (K(t, s)zm(s)))s=te

(m,τ)−

− (Iνm (K(t, s)zm(s)))s=t0
]

where are indicated:

I0
1 =

1

s(α−1)λ1(s)
·, Iν1 =

1

s(α−1)λi(s)

∂

∂s
Iν−1

1 ,

I0
i =

1

λi(s)
·, Iνi =

1

λi(s)

∂

∂s
Iν−1
i , i = 2, 3,

I0
m =

1

(m,λ(s))
·, Iνm =

1

(m,λ(s))

∂

∂s
Iν−1
m (ν ≥ 1, |m| ≥ 2).

It is easy to show (see, for example, [21], pp. 291-294) that this series converges asymptotically for ε→ +0
(uniformly in t ∈ [t0, T ]). This means that the classMε is asymptotically invariant (for ε→ +0) with respect
to the operator J .

We introduce operators Rν : U → U, acting on each element z(t, τ) ∈ U of the form (5) according to the
law:

R0z(t, τ) =

t∫
t0

K(t, s)z0(s)ds, (2.40)

R1z(t, τ) =
3∑
i=1

[(
I0
i (K(t, s)zi(s))

)
s=t
eτi −

(
I0
i (K(t, s)zi(s))

)
s=t0

]
+

+

Nz∑
|m|=2

[(
I0
m (K(t, s)zm(s))

)
s=t
e(m,τ)−

(
I0
m (K(t, s)zm(s))

)
s=t0

]
, (2.41)

Rν+1z (t, τ) =
3∑
i=1

(−1)ν [(Iνi (K(t, s)zi(s)))s=te
τi− (Iνi (K(t, s)zi(s)))s=t0

]
+

+
∗∑

2≤|m|≤Nz

(−1)ν
[
(Iνm (K(t, s)zm(s)))s=te

(m,τ)− (2.4ν+1)

− (Iνm (K(t, s)zm(s)))s=t0
]
, ν ≥ 1.

Now let z̃(t, τ, ε) be an arbitrary continuous function on (t, τ) ∈ G = [t0, T ] × {τ : Reτ1 < 0, Reτj ≤
0, j = 2, 3}, with asymptotic expansion

z̃(t, τ, ε) =
∞∑
k=0

εkzk(t, τ), yk(t, τ) ∈ U (2.5)

converging as ε → +0 (uniformly in (t, τ) ∈ G). Then the image Jz̃ (t, τ, ε) of this function is decomposed
into an asymptotic series

Jz̃(t, τ, ε) =

∞∑
k=0

εkJzk(t, τ) =
∞∑
r=0

εr
r∑
s=0

Rr−szs(t, τ)|τ=ψ(t)/ε.
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This equality is the basis for introducing an extension of an operator J on series of the form (2.5):

J̃ z̃ ≡ J̃

( ∞∑
k=0

εkzk(t, τ)

)
=
∞∑
r=0

εr

(
r∑

k=0

Rr−kzk(t, τ)

)
.

Although the operator J̃ is formally de�ned, its utility is obvious, since in practice it is usual to construct
the N -th approximation of the asymptotic solution of the problem (2.1), in which impose only N -th partial
sums of the series (2.5), which have not a formal, but a true meaning. Now you can write a problem that is
completely regularized with respect to the original problem (2.1):

Lεz̃(t, τ, σ, ε) ≡ εt(1−α)∂z̃

∂t
+ λ1(t)

∂z̃

∂τ1
+ t(1−α)

3∑
j=2

λj(t)
∂z̃

∂τj
− λ1(t)z̃−

−J̃ z̃ − εg(t)

2
(eτ2σ1 + eτ3σ2)z̃ = h(t), z̃(t0, 0, σ, ε) = z0, t ∈ [t0, T ]. (2.6)

3. Iterative problems and their solvability in the space U

Substituting the series (2.5) into (2.6) and equating the coe�cients of the same powers of ε, we obtain
the following iterative problems:

Lz0(t, τ, σ) ≡ λ1(t)
∂z0

∂τ1
+ t(1−α)

3∑
j=2

λj(t)
∂z0

∂τj
− λ1(t)z0 −R0z0 = h(t),

z0(t0, 0) = z0; (3.10)

Lz1(t, τ, σ) = −t(1−α)∂z0

∂t
+
g(t)

2
(eτ2σ1 + eτ3σ2) z0 +R1z0,

z1(t0, 0) = 0; (3.11)

Lz2(t, τ, σ) = −t(1−α)∂z1

∂t
+
g(t)

2
(eτ2σ1 + eτ3σ2) z1 +R1z1 +R2z0,

z0(t0, 0) = 0; (3.12)

............................................................

L zk(t, τ, σ) = −t(1−α)∂zk−1

∂t
+
g(t)

2
(eτ2σ1 + eτ3σ2) zk−1 +Rkz0 + . . .+

+...+R1zk−1, zk(t0, 0) = 0, k ≥ 1. (3.1k)

Each iterative problem (3.1k) has the form

Lz(t, τ, σ) ≡ λ1(t)
∂z

∂τ1
+ t(1−α)

3∑
j=2

λj(t)
∂z

∂τj
− λ1(t)z −R0z = H(t, τ, σ),

z(t0, 0) = z∗ (3.2)

where H(t, τ, σ) = H0(t, σ) +
3∑
i=1

Hi(t, σ)eτi+
∗∑

2≤|m|≤Nz
Hm(t, σ)e(m,τ) is the known function of space U, z∗−

is the known function of the complex space C, and the operator R0 has the form (see (2.40))

R0z ≡ R0

 z0(t) +

3∑
j=1

zj(t)e
τj+

∗∑
2≤|m|≤Nz

zm(t)e(m,τ)

 ≡ t∫
t0

K(t, s)z0(s)ds.
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We introduce scalar (for each x ∈ [t0, T ]) product in space U :

< u,w >≡< u0(t) +

3∑
j=1

uj(t)e
τj +

∗∑
2≤|m|≤Nu

um(t)e(m,τ), w0(t) +

3∑
j=1

wj(t)e
τj+

+

∗∑
2≤|m|≤Nw

wm(t)e(m,τ) >≡
3∑
j=0

(uj(t), wj(t)) +

+

∗∑
2≤|m|≤min(Nu,Nw)

(um(t), wm(t)) ,

where we denote by (∗, ∗) the usual scalar product in the complex space C : (u, v) = u · v̄. Let us prove the
following statement.

Theorem 3.1. Let conditions 1), 2) be ful�lled and the right-hand side H(t, τ, σ) = H0(t, σ)+
3∑
j=1

Hj(t, σ)eτj+

∗∑
2≤|m|≤NH

Hm(t, σ)e(m,τ) of equation (3.2) belongs to the space U . Then the equation (3.2) is solvable in U,

if and only if

< H(t, τ), eτ1 >≡ 0, ∀t ∈ [t0, T ]. (3.3)

Proof. We will determine the solution of equation (3.2) as an element (2.5) of the space U :

z(t, τ, σ) = z0(t, σ) +

3∑
j=1

zj(t, σ)eτj +

∗∑
2≤|m|≤NH

zm(t, σ)e(m,τ). (3.4)

Substituting (3.4) into equation (3.2), and equating here the free terms and coe�cients separately for identical
exponents, we obtain the following equations of equations:

λ1(t)z0(t, σ)−
t∫

t0

K(t, s)z0(s, σ)ds = H0(t, σ), (3.5)

0 · z1(t, σ) = H1(t, σ), (3.51)[
t(1−α)λj(t)− λ1(t)

]
zj(t, σ) = Hj(t, σ), j = 2, 3, (3.5j)[

t(1−α) (m,λ(t))− λ1(t)
]
zm(t, σ) = Hm(t, σ), 2 ≤ |m| ≤ NH . (3.5m)

Since the λ1(t) 6= 0, the equation (3.5) can be written as

z0(t, σ) =

t∫
t0

(
−λ−1

1 (t)K(t, s)
)
z0(s, σ)ds− λ−1

1 (t)H0(t, σ). (3.50)

Due to the smoothness of the kernel
(
−λ−1

1 (t)K(t, s)
)
and heterogeneity −λ−1

1 (t)H0(t, σ), this Volterra
integral equation has a unique solution z0(t, σ) ∈ C∞ ([t0, T ] ,C) . The equations (3.52) and (3.53) also have
unique solutions

zj(t, σ) =
[
t(1−α)λj(t)− λ1(t)

]−1
Hj(t, σ) ∈ C∞ ([t0, T ] ,C) , j = 2, 3 (3.6)
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since λ2(t), λ3(t) not equal to λ1(t). The equation (3.51) is solvable in space C∞ ([t0, T ] ,C) if and only
(H1(t, τ), eτ1) ≡ 0 ∀t ∈ [t0, T ] hold. It is not di�cult to see that these identities coincide with identities (3.2).

Further, since t(1−α) (m,λ(t)) 6= λ1(t), ∀m /∈
3⋃
j=1

Γj , j = 1, 3, |m| ≥ 2, (see (2.3)), the equations (3.5m)

has a unique solution

zm(t) =
[
t(1−α) (m,λ(t))− λ1(t)

]−1
Hm(t) ∈ C∞ ([t0, T ] ,C) ,

∀ |m| ≥ 2, m /∈
3⋃
j=0

Γj .

Thus, condition (3.3) is necessary and su�cient for the solvability of equations (3.2) in the space U .

Remark 3.2. If identity (3.3) holds, then under conditions 1), 2), equation (3.2) has the following solution

in the space U :

z(t, τ, σ) = z0(t, σ) + α1(t, σ)eτ1 +
3∑
j=2

[
t(1−α)λj(t)− λ1(t)

]−1
Hj(t, σ)eτj+

+
∗∑

2≤|m|≤NH

[
t(1−α) (m,λ(t))− λ1(t)

]−1
Hm(t, σ) (3.7)

where α1(t, σ) ∈ C∞ ([t0, T ] ,C) are arbitrary function, z0(t, σ) is the solution of an integral equation (3.50).

4. The unique solvability of the general iterative problem in the space U . Residual term

theorem

Let us proceed to the description of the conditions for the unique solvability of equation (3.2) in space
U . Along with problem (3.2), we consider the equation

Lz(t, τ) = −t(1−α)∂z

∂t
+
g(t)

2
(eτ2σ1 + eτ3σ2) z +R1z +Q(t, τ) (4.1)

where z = z(t, τ) is the solution (3.7) of the equation (3.2), Q(z, τ) ∈ U is the well-known function of the
space U. The right part of this equation:

G(t, τ) ≡ −t(1−α)∂z

∂t
+
g(t)

2
(eτ2σ1 + eτ3σ2) z +R1z +Q(t, τ) =

= −t(1−α) ∂

∂t

z0(t) +
3∑
j=1

zj(t)e
τj +

∗∑
2≤|m|≤NH

zm(t)e(m,τ)

+

+
g(t)

2
(eτ2σ1 + eτ3σ2)

z0(t) +
3∑
j=1

zj(t)e
τj +

∗∑
2≤|m|≤NH

zm(t)e(m,τ)

+

+R1

z0(t) +
3∑
j=1

zj(t)e
τj +

∗∑
2≤|m|≤NH

zm(t)e(m,τ)

+Q(t, τ)
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may not belong to space U , if z = z(t, τ) ∈ U. Indeed, taking into account the form (4.1) of the function
z = z(t, τ) ∈ U, we consider in G(t, τ), for example, the terms

Z(t, τ) ≡ g(t)

2
(eτ2σ1 + eτ3σ2)

z0(t) +
3∑
j=1

zj(t)e
τj +

∗∑
2≤|m|≤NH

zm(t)e(m,τ)

 =

=
g(t)

2
z0(t) (eτ2σ1 + eτ3σ2) +

3∑
j=1

g(t)

2
zj(t)

(
eτj+τ2σ1 + eτj+τ3σ2

)
+

+
g(t)

2
(eτ2σ1 + eτ3σ2)

∗∑
2≤|m|≤NH

zm(t)e(m,τ).

Here, for example, terms with exponents

eτ2+τ3 = e(m,τ)|m=(0,1,1), e
τ2+(m,τ) (if m1 = 0,m2 + 1 = m3) ,

eτ3+(m,τ) (if m1 = 0, m3 + 1 = m2) , eτ2+(m,τ) (if m1 = 0,m2 = m3) , (∗)

eτ3+(m,τ) (if m1 = 0, m2 = m3) , eτ2+(m,τ) (if m1 = 1, m2 = m3) ,

eτ3+(m,τ) (if m1 = 1, m2 = m3)

do not belong to space U, since multi-indexes

(0, n, n) ∈ Γ0, (0, n+ 1, n) ∈ Γ1, (0, n, n+ 1) ∈ Γ2, ∀n ∈ N

are resonant. Then, according to the well-known theory (see, [5], p. 234), we embed these terms in the space
U according to the following rule (see (∗)):

êτ2+τ3 = e0 = 1, ̂eτ2+(m,τ) = e0 = 1 (if m1 = 0,m2 + 1 = m3) ,

̂eτ3+(m,τ) = e0 = 1 (if m1 = 0, m3 + 1 = m2) ,

̂eτ2+(m,τ) = eτ2 (if m1 = 0,m2 = m3) , ̂eτ3+(m,τ) = eτ3 (if m1 = 0, m2 = m3) ,

̂eτ2+(m,τ) (if m1 = 1, m2 = m3) = eτ1 , ̂eτ3+(m,τ) = eτ1 (if m1 = 1, m2 = m3) .

In other words, terms with resonant exponentials e(m,τ) replaced by members with exponents e0, eτ1 , eτ2 , eτ3

according to the following rule:

ê(m,τ)|m∈Γ0 = e0 = 1, ê(m,τ)|m∈Γ1 = eτ1 , ê(m,τ)|m∈Γ2 = eτ2 , ê(m,τ)|m∈Γ3 = eτ3 .

After embedding, the right-hand side of equation (4.1) will look like

Ĝ(t, τ) = −t(1−α) ∂

∂t

z0(t) +
3∑
j=1

zj(t)e
τj +

∗∑
2≤|m|≤NH

zm(t)e(m,τ)

+Q(t, τ).

As indicated in [5], the embedding G(t, τ) → Ĝ(t, τ) will not a�ect the accuracy of the construction of

asymptotic solutions of problem (1.2), since G(t, τ) at τ = ψ(t)
ε coincides with Ĝ(t, τ).
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Theorem 4.1. Let conditions 1), 2) be ful�lled and the right-hand side H(t, τ) = H0(t) +
3∑
j=1

Hj(t)e
τj +

∗∑
2≤|m|≤NH

Hm(t)e(m,τ) ∈ U of equation (3.2) satisfy condition (3.3). Then problem (3.2) under additional

conditions

< Ĝ(t, τ), eτ1 >≡ 0 ∀t ∈ [t0, T ] (4.2)

where Q(t, τ) = Q0(t) +
3∑

k=1

Qk(t)e
τi +

∗∑
2≤|m|≤Nz

Qm(t)e(m,τ) is the known function of space U , is uniquely

solvable in U .

Proof. Since the right-hand side of equation (3.2) satis�es condition (3.3), this equation has a solution in
space U in the form (3.7), where α1(t) ∈ C∞ ([t0, T ],C) is arbitrary function. Submit (4.1) to the initial
condition y (t0, 0) = y∗. We get α1(t0, t) = y∗, where denoted

z∗ = z∗ + λ−1
1 (t0)H0(t0)− H2(t0)

t0(1−α)λ2(t0)− λ1(t0)
− H3(t0)

t0(1−α)λ3(t0)− λ1(t0)
−

−
∗∑

2≤|m|≤NH

Hm(t0)[
t0(1−α) (m,λ(t0))− λ1(t0)

] .
Now we subordinate the solution (3.7) to the orthogonality condition (4.2). We write G(t, τ) in more detail
the right side of equation (3.2):

G(t, τ) ≡ −t(1−α) ∂

∂t
[z0(t) + α1(t)eτ1 + h21(t)eτ2+

+h31(t)eτ3
∗∑

2≤|m|≤NH

Pm(t)e(m,τ)

+

+
g(t)

2
(eτ2σ1 + eτ3σ2)

∂

∂t
[z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3+

+
∗∑

2≤|m|≤NH

Pm(t)e(m,τ)

+Q(t, τ)+

+R1

z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3 +

Nz∑
|m|=2

Pm(t)e(m,τ)

 .
Embedding this function into space U we will have

Ĝ(t, τ) ≡ −t(1−α) ∂

∂t
[z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3+

+

∗∑
2≤|m|≤NH

Pm(t)e(m,τ)

+

+

g(t)

2
z0(t)eτ2σ1 +

g(t)

2
z0(t)eτ3σ2 +

3∑
j=1

g(t)

2
zj(t)e

τj+τ2σ1+

+
3∑
j=1

g(x)

2
zj(t)e

τj+τ3σ2+
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+
∗∑

2≤|m|≤NH

g(t)

2
zm(t)e(m,τ)+τ2σ1 +

∗∑
2≤|m|≤NH

g(t)

2
zm(t)e(m,τ)+τ3σ2


∧

+

+R1

z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3 +
∗∑

2≤|m|≤NH

Pm(t)e(m,τ)

+

+Q(t, τ) = −t(1−α) ∂

∂t
[z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3+

=
∗∑

2≤|m|≤NH

Pm(t)e(m,τ)

+Q(t, τ)+

+
g(t)

2
{z0(t)eτ2σ1 + z0(t)eτ3σ2+ α1(t)eτ1+τ2σ1 + h21(t)e2τ2σ1+

+h31(t)eτ3+τ2σ1 + α1(t)eτ1+τ3σ2 + h21(t)eτ2+τ3σ2 + h31(t)e2τ3σ2+

+

∗∑
2≤|m|≤NH

Pm(t)e(m,τ)+τ2σ1 +

∗∑
2≤|m|≤NH

Pm(t)e(m,τ)+τ3σ2


∧

+

+R1

z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3 +
∗∑

2≤|m|≤NH

Pm(t)e(m,τ)

 .
The embedding operation acts only on resonant exponentials, leaving the coe�cients unchanged at these

exponents. Given that the expression

R1

z0(t) + α1(t)eτ1 + h21(t)eτ2 + h31(t)eτ3 +

∗∑
2≤|m|≤NH

Pm(t)e(m,τ)


linearly depends on α1(t) (see formula (2.41)), we also conclude that after the embedding operation the

function Ĝ (t, τ) will linearly depend on the scalar function α1(t). Given that in condition (4.2) scalar mul-
tiplication by functions eτ1 , containing only the exponent eτ1 , in the expression for Ĝ (t, τ) it is necessary to
keep only the term with the exponent eτ1 . Then condition (4.2) takes the form

< −t(1−α) ∂

∂t
(α1(t)eτ1) +

 N∑
|m1|=2:m1∈Γ1

wm
1

(α1(t), t)

 eτ1+

+Q1(t)eτ1 , eτ1 >= 0 ∀t ∈ [t0, T ]

where wm
1

(α1 (t) , t) are some functions linearly dependent on α1(t). Performing scalar multiplication here,
we obtain a linear ordinary di�erential equation (relative t) for a function α1(t). Given the initial condition
α1(t0) = y∗, found above, we �nd uniquely the function α1(t) ∈ C∞ [t0, T ] and therefore, we will uniquely
construct a solution to equation (3.2) in the space U .

As mentioned above, the right-hand sides of iterative problems (3.1k) (if solved sequentially) may not
belong to space U. Then, according to [5] (p. 234), the right-hand sides of these problems must be embedded
into U, according to the above rule. As a result, we obtain the following problems:

Lz0(t, τ, σ) ≡ λ1(t)
∂z0

∂τ1
+ t(1−α)

3∑
j=2

λj(t)
∂z0

∂τj
− λ1(t)z0 −R0z0 = h(t),
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z0(t0, 0) = z0; (3.10)

Lz1(t, τ) = −t(1−α)∂z0

∂t
+

[
g(t)

2
(eτ2σ1 + eτ3σ2)z0

]∧
+R1z0,

z1(t0, 0) = 0; (3.11)

Lz2(t, τ) = −t(1−α)∂z1

∂t
+

[
g(t)

2
(eτ2σ1 + eτ3σ2)z1

]∧
+R1z1 +R2z0,

z2(t0, 0) = 0; (3.12)

............................................................

Lzk(t, τ) = −t(1−α)∂zk−1

∂t
+

[
g(t)

2
(eτ2σ1 + eτ3σ2)zk−1

]∧
+Rkz0 + . . .+

+ . . .+R1zk−1, zk(t0, 0) = 0, k ≥ 1. (3.1k)

(images of linear operators ∂
∂t and Rν do not need to be embedding in space U, since these operators operate

from U to U). Such a change will not a�ect the construction of the asymptotic solution of the original

problem (1.1) (or the equivalent problem (1.2)), so on the restriction τ = ψ(t)
ε series of problems (3.1k) will

coincide with a series of problems (3.1k) (see [5], pp. 234-235).
Applying Theorems 1 and 2 to iterative problems (3.1k) (in this case, the right-hand sides H(k)(t, τ) of

these problems are embedded in the space U , i.e. H(k)(t, τ) we replace with Ĥ(k)(t, τ) ∈ U), we �nd uniquely
their solutions in space U and construct series (2.5). Just as in [21], we prove the following statement

Theorem 4.2. Suppose that conditions 1), 2) are satis�ed for equation (1.2). Then, when ε ∈ (0, ε0](ε0 > 0
is su�ciently small), equation (1.2) has a unique solution z(t, ε) ∈ C1 ([t0, T ],C) , in this case, the estimate

||z(t, ε)− zεN (t)||C[t0,T ] ≤ cNε
N+1, N = 0, 1, 2, . . .

holds true, where zεN (t) is the restriction (for τ = ψ(t)
ε ) of the N - partial sum of series (2.5) (with coe�cients

zk(t, τ) ∈ U, satisfying the iteration problems (8k)), and the constant cN > 0 does not depend on ε ∈ (0, ε0].

5. Construction of the solution of the �rst iteration problem

Using Theorem 1, we will try to �nd a solution to the �rst iteration problem (3.10). Since the right side
h(t) of the equation (3.10) satis�es condition (3.3), this equation has (according to (3.7)) a solution in the
space U in the form

z0(t, τ) = z
(0)
0 (t) + α

(0)
1 (t)eτ1 (5.1)

where α
(0)
1 (t) ∈ C∞([t0, T ] ,C) are arbitrary function, y

(0)
0 (t) is the solution of the integral equation

z
(0)
0 (t) =

t∫
t0

(
−λ−1

1 (t)K(t, s)
)
z

(0)
0 (s)ds− λ−1

1 (t)h(t). (5.2)

Subordinating (5.1) to the initial condition z0(t0, 0) = z0, we have

z
(0)
0 (t0) + α

(0)
1 (t0) = z0 ⇔ α

(0)
1 (t0) = z0 − z(0)

0 (t0)⇔

⇔ α
(0)
1 (t0) = z0 + λ−1

1 (t0)h(t0).
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To fully compute the function α
(0)
1 (t), we proceed to the next iteration problem (3.11). Substituting into it

the solution (5.1) of the equation (3.10), we arrive at the following equation:

Lz1(t, τ) = −t(1−α) ∂

∂t
z

(0)
0 (t)− t(1−α) ∂

∂t

(
α

(0)
1 (t)

)
eτ1+

+

[
g(t)

2
(eτ2σ1 + eτ3σ2)

(
z

(0)
0 (t) + α

(0)
1 (t)eτ1

)]∧
+

+
K(t, t)α

(0)
1 (t)

t(1−α)λ1(t)
eτ1 − K(t, t0)α

(0)
1 (t0)

t0(1−α)λ1(t0)
+

+
3∑
j=2

[
K(t, t)z

(0)
j (t)

λj(t)
eτj −

K(t, t0)z
(0)
j (t0)

λj(t0)

]
(here we used the expression (2.41) for R1z(t, τ) and took into account that when z(t, τ) = z0(t, τ) the sum
(2.41) contains only terms with eτ1).

Let us calculate

M =

[
g(t)

2
(eτ2σ1 + eτ3σ2)

(
z

(0)
0 (t) + α

(0)
1 (t)eτ1

)]∧
=

=
g(t)

2

{
σ1z

(0)
0 (t)eτ2+σ2z

(0)
0 (t)eτ3+ σ1α

(0)
1 (t)eτ2+τ1 + σ2α

(0)
1 (t)eτ3+τ1}∧.

Let us analyze the exponents of the second dimension included here for their resonance:

eτ2+τ1 |τ=ψ(t)/ε = e

1
ε

t∫
t0

(−iβ′(θ)+A(θ))dθ

,

−iβ′ +A =


0,

A,
−iβ′,
+iβ′,

⇔ ∅;

eτ2+τ1 |τ=ψ(t)/ε = e

1
ε

t∫
t0

(−iβ′(θ)+A(θ))dθ

,

−iβ′ +A =


0,

A,
−iβ′,
+iβ′,

⇔ ∅.

Thus, exponents eτ2+τ1 and eτ3+τ1 are not resonant. Then, for solvability, equation (5.1) it is necessary
and su�cient that the condition

−t(1−α) ∂

∂t

(
α

(0)
1 (t)

)
+
K(t, t)α

(0)
1 (t)

t(1−α)λ1(t)
= 0

is satis�ed. Attaching the initial initial condition

α
(0)
1 (t0) = z0 + λ−1

1 (t0)h(t0)

to this equation, we �nd

α
(0)
1 (t) = α

(0)
1 (t0)e

t∫
t0

(
K(θ,θ)

θ2(1−α)λ1(θ)

)
dθ

and therefore, we uniquely calculate the solution (5.1) of the problem (3.10) in the space U . Moreover, the
main term of the asymptotic of the solution to problem (1.2) has the form

zε0(t) = z
(0)
0 (t) +

[
z0 + λ−1

1 (t0)h(t0)
]
e

t∫
t0

(
K(θ,θ)

θ2(1−α)λ1(θ)

)
dθ+ 1

ε

t∫
t0

λ1(θ)dθ

(5.3)

where z
(0)
0 (t) is the solution of the integrated equation (5.2).
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6. Conclusions

From expression (5.2) for zε0(t) it's clear that zε0(t) is independent of rapidly oscillating terms. However,
already in the next approximation, their in�uence on the asymptotic solution of problem (1.2) is revealed.

Acknowledgements. The authors are grateful to the referees for their valuable comments which have
led to improvement of the presentation.
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