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Abstract

In this study, firstly, each natural lift curve of the main curve is corresponded to the ruled
surface by exploiting E. Study mapping and the relation among the subset of the tangent
bundle of unit 2-sphere, T M̄ and ruled surfaces in R3. Secondly, the intersection of two
ruled surfaces, which are obtained by using the relation given above, is examined for the
condition of the zero-set of λ (u,v) = 0. Then, all redundant and non-redundant solutions of
the zero-set are investigated. Furthermore, the degenerate situations (u,v) = 0, where the
whole plane is degenerated by the zero-set, are denoted. Finally, some examples are given
to verify the results.

1. Introduction

In mathematics, the ruled surface, whose parametric expression is given as below, is defined as the set of points drawn by a
moving straight line. That is, the parametric representation of the ruled surface φ , acquired by the set {~k(u),~q(u)}, is

~h(u,v) =~k(u)+ v~q(u), u ∈ I, v ∈ R

for the set {~k(u),~q(u)}. Here, k =~k(u) is a point and q =~q(u) is a non-null vector in R3. Moreover,~k(u) and~q(u) are called
the base curve and various of the generating lines, respectively, see [1]. From several significant applications of this surface,
many mathematicians dealt with this surface in literature. Some of them are as follows: in [2], considering geometric invariants
of space curves, a categorization of special developable surfaces under special condition was investigated. In [3], the theory of
Mannheim curves was extended to the ruled surfaces. In [4], sectional curvature of ruled surfaces was computed in Minkowski
space. In [5], some important properties of special ruled surfaces were investigated according to modified orthogonal frame. In
[6], the evolution of several associated type ruled surfaces was defined. Furthermore, the Mannheim offset of developable
ruled surface was defined. In [7], a correspondence among unit dual sphere, DS2, the tangent bundle of the unit 2-sphere, T S2,
and non-null ruled surfaces was mentioned in detail. In [8], taking this correspondence into consideration, the ruled surface
was described by using E. Study mapping and the relation between the tangent bundle of unit 2-sphere and non-null ruled
surfaces. In [9], the non-null ruled surfaces were introduced by exploiting E. Study mapping and the isomorphism between
pseudo-spheres and the tangent bundles of pseudo-spheres in E3

1 . In [10], Frenet vector fields and invariants of timelike ruled
surfaces were explored. In [11], the ruled surface according to the Darboux frame was introduced. In [12], in 3-dimensional
contact metric manifold, the properties of the ruled surface were defined. In [13], some geometric interpretations for timelike
ruled surfaces were examined.
The surface intersection problem has important research fields in differential geometry, geometric modeling, architecture,
computer aided design, etc. Several algorithms were considered for the intersection of two surfaces in literature. In [14], the
intersection of two ruled surfaces was investigated under some special conditions. In [15], in higher dimension, the problems of
curve and surface intersections were formulated. Additionally, the algebraic set to a lower dimensional space was constructed.
In [16], an adaptive algorithm was developed for finding the intersection curves. In [17], a boundary method for surface
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intersection was studied for smooth parametric surfaces defined over rectangular and triangular domains. In [18], a hybrid
algorithm for the calculation of the intersection of an algebraic surface and a rational polynomial parametric surface patch was
computed.
The theory of curves has substantial field in geometry, engineering, computer modeling mentioned above, etc. The relation
among Frenet operators for given two smooth curves opened new research areas for many mathematicians in literature. One of
the curves, which is compared with Frenet operators of the main curve, is the natural lift curve. Namely, the natural lift curve,
which was firstly encountered in J. A. Thorpe’s book in [19], is defined as a smooth curve obtained by the unit tangent vectors
of any given smooth curve:
for the curve Γ, Γ̄ is called the natural lift of Γ on T M̄, which provides the following equation:

Γ̄(u) = (q̄(u), ϑ̄(u)) = (q
′
(u)|γ(u),ϑ

′
(u)|ϑ(u)).

There are some studies about the geometric interpretations about the natural lift curve. Some of them are as follows: in [20],
some properties of the natural lift curve were investigated in R3. In [21], the correspondence between the natural lift curve
and its involute curve was given. In [22], the Frenet frames of the natural lift curve and its Bertrand mate were examined. In
[23], dual spherical curves of the natural lift curve were denoted in terms of Frenet vector fields. In [24], the condition being
the natural lifts of the spherical indicatrix of the curve is an integral curve of the geodesic spray was introduced. In [25], the
authors proved that if the natural lifts geodesic spray of spherical indicator curvatures of Mannheim partner curve was an
integral curve, Mannheim Curve was obtained. In [26], the condition being the natural lifts of the spherical indicatrix of the
evolute curve are an integral curve of geodesic spray was expressed.
There is no research about the intersection of two ruled surfaces generated by the natural lift curves in literature. Therefore,
in this paper, using the mentioned isomorphism and using some properties about dual numbers given in [27], we obtain two
ruled surfaces acquired by the natural lift curves. Furthermore, we analyze the cases for the intersection of two ruled surfaces
by examining the zero-set of λ (u,v) = 0. Then, we categorize all redundant and non-redundant solutions of the zero-set.
Moreover, in the subsections, we consider the degenerate situations (u,v) = 0, where the whole plane is degenerated by the
zero-set.
This paper is organized as follows: in Section 2, some basic definitions and theorems about the dual numbers and the ruled
surfaces acquired by the natural lift curve are mentioned. In Section 3, the intersection of two ruled surfaces acquired by the
natural lift curves is examined by calculating the zero-set λ (u,v) = 0. Additionally, all redundant and non-redundant solutions
are denoted. Then, some examples are given to verify the results. In Section 4, obtained results are discussed in detail.

2. Preliminaries

The set of dual numbers is

D= {X = x+ εx∗;(x,x∗) ∈ R×R, ε
2 = 0},

where~x and~x∗ are real and dual parts of ~X , respectively. If~x and~x∗ are vectors in R3, ~X =~x+ ε~x∗ is called a dual vector.
For ~X =~x+ ε~x∗ and~Y =~y+ ε~y∗, the basic operations are given as follows:
the addition is

~X +~Y = (~x+~y)+ ε(~x∗+~y∗),

and the inner product is

〈~X ,~Y 〉= 〈~x,~y〉+ ε(〈~x∗,~y〉+ 〈~x,~y∗〉).

Moreover, the vector product is

~X×~Y =~x×~y+ ε(~x×~y∗+~x∗×~y).

The norm of ~X =~x+ ε~x∗ is

|~X |=
√
〈~x,~x〉+ ε

〈~x,~x∗〉√
〈~x,~x〉

, ~x 6= 0.

The dual vector is called unit dual vector, if |~X |= 1. The unit dual sphere, which consists of all unit dual vectors, is given as
the following set:

DS2 = {~X =~x+ ε~x∗ ∈ D3 : |~X |= 1}. (2.1)

For more information about dual vectors, see [27].
Let S2 be a unit 2-sphere in R3. The tangent bundle of S2 is given by

T S2 = {(q,ϑ) ∈ R3×R3 : |q|= 1, 〈q,ϑ〉= 0},
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where ”〈,〉” is the inner product and ”|, |” is the norm in R3, respectively, see [8]. Let T M̄ also be a subset of T S2, defined by

T M̄ = {(q̄, ϑ̄) ∈ R3×R3 : |q̄|= 1, 〈q̄, ϑ̄〉= 0}. (2.2)

Here, q̄ and ϑ̄ are the derivatives of q and ϑ , respectively, see [23]. From Eqs. (2.1) and (2.2), the correspondence between the
unit dual sphere and the subset of the tangent bundle of unit 2-sphere is given by

T M̄ −→ DS2,

Γ̄ = (q̄, ϑ̄) 7−→ ~̄
Γ = ~̄q+ ε

~̄
ϑ .

Theorem 2.1 (E. Study mapping). There is one-to-one relation between the oriented lines in R3 and the points of DS2.

Theorem 2.2. Let Γ̄(u) = (~̄q(u), ϑ̄(u))∈ T M̄. In R3, the ruled surface acquired by the natural lift curve Γ̄(u) can be expressed
by

φ̄(u,v) = ~̄q(u)× ~̄
ϑ(u)+ v~̄q(u),

where

β (u) = ~̄q(u)× ~̄
ϑ(u)

is the base curve of φ̄ .

As a result, the isomorphism among T M̄, DS2 and R3 can be written by

T M̄ −→ DS2 −→ R3,

Γ̄(u) = (q̄(u), ϑ̄(u)) 7−→ ~̄
Γ(u) = ~̄q(u)+ ε

~̄
ϑ(u) 7−→ φ̄(u,v) = ~̄q(u)× ~̄

ϑ(u)+ v~̄q(u).

Here φ̄(u,v) is the ruled surface in R3 related to the dual curve Γ̄(u) = ~̄q(u)+ ε
~̄
ϑ(u) ∈ DS2 (or to the natural lift curve

Γ̄(u) ∈ T M̄), see [23].

3. Some characterizations for the intersection of two ruled surfaces

Let φ̄1(u,s) and φ̄2(v, t) be the ruled surfaces acquired by the natural lift curves ᾱ(u)= (α1(u),α∗1 (u)) and α̃(v)= (α2(v),α∗2 (v)),
where ᾱ(u) and α̃(v) on T M̄, respectively. Considering the isomorphism mentioned above, the ruled surface generated by
ᾱ(u) = (α1(u),α∗1 (u)) is

φ̄1(u,s) = α1(u)×α
∗
1 (u)+ sα

∗
1 (u),

where the base curve is

C(u) = α1(u)×α
∗
1 (u).

Moreover, the ruled surface generated by α̃(v) = (α2(v),α∗2 (v)) is

φ̄2(v, t) = α2(v)×α
∗
2 (v)+ tα∗2 (v),

where the base curve is

D(v) = α2(v)×α
∗
2 (v).

Let L1 and L2 denote the rullings of φ̄1 and φ̄2, respectively. As φ̄1 and φ̄2 intersect, we write

φ̄1(u,s) = φ̄2(v, t).

That is,

C(u)−D(v) =−sα
∗
1 (u)+ tα∗2 (v). (3.1)

It is obvious that C(u)−D(v) is the linear combination of α∗1 (u) and α∗2 (v). In this equation, C(u)−D(v), α∗1 (u) and α∗2 (v)
are linearly dependent. Hence, the following condition is satisfied:

λ (u,v) = det(α∗1 (u),α
∗
2 (v),C(u)−D(v)) = 0.

Now, we will investigate the solutions of the determinant given as above in detail.
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3.1. Redundant and non-redundant solutions

The condition of being λ (u,v) = 0 is a desired condition. However, it is not sufficient condition for examining the intersection
of two rulling lines L1 and L2. Some redundant points, which do not related to real intersection points of these ruled surfaces,
could be contained by the solution set of λ (u,v) = 0. Hence, we categorize all probabilities for redundant solutions as below:
the solutions of λ (u,v) = 0 denote the linear dependency of C(u)−D(v),α∗1 (u) and α∗2 (v):

c1α
∗
1 (u)+ c2α

∗
2 (v)+ c3(C(u)−D(v)) = 0 (3.2)

for some non-zero constants c1,c2,c3. There are two conditions for the solution of Eq. (3.2):
(i) if c3 6= 0, then Eq. (3.1) is obtained. We say that two rulling lines intersect. Furthermore, there has not been any redundant
solution of λ (u,v) = 0 under this condition.
(ii) If c3 = 0, we get

α
∗
1 (u) =−

c1

c2
α
∗
2 (v)

for c1 6= 0 and c2 6= 0. It is deduced that α∗1 (u) and α∗2 (v) are parallel or opposite.
Additionally, (u,v) provides λ (u,v) = 0 without checking the intersection of L1 and L2. In this way, (u,v) is called redundant
if α∗1 (u) and α∗2 (v) are parallel or opposite. However, the related rullings do not coincide. The condition of being parallel or
opposite for α∗1 (u) and α∗2 (v) can be expressed by employing the zero-set of another function as below:

∆(u,v) = ‖α∗1 (u)×α
∗
2 (v)‖2 = ‖α∗1 (u)‖2‖α∗2 (v)‖2−〈α∗1 (u),α∗2 (v)〉2 = 0.

The zero set of ∆(u,v) = 0 is a subset of the zero set of λ (u,v) = 0. Furthermore, L1 and L2 overlap each other iff ∆(u,v) = 0
and there exist the following equations:

δ1(u,v) = ‖α∗1 (u)× (C(u)−D(v))‖2

= ‖α∗1 (u)‖2‖C(u)−D(v)‖2−〈α∗1 (u),C(u)−D(v)〉2 = 0,
δ2(u,v) = ‖α∗2 (v)× (C(u)−D(v))‖2

= ‖α∗2 (v)‖2‖C(u)−D(v)‖2−〈α∗2 (v),C(u)−D(v)〉2 = 0.

∆(u,v) = δ1(u,v) = δ2(u,v) = 0 iff two rulling lines L1 and L2 overlap each other.
As a result, ∆(u,v)+δ1(u,v)+δ2(u,v) = 0, since ∆(u,v),δ1(u,v),δ2(u,v)≥ 0. Consequently, the solution of λ (u,v) = 0 is
redundant iff ∆(u,v) = 0 and ∆(u,v)+δ1(u,v)+δ2(u,v) 6= 0.

3.2. Birational correspondence

As L1 and L2 intersect, s and t are expressed as rational bivariate functions u and v. Calculating the inner product of Eq. (3.1)
with α∗1 (u) and α∗2 (v), we have(

‖α∗1 (u)‖2 −〈α∗1 (u),α∗2 (v)〉
−〈α∗1 (u),α∗2 (v)〉 ‖α∗2 (v)‖2

)(
s
t

)
=

(
〈α∗1 (u),D(v)−C(u)〉
〈α∗2 (v),C(u)−D(v)〉

)
.

As ∆(u,v) is not equal to 0, this matrix equation becomes non-singular. Furthermore, there exists unique rational solutions of
s(u,v) and t(u,v). So, we find

s(u,v) =
‖α∗2 (v)‖2〈α∗1 (u),D(v)−C(u)〉+ 〈α∗1 (u),α∗2 (v)〉〈α∗2 (v),C(u)−D(v)〉

‖α∗1 (u)‖2‖α∗2 (v)‖2−〈α∗1 (u),α∗2 (v)〉2
,

t(u,v) =
‖α∗1 (u)‖2〈α∗2 (v),C(u)−D(v)〉+ 〈α∗1 (u),α∗2 (v)〉〈α∗1 (u),D(v)−C(u)〉

‖α∗1 (u)‖2‖α∗2 (v)‖2−〈α∗1 (u),α∗2 (v)〉2
.

In this situation, as ∆(u,v) ≈ 0, the calculation of s(u,v) and t(u,v) is unstable numerically. In this situation, the squared
distance δ (u,v) is measured by using two parallel ruling lines and distinguish the lines if their squared distance is bigger than
a particular contribution: δ (u,v)≥ ε2, where δ (u,v) is expressed as δ1(u,v)

‖α∗1 (u)‖2
, the squared distance between D(v) and L1 or

δ2(u,v)
‖α∗2 (v)‖2

, the squared distance between C(u) and L2.

Assume that C̃, which has the projection C onto the uv-plane, is a section of the intersection curve of φ̄1 and φ̄2, respectively.
In this situation, these ruled surfaces do not coincide. If C̃ is a connected curve section, C is accepted as a connected section of
λ (u,v) = 0. Generally, the opposite condition is not true. There is not any unique solution for s(u,v) and t(u,v) as a connected
curve section C of λ (u,v) = 0 consists of a point (u,v) of ∆(u,v) = 0. Moreover, in some degenerate cases, the intersection
curve could be empty or a single point, while the zero-set of λ (u,v)≡ 0 is the all plane. In these conditions, there is not any
relation between an intersection curve C̃ and C of λ (u,v) = 0. Genarally, with the exception of the following conditions, there
exists birational correspondence between C̃ and C on λ (u,v) = 0:
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(i) parallel ruling lines,
(ii) degenerate cases

(iii) peaks and self-intersections.

Assume that φ̄1 has an peak P such that φ̄1(u,s) = P, for u0 ≤ u≤ u1, and P lies on the other ruled surface φ̄2(v0, t0). Moreover,
the zero-set of λ (u,v) = 0 includes a line section: {(u,v0) : u0 ≤ u≤ u1}. The whole line section is related to a single point P in
the intersection of φ̄1 and φ̄2. Q lies on the intersection curve: Q = φ̄1(u1,s1) = φ̄1(u2,s2) = φ̄2(v1, t1). The same intersection
point Q relates to the two different solutions (u1,v1) and (u2,v1). Therefore, there is not birational relation between C and C̃ in
these situations.
All singular points of φ̄1(u,s) are on the striction curve:

C̄(u) = (α1(u)×α
∗
1 (u))−

〈(α1(u)×α∗1 (u))
′,(α∗1 )

′(u)〉
〈(α∗1 )′(u),(α∗1 )′(u)〉

.

If the curve C̄ degenerates into a point, this point is the peak of a conical surface φ̄1(u,s). Let φ̄1(u,s) be noncylindrical ruled
surface. Then, all singular points of φ̄1(u,s) could be distinguished along the striction curve C̄ by controlling the condition as
follows:

〈C̄′(u)×α1(u),(α1)
′(u)〉= 0.

Self-intersection points of φ̄1 could be distinguished by the intersection of φ̄1(u,s) with φ̄1(v, t). u− v = 0, which is described
as the diogonal line, is included in the zero-sets of all variate functions. By eliminating the diagonal line from these zero-sets,
the self-intersection of φ̄1(u,s) could be characterized.

Example 3.1. Let us consider α1(u) = (0,0,1) and the vector α∗1 (u) = ( 1−u2

1+u2 ,
2u

1+u2 ,0) in R3. Since ‖α1(u)‖ = 1 and
〈α1(u),α∗1 (u)〉= 0, the natural lift curve α(u) = (α1(u),α∗1 (u)) ∈ T M̄. Then, the ruled surface corresponding to the natural
lift curve α(u) = (α1(u),α∗1 (u)) is given as

φ̄1(u,s) =
(
−2u

1+u2 ,
u2−1
1+u2 ,0)+ s(

1−u2

1+u2 ,
2u

1+u2 ,0
)

where the base curve is

C(u) =
(
−2u

1+u2 ,
u2−1
1+u2 ,0

)
.

Figure 3.1: The ruled surface φ̄1(u,s) acquired by α̃(u)

Let us consider another vector couple as α2(v) = ( −2v
1+v2 ,

1−v2

1+v2 ,0) and the vector α∗2 (v) = ( 1−v2

1+v2 ,
2v

1+v2 ,0) in R3. Since ‖α2(v)‖=
1 and 〈α2(v),α∗2 (v)〉= 0, the natural lift curve α̃(v) = (α2(v),α∗2 (v)) ∈ T M̄. Then, the ruled surface corresponding to the
natural lift curve α̃(v) = (α2(v),α∗2 (v)) is given as

φ̄2(v, t) =
(

0,0,
−v4−2v2−1
v4 +2v2 +1

)+ t(
1− v2

1+ v2 ,
2v

1+ v2 ,0
)

where the base curve is

D(v) =
(

0,0,
−v4−2v2−1
v4 +2v2 +1

)
.

If these ruled surfaces intersect, we get

φ̄1(u,s) = φ̄2(v, t).
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Figure 3.2: The ruled surface φ̄2(v, t) generated by ᾱ(v)

Figure 3.3: The intersection of φ̄1(u,s) and φ̄2(v, t)

Considering these ruled surfaces, we calculate

λ (u,v) =
2(v−u)(1−uv)
(1+u2)(1+ v2)

,

∆(u,v) =

∥∥∥∥(0,0,
2(v−u)(1−uv)
(1+u2)(1+ v2)

)∥∥∥∥2

,

δ1(u,v) =

∥∥∥∥( 2u
1+u2 ,

1−u2

u2 +1
,

u4 +4u2−1
u4 +2u2 +1

)∥∥∥∥2

,

δ2(u,v) =

∥∥∥∥( 2v
1+ v2 ,

v2−1
v2 +1

,
(1− v2)(u2−1)+4uv

(u2 +1)(v2 +1)

))
‖2.

The real solutions of λ (u,v) = 0 and ∆(u,v) = 0 represents a planar curve (v− u)(1− uv) = 0. Hence, the zero-set of
∆(u,v) = 0 is the subset of λ (u,v) = 0. It is simply to control that ∆(u,v)+ δ1(u,v)+ δ2(u,v) > 0 for all (u,v). Thus, all
solutions of ∆(u,v) = 0 are redundant solutions of λ (u,v) = 0.
The non-redundant solution of C = {(u,v) : λ (u,v) = 0,∆(u,v) 6= 0} is comprised of four components in the uv− plane, given
as follows:

C1 = {(u,v) : uv = 1,u <−1},
C2 = {(u,v) : uv = 1,−1 < u < 0},
C3 = {(u,v) : uv = 1,0 < u < 1},
C4 = {(u,v) : uv = 1,u > 1}.

Hence, the intersection curve contains four connected components. Moreover, the limit points of C are (1,1) and (−1,−1).
However, they are not included in the solution set C. In a small neighborhood of these limit points, the parameter values of
s(u,v) and t(u,v) diverge to ∓∞.

3.3. Degenerate cases

In some situations, the whole plane is degenerated by the solution set. These situations cover all probabilities for degenerate
cases of λ (u,v) = 0. The exceptions occurs when two ruled surfaces coincide. We denote that the two ruled surfaces, which
overlap each other, are planes or rational bilinear surfaces as below. Therefore, the determination of all degenerate cases may
be decreased for categorizing the special types of input surfaces: whether the surface is a plane, cylinder, cone, quadric, etc.
As α∗1 (u) and α∗2 (v) are parallel or opposite for all pairs of (u,v), φ̄1(u,s) and φ̄2(v, t) are cylindrical surfaces that are parallel
to each other. In the contrary case, α∗1 (u) and α∗2 (v) are parallel or opposite for the couple of (u,v) providing the condition
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of ∆(u,v) = 0. Generally, ∆(u,v) = 0 could not be space-filling curve. Thus, there exists an area [ua,ub]× [va,vb], where
∆(u,v) 6= 0. For λ (u,v) = 0,ua ≤ u≤ ub,va ≤ v≤ vb, we write

C(u)−D(v) =−s(u,v)α∗1 (u)+ t(u,v)α∗2 (v).

From this equation, we conclude that each ruling line L1 of φ̄1 intersects with all other rulling lines L2 of φ̄2 and the converse is
true. There are three different cases:
first of all is that there is a couple of lines L1 and L2 which intersect at P. Each ruling line L2 of φ̄2 coincides with both L1 and
L2. There are two subcases to examine:
if there are infinitely many L2 running through the point P, φ̄2 must be a conical surface at P.
Otherwise, infinitely many lines L2 must be contained in the plane identified by L1 and L2. Then, a plane is degenerated by the
whole surface φ̄2.
Similarly, the surface type of φ̄1 has also been identified. If φ̄2 is a non-planar conical surface, all ruling lines L1 of φ̄1 run
through the apex P. Hence, φ̄1 becomes a conical surface.
Otherwise, φ̄2 is a plane. All ruling lines L1 of φ̄1 are the subset of the plane for φ̄2. Hence, φ̄1 and φ̄2 degenerate into the same
plane.
Second of all is that there is a pair of parallel lines L1 and L2.
Then, there has been a unique plane identified by these two parallel lines. All ruling lines L2 of φ̄2 are subsets of the plane.
Therefore, the whole surface φ̄2 degenerates into the plane. Likewise, φ̄1 has also been contained in the same plane.
Third of all is that any two different lines L1 and L2 are skew. Furthermore, any two different lines L1 and L2 are also skew.
(Otherwise, we will result in first or second cases given above examined before.) Assume that T is the intersection point of L1
and L2. Let us consider as φ̄1 = T for all (u,v) ∈ [ua,ub]× [va,vb]. Then φ̄1 and φ̄2 coincide. Therefore, φ̄1 and φ̄2 indicate
the same surface. φ̄1 generates a rational bilinear surface with special conditions of u and v. Additionally, this surface are
considered as a quadric surface.

4. Conclusion

In this paper, different from literature, the ruled surfaces acquired by the natural lift curves are defined by using E. Study
mapping and the isomorphism between the subset of the unit tangent bundle of unit 2-sphere, T M̄, and unit dual sphere,
DS2. Taking the the intersection of ruled surfaces obtained in this way into consideration, the cases for the intersection
are investigated by exploiting λ (u,v) = 0. Therefore, redundant and non-redundant solutions are scrunutized under some
conditions. Moreover, being to be degenerate conditions are denoted in detail. Then, obtained results are illustrated by some
significiant examples.
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